Manure Application Is the Key to Improving Soil Quality of New Terraces
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Experimental Design
2.3. Sampling and Measurement
2.4. Soil Quality Assessment
2.5. Statistical Analyses
3. Results
3.1. Effects of Fertilization on Soil Properties
3.2. Development of the TDS and MDS
3.3. Comparison and Dynamics of the SQI
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Stavi, I.; Fizik, E.; Argaman, E. Contour bench terrace (shich/shikim) forestry systems in the semi-arid Israeli Negev: Effects on soil quality, geodiversity, and herbaceous vegetation. Geomorphology 2015, 231, 376–382. [Google Scholar] [CrossRef]
- Deng, C.; Zhang, G.; Liu, Y.; Nie, X.; Li, Z.; Liu, J.; Zhu, D. Advantages and disadvantages of terracing: A comprehensive review. Int. Soil Water Conserv. Res. 2021, 9, 344–359. [Google Scholar] [CrossRef]
- Branca, G.; Lipper, L.; McCarthy, N.; Jolejole, M.C. Food security, climate change, and sustainable land management. A review. Agron. Sustain. Dev. 2013, 33, 635–650. [Google Scholar] [CrossRef] [Green Version]
- Ramos, M.C.; Cots-Folch, R.; Martínez-Casasnovas, J.A. Effects of land terracing on soil properties in the Priorat region in Northeastern Spain: A multivariate analysis. Geoderma 2007, 142, 251–261. [Google Scholar] [CrossRef]
- Liu, E.; Yan, C.; Mei, X.; He, W.; Bing, S.H.; Ding, L.; Liu, Q.; Liu, S.; Fan, T. Long-term effect of chemical fertilizer, straw, and manure on soil chemical and biological properties in northwest China. Geoderma 2010, 158, 173–180. [Google Scholar] [CrossRef]
- Frederik, V.D.B.; Jakob, M.; Jensen, L.S. Long-term fertilisation strategies and form affect nutrient budgets and soil test values, soil carbon retention and crop yield resilience. Plant Soil 2018, 434, 47–64. [Google Scholar]
- Qaswar, M.; Jing, H.; Ahmed, W.; Dongchu, L.; Shujun, L.; Lu, Z.; Cai, A.; Lisheng, L.; Yongmei, X.; Jusheng, G.; et al. Yield sustainability, soil organic carbon sequestration and nutrients balance under long-term combined application of manure and inorganic fertilizers in acidic paddy soil. Soil Tillage Res. 2020, 198, 104569. [Google Scholar] [CrossRef]
- Xie, J.; Shi, X.; Zhang, Y.; Wan, Y.; Hu, Q.; Zhang, Y.; Wang, J.; He, X.; Evgenia, B. Improved nitrogen use efficiency, carbon sequestration and reduced environmental contamination under a gradient of manure application. Soil Tillage Res. 2022, 220, 105386. [Google Scholar] [CrossRef]
- Githongo, M.; Kiboi, M.; Ngetich, F.; Musafiri, C.; Muriuki, A.; Fliessbach, A. The effect of minimum tillage and animal manure on maize yields and soil organic carbon in sub-Saharan Africa: A meta-analysis. Environ. Chall. 2021, 5, 100340. [Google Scholar] [CrossRef]
- Du, Y.; Cui, B.; Zhang, Q.; Wang, Z.; Sun, J.; Niu, W. Effects of manure fertilizer on crop yield and soil properties in China: A meta-analysis. Catena 2020, 193, 104617. [Google Scholar] [CrossRef]
- Zeng, X.; Xiao, Z.; Zhang, G.; Wang, A.; Li, Z.; Liu, Y.; Wang, H.; Zeng, Q.; Liang, Y.; Zou, D. Speciation and bioavailability of heavy metals in pyrolytic biochar of swine and goat manures. J. Anal. Appl. Pyrolysis 2018, 132, 82–93. [Google Scholar] [CrossRef]
