Study on Removal of Methylene Blue by Condensation Self-Assembled Graphene Oxide/Thiourea Composite Adsorbent
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagent
2.2. Synthesis of GO and GO-TOA
2.3. Characterization
2.4. Adsorption
3. Results and Discussion
3.1. Characterization of Adsorbents
3.2. Effect of Adsorption Parameters
3.2.1. Effect of pH and Initial Concentration
3.2.2. Adsorption Time and Kinetics
3.2.3. Temperature and Adsorption Isotherm
3.2.4. Effect of Salt Ion Concentration
3.3. Regeneration of GO-TOA
3.4. Effect of MB Solution with Different Water Samples on Adsorption
3.5. Comparison with Other Adsorbents
3.6. Adsorption Mechanism
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bu, J.Q.; Wan, Q.Q.; Deng, Z.W.; Liu, H.; Li, T.H.; Zhou, C.Y.; Zhong, S.A. Waste coal cinder catalyst enhanced electrocatalytic oxidation and persulfate advanced oxidation for the degradation of sulfadiazine. Chemosphere 2022, 303, 134880. [Google Scholar] [CrossRef] [PubMed]
- Wan, Q.Q.; Bu, J.Q.; Deng, Z.W.; Liu, H.; Li, T.H.; Luo, T.; Zhou, C.Y.; Zhong, S.A. Peroxymonosulfate activation by bimetallic modified syderolite pellets catalyst for degradation of brominobenzonitrile. Process Saf. Environ. Prot. 2022, 165, 505–513. [Google Scholar] [CrossRef]
- Bu, J.Q.; Wan, Q.Q.; Deng, Z.W.; Liu, H.; Li, T.H.; Zhou, C.Y.; Zhong, S.A. High-efficient degradation of sulfamethazine by electro-enhanced peroxymonosulfate activation with bimetallic modified Mud sphere catalyst. Sep. Purif. Technol. 2022, 292, 120977. [Google Scholar] [CrossRef]
- Cheng, X.; Liu, Z.Y.; Jing, Q.F.; Mao, P.; Guo, K.; Lu, J.S.; Xie, B.; Fan, H.Q. Porous (K0.5Na0.5)(0.94)Li0.06NbO3-polydimethylsiloxane piezoelectric composites harvesting mechanical energy for efficient decomposition of dye wastewater. J. Colloid Interface Sci. 2023, 629, 11–21. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Ke, Y.L.; Shang, Q.G.; Yang, X.F.; Wang, D.S.; Liao, G.Y. Fabrication of multifunctional biomass-based aerogel with 3D hierarchical porous structure from waste reed for the synergetic adsorption of dyes and heavy metal ions. Chem. Eng. J. 2023, 451, 138934. [Google Scholar] [CrossRef]
- Yuan, Y.; Yin, W.X.; Huang, Y.T.; Feng, A.Q.; Chen, T.M.; Qiao, L.; Cheng, H.Y.; Liu, W.Z.; Li, Z.X.; Ding, C.; et al. Intermittent electric field stimulated reduction-oxidation coupled process for enhanced azo dye biodegradation. Chem. Eng. J. 2023, 451, 138732. [Google Scholar] [CrossRef]
- Alibak, A.H.; Khodarahmi, M.; Fayyazsanavi, P.; Alizadeh, S.M.; Hadi, A.J.; Aminzadehsarikhanbeglou, E. Simulation the adsorption capacity of polyvinyl alcohol/carboxymethyl cellulose based hydrogels towards methylene blue in aqueous solutions using cascade correlation neural network (CCNN) technique. J. Clean. Prot. 2022, 337, 130509. [Google Scholar] [CrossRef]
- Ahamad, T.; Naushad, M.; Eldesoky, G.E.; Al-Saeedi, S.I.; Nafady, A.; Al-Kadhi, N.S.; Al-Muhtaseb, A.H.; Khan, A.A.; Khan, A. Effective and fast adsorptive removal of toxic cationic dye (MB) from aqueous medium using amino-functionalized magnetic multiwall carbon nanotubes. J. Mol. Liq. 2019, 282, 154–161. [Google Scholar] [CrossRef]
- Vig, A.S.; Gupta, A.; Pandey, O.P. Efficient photodegradation of methylene blue (MB) under solar radiation by ZrC nanoparticles. Adv. Powder Technol. 2018, 29, 2231–2242. [Google Scholar]
- Mavukkandy, M.O.; Zaib, Q.; Arafat, H.A. CNT/PVP blend PVDF membranes for the removal of organic pollutants from simulated treated wastewater effluent. J. Environ. Chem. Eng. 2018, 6, 6733–6740. [Google Scholar] [CrossRef]
- Sangeetha, S.; Krishnamurthy, G.; Raghavan, M.S. Electrochemical sensing and photocatalytic degradation of methylene blue (MB) dye by cobalt-beta hydroxy benzoate complex. Mater. Sci. Semicond. Process. 2019, 101, 164–173. [Google Scholar] [CrossRef]
- Akkoz, Y.; Coskun, R.; Delibas, A. Preparation and characterization of sulphonated bio-adsorbent from waste hawthorn kernel for dye (MB) removal. J. Mol. Liq. 2019, 287, 110988. [Google Scholar] [CrossRef]
- Zou, X.Q.; Zhang, H.; Chen, T.; Li, H.T.; Meng, C.H.; Xia, Y.; Guo, J. Preparation and characterization of polyacrylamide/sodium alginate microspheres and its adsorption of MB dye. Colloids Surf. A-Physicochem. Eng. Asp. 2019, 567, 184–192. [Google Scholar] [CrossRef]
- Ahmed, M.J.; Okoye, P.U.; Hummadi, E.H.; Hameed, B.H. High-performance porous biochar from the pyrolysis of natural and renewable seaweed (Gelidiella acerosa) and its application for the adsorption of methylene blue. Bioresour. Technol. 2019, 278, 159–164. [Google Scholar] [CrossRef]
- Li, B.; Guo, J.Z.; Lv, K.L.; Fan, J.J. Adsorption of methylene blue and Cd(II) onto maleylated modified hydrochar from water. Environ. Pollut. 2019, 254, 113014. [Google Scholar] [CrossRef]
- Zahed, M.; Parsamehr, P.S.; Tofighy, M.A.; Mohammadi, T. Synthesis and functionalization of graphene oxide (GO) for salty water desalination as adsorbent. Chem. Eng. Res. Des. 2018, 138, 358–365. [Google Scholar] [CrossRef]
- Ji, C.; Yang, S.Y.; Tao, E.; Cheng, Y.; Hao, X.; Li, Y. Three-dimensional network graphene oxide/sodium alginate aerogel beads with slit-shaped structure: Synthesis, performance and selective adsorption mechanism for Cu(II). J. Environ. Chem. Eng. 2021, 9, 106819. [Google Scholar] [CrossRef]
- Ranjan, P.; Verma, P.; Agrawal, S.; Rao, T.R.; Samanta, S.K.; Thakur, A.D. Inducing dye-selectivity in graphene oxide for cationic dye separation applications. Mater. Chem. Phys. 2019, 226, 350–355. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, L.J.; Wang, Y.Y.; Liu, X.J.; Rohani, S.; Lu, J. Fe3O4@SiO2@CS-TETA functionalized graphene oxide for the adsorption of methylene blue (MB) and Cu(II). Appl. Surf. Sci. 2017, 420, 970–981. [Google Scholar] [CrossRef]
- Nayl, A.A.; Abd-Elhamid, A.I.; El-Shanshory, A.A.; Soliman, H.M.A.; Kenawy, E.; Aly, H.F. Development of sponge/graphene oxide composite as eco-friendly filter to remove methylene blue from aqueous media. Appl. Surf. Sci. 2019, 496, 143676. [Google Scholar] [CrossRef]
- Zhao, Y.Q.; Yu, W.M.; Li, R.J.; Xu, Y.C.; Liu, Y.; Sun, T.Y.; Shen, L.G.; Lin, H.J. Electric field endowing the conductive polyvinylidene fluoride (PVDF)-graphene oxide (GO)-nickel (Ni) membrane with high-efficient performance for dye wastewater treatment. Appl. Surf. Sci. 2019, 483, 1006–1016. [Google Scholar] [CrossRef]