- Blanchet, G.; Gavazov, K.; Bragazza, L.; Sinaj, S. Responses of soil properties and crop yields to different inorganic and organic amendments in a Swiss conventional farming system. Agric. Ecosyst. Environ. 2016, 230, 116–126. [Google Scholar] [CrossRef] [Green Version]
- Fu, Y.; de Jonge, L.W.; Moldrup, P.; Paradelo, M.; Arthur, E. Improvements in soil physical properties after long-term manure addition depend on soil and crop type. Geoderma 2022, 425, 116062. [Google Scholar] [CrossRef]
- Li, P.; Li, Y.; Xu, L.; Zhang, H.; Shen, X.; Xu, H.; Jiao, J.; Li, H.; Hu, F. Crop yield-soil quality balance in double cropping in China’s upland by organic amendments: A meta-analysis. Geoderma 2021, 403, 115197. [Google Scholar] [CrossRef]
- Robertson, G.P.; Vitousek, P.M. Nitrogen in Agriculture: Balancing the Cost of an Essential Resource. Annu. Rev. Environ. Resour. 2009, 34, 97–125. [Google Scholar] [CrossRef] [Green Version]
- Raza, S.; Miao, N.; Wang, P.; Ju, X.; Chen, Z.; Zhou, J.; Kuzyakov, Y.; Na, M. Dramatic loss of inorganic carbon by nitrogen-induced soil acidification in Chinese croplands. Glob. Change Biol. 2020, 26, 3738–3751. [Google Scholar] [CrossRef]
- Liu, C.A.; Li, F.R.; Zhou, L.M.; Zhang, R.H.; Jia, Y.; Lin, S.L.; Wang, L.J.; Siddique, K.H. Effect of organic manure and fertilizer on soil water and crop yields in newly-built terraces with loess soils in a semi-arid environment. Agric. Water Manag. 2013, 117, 123–132. [Google Scholar] [CrossRef]
- Yue, Z.; Liu, Y. Effect of different fertilizer cultivation methods on new terraced fields in southern mountainous area of Ningnan. Soil Water Conserv. China 2015, 9, 52–55. [Google Scholar]
- Rashid, M.; Rehman, O.U.; Alvi, S.; Kausar, R.; Akram, M.I. The Effectiveness of Soil and Water Conservation Terrace Structures for Improvement of Crops and Soil Productivity in Rainfed Terraced System. Pak. J. Agric. Sci. 2016, 53, 241–248. [Google Scholar]
- Zhao, Y.; Li, F.-M. Effects of Tillage and Fertilization on Soil Water, Quality and Crop Yield in Newly-Built Terraces. Master’s Thesis, Lanzhou Univertisy, Lanzhou, China, 2018; p. 54. [Google Scholar]
- Doran, J.W.; Parkin, T.B. Defining and assessing soil quality. In Defining Soil Quality for a Sustainable Environment; Doran, J.W., Coleman, D.C., Bezdicek, D.F., Stewart, B.A., Eds.; Soil Science Society of America and American Society of Agronomy: Madison, WI, USA, 1994; pp. 1–21. [Google Scholar]
- Carter, M.R. Soil quality for sustainable land management: Organic matter and aggregation interactions that maintains soil functions. Agron. J. 2002, 94, 38–47. [Google Scholar] [CrossRef]
- Karlen, D.L.; Stott, D.E. A framework for evaluating physical and chemical indicators of soil quality. In Defining Soil Quality for a Sustainable Environment; Doran, J.W., Coleman, D.C., Bezdicek, D.F., Stewart, B.A., Eds.; Soil Science Society of America: Madison, WI, USA, 1994; pp. 53–72. [Google Scholar]
- Sainju, U.M.; Mukherjee, A.; Lal, R. Comparison of Soil Quality Index Using Three Methods. PLoS ONE 2014, 9, e105981. [Google Scholar]