- Li, J.; Gong, J.L.; Zeng, G.M.; Zhang, P.; Song, B.; Cao, W.C.; Fang, S.Y.; Huan, S.Y.; Ye, J. The performance of UiO-66-NH2/graphene oxide (GO) composite membrane for removal of differently charged mixed dyes. Chemosphere 2019, 237, 124517. [Google Scholar] [CrossRef] [PubMed]
- Khojasteh, H.; Salavati-Niasari, M.; Safajou, H.; Safardoust-Hojaghan, H. Facile reduction of graphene using urea in solid phase and surface modification by N-doped graphene quantum dots for adsorption of organic dyes. Diam. Relat. Mater. 2017, 79, 133–144. [Google Scholar] [CrossRef]
- Bu, J.Q.; Yuan, L.; Zhang, N.; Liu, D.; Meng, Y.; Peng, X. High-efficiency adsorption of methylene blue dye from wastewater by a thiosemicarbazide functionalized graphene oxide composite. Diam. Relat. Mater. 2020, 101, 107604. [Google Scholar] [CrossRef]
- Ningaraju, S.; Jagadish, K.; Srikantaswamy, S.; Prakash, A.P.G.; Ravikumar, H.B. Synthesis of graphite oxide nanoparticles and conductivity studies of PSF/GO and PSAN/GO polymer nanocomposites. Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater. 2019, 246, 62–75. [Google Scholar] [CrossRef]
- Cheng, Z.L.; Li, Y.X.; Liu, Z. Novel adsorption materials based on graphene oxide/Beta zeolite composite materials and their adsorption performance for rhodamine B. J. Alloys Compd. 2017, 708, 255–263. [Google Scholar] [CrossRef]
- Masteri-Farahani, M.; Ghahremani, M. Surface functionalization of graphene oxide and graphene oxide-magnetite nanocomposite with molybdenum-bidentate Schiff base complex. J. Phys. Chem. Solids 2019, 130, 6–12. [Google Scholar] [CrossRef]
- Kudin, K.N.; Ozbas, B.; Schniepp, H.C.; Prud’homme, R.K.; Aksay, I.A.; Car, R. Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett. 2008, 8, 36–41. [Google Scholar] [CrossRef]
- Stankovich, S.; Dikin, D.A.; Piner, R.D.; Kohlhaas, K.A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S.T.; Ruoff, R.S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007, 45, 1558–1565. [Google Scholar] [CrossRef]
- Gautam, D.; Lal, S.; Hooda, S. Adsorption of Rhodamine 6G Dye on Binary System of Nanoarchitectonics Composite Magnetic Graphene Oxide Material. J. Nanosci. Nanotechnol. 2019, 20, 2939–2945. [Google Scholar] [CrossRef]
- Zambare, R.; Song, X.X.; Bhuvana, S.; Prince, J.S.A.; Nemade, P. Ultrafast Dye Removal Using Ionic Liquid-Graphene Oxide Sponge. ACS Sustain. Chem. Eng. 2017, 5, 6026–6035. [Google Scholar] [CrossRef]
- Rauf, M.A.; Bukallah, S.B.; Hamour, F.A.; Nasir, A.S. Adsorption of dyes from aqueous solutions onto sand and their kinetic behavior. Chem. Eng. J. 2008, 137, 238–243. [Google Scholar] [CrossRef]
- Chen, P.; Cao, Z.F.; Wen, X.; Wang, J.; Yang, F.; Wang, S.; Zhong, H. In situ nano-silicate functionalized graphene oxide composites to improve MB removal. J. Taiwan Inst. Chem. Eng. 2017, 81, 87–94. [Google Scholar] [CrossRef]
- Liu, J.Y.; Chen, F.J.; Li, C.Z.; Lu, L.Z.; Hu, C.W.; Wei, Y.; Raymer, P.; Huang, Q.G. Characterization and utilization of industrial microbial waste as novel adsorbent to remove single and mixed dyes from water. J. Clean. Prot. 2019, 208, 552–562. [Google Scholar] [CrossRef]
- Nandi, B.K.; Goswami, A.; Purkait, M.K. Removal of cationic dyes from aqueous solutions by kaolin: Kinetic and equilibrium studies. Appl. Clay Sci. 2009, 42, 583–590. [Google Scholar] [CrossRef]