- Raiesi, F. A minimum data set and soil quality index to quantify the effect of land use conversion on soil quality and degradation in native rangelands of upland arid and semiarid regions. Ecol. Indic. 2017, 75, 307–320. [Google Scholar] [CrossRef]
- Yu, P.; Liu, S.; Zhang, L.; Li, Q.; Zhou, D. Selecting the minimum data set and quantitative soil quality indexing of alkaline soils under different land uses in northeastern China. Sci. Total Environ. 2017, 616–617, 564–571. [Google Scholar] [CrossRef]
- Nakajima, T.; Lal, R.; Jiang, S. Soil quality index of a crosby silt loam in central Ohio. Soil Tillage Res. 2015, 146, 323–328. [Google Scholar] [CrossRef]
- Mamehpour, N.; Rezapour, S.; Ghaemian, N. Quantitative assessment of soil quality indices for urban croplands in a calcareous semi-arid ecosystem. Geoderma 2021, 382, 114781. [Google Scholar] [CrossRef]
- Li, P.; Shi, K.; Wang, Y.; Kong, D.; Liu, T.; Jiao, J.; Liu, M.; Li, H.; Hu, F. Soil quality assessment of wheat-maize cropping system with different productivities in China: Establishing a minimum data set. Soil Tillage Res. 2019, 190, 31–40. [Google Scholar] [CrossRef]
- Obade, V.P.; Lal, R. A standardized soil quality index for diverse field conditions. Sci. Total Environ. 2016, 541, 424–434. [Google Scholar] [CrossRef]
- Karlen, D.L.; Ditzler, C.A.; Andrews, S.S. Soil quality: Why and how? Geoderma 2003, 114, 145–156. [Google Scholar] [CrossRef]
- Kong, M.; Jia, Y.; Gu, Y.-J.; Han, C.-L.; Song, X.; Shi, X.-Y.; Siddique, K.H.; Zdruli, P.; Zhang, F.; Li, F.-M. How Film Mulch Increases the Corn Yield by Improving the Soil Moisture and Temperature in the Early Growing Period in a Cool, Semi-Arid Area. Agronomy 2020, 10, 1195. [Google Scholar] [CrossRef]
- Su, Y. Potassium balance and potash application effect in cultivated lands of Gansu Province. Soil 2001, 2, 73–76. (In Chinese) [Google Scholar]
- Qin, A.; Fang, Y.; Ning, D.; Liu, Z.; Zhao, B.; Xiao, J.; Duan, A.; Yong, B. Incorporation of Manure into Ridge and Furrow Planting System Boosts Yields of Maize by Optimizing Soil Moisture and Improving Photosynthesis. Agronomy 2019, 9, 865. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Xiong, R.; Li, Y.; Chen, L.; Han, R. Anaerobic digestion characteristics and key microorganisms associated with low-temperature rapeseed cake and sheep manure fermentation. Arch. Microbiol. 2022, 204, 188. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Chen, Y.; Antoniadis, V.; Wang, K.; Huang, Y.; Tian, H. Assessment of heavy metal(loid)s contamination risk and grain nutritional quality in organic waste-amended soil. J. Hazard. Mater. 2020, 399, 123095. [Google Scholar] [CrossRef] [PubMed]
- Wan, J.; Wang, X.; Yang, T.; Wei, Z.; Banerjee, S.; Friman, V.-P.; Mei, X.; Xu, Y.; Shen, Q. Livestock Manure Type Affects Microbial Community Composition and Assembly During Composting. Front. Microbiol. 2021, 12, 621126. [Google Scholar] [CrossRef] [PubMed]
- Voroney, R.P.; Winter, J.P.; Beyaert, R.P. Soil microbial biomass C and N. In Soil Sampling and Methods of Analysis; Carter, M.R., Gregorich, E.G., Eds.; Lewis Publishers, Division of CRC Press: Boca Taton, FL, USA, 1993. [Google Scholar]
- Olsen, S.R. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate; United States Department of Agriculture: Washington, DC, USA, 1954; Volume 939, p. 19. [Google Scholar]
- Bremner, J.M.; Mulvaney, C. Nitrogen-Total. In Methods of Soil Analysis; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; American Society of Agronomy, Soil Science Society of America: Madison, WI, USA, 1982; pp. 595–624. [Google Scholar]
- O’Halloran, I.P.; Cade-Menun, B.J. Total and organic phosphorus. In Soil Sampling and Methods of Analysis; Carter, M.R., Gregorich, E.G., Eds.; Canadian Society of Soil Science/CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
- Nelson, D.W.; Sommers, L.E. Total Carbon, Organic Carbon and Organic Matter. In Methods of Soil Analysis; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; American Society of Agronomy: Madison, WI, USA, 1982; pp. 539–579. [Google Scholar]
- Askari, M.S.; Holden, N.M. Indices for quantitative evaluation of soil quality under grassland management. Geoderma 2014, 230–231, 131–142. [Google Scholar] [CrossRef]
- Andrews, S.S.; Karlen, D.L.; Cambardella, C.A. The Soil Management Assessment Framework: A Quantitative Soil Quality Evaluation Method. Soil Sci. Soc. Am. J. 2004, 68, 1945–1962. [Google Scholar] [CrossRef]
- Biswas, S.; Hazra, G.C.; Purakayastha, T.J.; Saha, N.; Mitran, T.; Roy, S.S.; Basak, N.; Mandal, B. Establishment of critical limits of indicators and indices of soil quality in rice-rice cropping systems under different soil orders. Geoderma 2017, 292, 34–48. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, Q.; Gao, H.; Zhang, R.; Yang, L.; Guo, Y.; Li, H.; Awasthi, M.K.; Li, G. Long-term cover crops improved soil phosphorus availability in a rain-fed apple orchard. Chemosphere 2021, 275, 130093. [Google Scholar] [CrossRef]
- Yadav, R.; Purakayastha, T.; Khan, M.; Kaushik, S. Long-term impact of manuring and fertilization on enrichment, stability and quality of organic carbon in Inceptisol under two potato-based cropping systems. Sci. Total Environ. 2017, 609, 1535–1543. [Google Scholar] [CrossRef]
- Ren, F.; Misselbrook, T.H.; Sun, N.; Zhang, X.; Zhang, S.; Jiao, J.; Xu, M.; Wu, L. Spatial changes and driving variables of topsoil organic carbon stocks in Chinese croplands under different fertilization strategies. Sci. Total Environ. 2021, 767, 144350. [Google Scholar] [CrossRef]
- Li, B.; Song, H.; Cao, W.; Wang, Y.; Chen, J.; Guo, J. Responses of soil organic carbon stock to animal manure application: A new global synthesis integrating the impacts of agricultural managements and environmental conditions. Glob. Change Biol. 2021, 27, 5356–5367. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.; Zhang, D.; Yan, Y.; Yang, C.; Fang, B.; Li, X.; Shao, Y.; Wang, H.; Yue, J.; Wang, Y.; et al. Short-term application of chicken manure under different nitrogen rates alters structure and co-occurrence pattern but not diversity of soil microbial community in wheat field. Front. Microbiol. 2022, 13, 975571. [Google Scholar] [CrossRef]
- Guo, Z.; Wan, S.; Hua, K.; Yin, Y.; Chu, H.; Wang, D.; Guo, X. Fertilization regime has a greater effect on soil microbial community structure than crop rotation and growth stage in an agroecosystem. Appl. Soil Ecol. 2020, 149, 103510. [Google Scholar] [CrossRef]
- Liang, C.; Schimel, J.P.; Jastrow, J.D. The importance of anabolism in microbial control over soil carbon storage. Nat. Microbiol. 2017, 2, 17105. [Google Scholar] [CrossRef] [PubMed]
- Murphy, B. Key soil functional properties affected by soil organic matter-evidence from published literature. IOP Conf. Ser. Earth Environ. Sci. 2015, 25, 012008. [Google Scholar] [CrossRef]
- Cotching, W.E. Organic matter in the agricultural soils of Tasmania, Australia-A review. Geoderma 2018, 312, 170–182. [Google Scholar] [CrossRef]
- Mendes, I.C.; Sousa, D.M.G.; Dantas, O.D.; Lopes, A.A.C.; Junior, F.B.R.; Oliveira, M.I.; Chaer, G.M. Soil quality and grain yield: A win–win combination in clayey tropical oxisols. Geoderma 2021, 388, 114880. [Google Scholar] [CrossRef]
- Qi, Y.; Darilek, J.L.; Huang, B.; Zhao, Y.; Sun, W.; Gu, Z. Evaluating soil quality indices in an agricultural region of Jiangsu Province, China. Geoderma 2009, 149, 325–334. [Google Scholar] [CrossRef]
- Karlen, D.L.; Hurley, E.G.; Andrews, S.S.; Cambardella, C.A.; Meek, D.W.; Duffy, M.D.; Mallarino, A.P. Crop Rotation Effects on Soil Quality at Three Northern Corn/Soybean Belt Locations. Agron. J. 2006, 98, 484–495. [Google Scholar] [CrossRef] [Green Version]
- Han, X.; Hu, C.; Chen, Y.; Qiao, Y.; Liu, D.; Fan, J.; Li, S.; Zhang, Z. Crop yield stability and sustainability in a rice-wheat cropping system based on 34-year field experiment. Eur. J. Agron. 2020, 113, 125965. [Google Scholar] [CrossRef]
- Gai, X.; Liu, H.; Liu, J.; Zhai, L.; Yang, B.; Wu, S.; Ren, T.; Lei, Q.; Wang, H. Long-term benefits of combining chemical fertilizer and manure applications on crop yields and soil carbon and nitrogen stocks in North China Plain. Agric. Water Manag. 2018, 208, 384–392. [Google Scholar] [CrossRef]
- Seufert, V.; Ramankutty, N.; Foley, J.A. Comparing the yields of organic and conventional agriculture. Nature 2012, 485, 229–232. [Google Scholar] [CrossRef] [PubMed]
- Berry, P.M.; Sylvester-Bradley, R.; Philipps, L.; Hatch, D.J.; Cuttle, S.P.; Rayns, F.W.; Gosling, P. Is the productivity of organic farms restricted by the supply of available nitrogen? Soil Use Manag. 2002, 18, 248–255. [Google Scholar] [CrossRef]
Indicators | SOC | TN | TP | C:N | C:P | N:P | IN | AP | pH | MBC | SWS | Yield |
---|---|---|---|---|---|---|---|---|---|---|---|---|
SOC | 1 | |||||||||||
TN | 0.898 ** | 1 | ||||||||||
TP | 0.494 ** | 0.471 ** | 1 | |||||||||
C:N | 0.248 ** | −0.143 * | 0.038 | 1 | ||||||||
C:P | 0.990 ** | 0.882 ** | 0.400 ** | 0.265 ** | 1 | |||||||
N:P | 0.877 ** | 0.970 ** | 0.392 ** | −0.175 ** | 0.880 ** | 1 | ||||||
IN | 0.568 ** | 0.541 ** | 0.548 ** | 0.093 | 0.517 ** | 0.479 ** | 1 | |||||
AP | 0.610 ** | 0.636 ** | 0.677 ** | −0.007 | 0.536 ** | 0.557 ** | 0.635 ** | 1 | ||||
pH | −0.617 ** | −0.548 ** | −0.412 ** | −0.189 ** | −0.606 ** | −0.513 ** | −0.357 ** | −0.402 ** | 1 | |||
MBC | 0.560 ** | 0.505 ** | 0.334 ** | 0.099 | 0.541 ** | 0.495 ** | 0.528 ** | 0.283 ** | −0.361 ** | 1 | ||
SWS | 0.184 ** | 0.056 | 0.039 | 0.280 ** | 0.178 ** | 0.042 | 0.075 | 0.111 | −0.038 | 0.091 | 1 | |
Yield | 0.411 ** | 0.371 ** | 0.299 ** | 0.083 | 0.381 ** | 0.332 ** | 0.499 ** | 0.318 ** | −0.365 ** | 0.580 ** | 0.148 * | 1 |
Soil Indicators | SOC | TN | C:N | TP | C:P | N:P | IN | AP | MBC | pH | SWS |
---|---|---|---|---|---|---|---|---|---|---|---|
Units | g kg−1 | g kg−1 | g kg−1 | mg kg−1 | mg kg−1 | mg kg−1 | mm | ||||
Initial Value | 2.25 | 0.21 | 10.71 | 0.59 | 3.81 | 0.36 | 2.24 | 0.58 | 61.83 | 9.06 | 330 |
End Value | |||||||||||
CK | 2.92 b | 0.36 b | 8.15 | 0.60 c | 4.85 | 0.59 | 1.12 d | 3.35 c | 52.27 b | 8.73 b | 192 b |
NP | 3.47 b | 0.46 b | 7.49 | 0.66 b | 5.3 | 0.71 | 3.30 c | 12.48 b | 78.37 b | 8.51 a | 189 b |
M | 7.51 a | 0.87 a | 8.62 | 0.65 b | 11.48 | 1.33 | 5.94 b | 14.24 b | 160.26 a | 8.53 a | 254 a |
MNP | 7.08 a | 0.82 a | 8.58 | 0.70 a | 10.15 | 1.18 | 7.23 a | 24.35 a | 156.74 a | 8.48 a | 225 ab |
Soil Indicators | TDS | MDS | |||||
---|---|---|---|---|---|---|---|
PC1 | PC2 | PC3 | Communality | Weight | Communality | Weight | |
SOC | 0.950 | −0.214 | 0.010 | 0.948 | 0.121 | 0.750 | 0.487 |
TN | 0.927 | −0.180 | −0.135 | 0.909 | 0.116 | ||
TP | 0.637 | 0.618 | 0.073 | 0.792 | 0.101 | 0.666 | 0.432 |
C:P | 0.918 | −0.314 | −0.014 | 0.941 | 0.120 | ||
N:P | 0.891 | −0.273 | −0.167 | 0.896 | 0.115 | ||
IN | 0.708 | 0.418 | 0.106 | 0.688 | 0.088 | ||
AP | 0.742 | 0.464 | 0.112 | 0.778 | 0.100 | ||
pH | −0.668 | 0.077 | 0.125 | 0.468 | 0.060 | ||
MBC | 0.633 | −0.075 | 0.033 | 0.408 | 0.052 | ||
SWS | 0.142 | −0.231 | 0.956 | 0.987 | 0.126 | 0.125 | 0.081 |
Eigenvalue | 5.721 | 1.088 | 1.006 | ||||
Percent (%) | 57.208 | 10.876 | 10.063 | ||||
Cumulative Percent (%) | 57.208 | 68.084 | 78.147 |
SQI | SQI (ls-MDS) | SQI (ls-TDS) | SQI (nls-MDS) | SQI (nls-TDS) |
---|---|---|---|---|
SQI (ls-MDS) | 1 | |||
SQI (ls-TDS) | 0.984 ** | 1 | ||
SQI (nls-MDS) | 0.975 ** | 0.975 ** | 1 | |
SQI (nls-TDS) | 0.984 ** | 0.988 ** | 0.972 ** | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, X.; Song, X.; Zhao, G.; Yang, Q.; Abbott, L.K.; Li, F. Manure Application Is the Key to Improving Soil Quality of New Terraces. Sustainability 2022, 14, 15166. https://doi.org/10.3390/su142215166
Shi X, Song X, Zhao G, Yang Q, Abbott LK, Li F. Manure Application Is the Key to Improving Soil Quality of New Terraces. Sustainability. 2022; 14(22):15166. https://doi.org/10.3390/su142215166
Chicago/Turabian StyleShi, Xiaopeng, Xin Song, Guibin Zhao, Qifeng Yang, Lynette K. Abbott, and Fengmin Li. 2022. "Manure Application Is the Key to Improving Soil Quality of New Terraces" Sustainability 14, no. 22: 15166. https://doi.org/10.3390/su142215166
APA StyleShi, X., Song, X., Zhao, G., Yang, Q., Abbott, L. K., & Li, F. (2022). Manure Application Is the Key to Improving Soil Quality of New Terraces. Sustainability, 14(22), 15166. https://doi.org/10.3390/su142215166