- Weng, C.H.; Pan, Y.F. Adsorption characteristics of methylene blue from aqueous solution by sludge ash. Colloids Surf. A-Physicochem. Eng. Asp. 2006, 274, 154–162. [Google Scholar] [CrossRef]
- Liu, Y.; Zheng, Y.A.; Wang, A.Q. Enhanced adsorption of Methylene Blue from aqueous solution by chitosan-g-poly (acrylic acid)/vermiculite hydrogel composites. J. Environ. Sci. 2010, 22, 486–493. [Google Scholar] [CrossRef]
- He, K.; Chen, G.Q.; Zeng, G.M.; Chen, A.W.; Huang, Z.Z.; Shi, J.B.; Peng, M.; Huang, T.T.; Hu, L. Enhanced removal performance for methylene blue by kaolin with graphene oxide modification. J. Taiwan Inst. Chem. Eng. 2018, 89, 77–85. [Google Scholar] [CrossRef]
- Ren, F.; Li, Z.; Tan, W.Z.; Liu, X.H.; Sun, Z.F.; Ren, P.G.; Yan, D.X. Facile preparation of 3D regenerated cellulose/graphene oxide composite aerogel with high-efficiency adsorption towards methylene blue. J. Colloid Interface Sci. 2018, 532, 58–67. [Google Scholar] [CrossRef]
- Huang, T.T.; Yan, M.; He, K.; Huang, Z.Z.; Zeng, G.M.; Chen, A.W.; Peng, M.; Li, H.; Yuan, L.; Chen, G.Q. Efficient removal of methylene blue from aqueous solutions using magnetic graphene oxide modified zeolite. J. Colloid Interface Sci. 2019, 543, 43–51. [Google Scholar] [CrossRef]
- Nas, M.S.; Calimli, M.H.; Burhan, H.; Yilmaz, M.; Mustafov, S.D.; Sen, F. Synthesis, characterization, kinetics and adsorption properties of Pt-Co@GO nano-adsorbent for methylene blue removal in the aquatic mediums using ultrasonic process systems. J. Mol. Liq. 2019, 296, 112100. [Google Scholar] [CrossRef]
- Wan, Q.; Liu, M.Y.; Xie, Y.L.; Tian, J.W.; Huang, Q.; Deng, F.J.; Mao, L.C.; Zhang, Q.S.; Zhang, X.Y.; Wei, Y. Facile and highly efficient fabrication of graphene oxide-based polymer nanocomposites through mussel-inspired chemistry and their environmental pollutant removal application. J. Mater. Sci. 2017, 52, 504–518. [Google Scholar] [CrossRef]
- Liu, J.S.; Liu, G.N.; Liu, W.X. Preparation of water-soluble beta-cyclodextrin/poly(acrylic acid)/graphene oxide nanocomposites as new adsorbents to remove cationic dyes from aqueous solutions. Chem. Eng. J. 2014, 257, 299–308. [Google Scholar] [CrossRef]
- Bu, J.Q.; Yuan, L.; Zhang, N.; Meng, Y.; Peng, X. Novel Adsorbent of N-Phenylthiourea-Functionalized Graphene Oxide and Its Removal of Methyl Orange in Aqueous Solutions. J. Chem. Eng. Data 2021, 66, 199–209. [Google Scholar] [CrossRef]
Samples | Surface Area (m2/g) | Pore Volume (cm3/g) | Average Pore Size (nm) |
---|---|---|---|
GO | 25.400 | 0.0213 | 3.358 |
GO-TOA | 40.460 | 0.0750 | 12.260 |
Sample | Weight Loss (%) | |||
---|---|---|---|---|
Up to 100 °C | Up to 300 °C | Up to 600 °C | Up to 900 °C | |
GO | 18.43 | 48.82 | 59.46 | 68.85 |
GO-TOA | 10.76 | 39.52 | 53.55 | 58.08 |
Kinetic Models | Parameters | C0 = 140.0 mg/L | |
---|---|---|---|
Actual amount of adsorption | Qe,exp (mg/g) | 641.724 | |
Pseudo-first-order | Qe(cal) (mg/g) | 311.064 | |
K1 (min−1) | 0.0385 | ||
R2 | 0.901 | ||
Pseudo-second-order | Qe(cal) (mg/g) | 675.676 | |
K2 (min−1) | 0.000224 | ||
R2 | 0.999 | ||
Adsorption isotherms | |||
Langmuir | Qm (mg/g) | KL | R2 |
746.269 | 0.181 | 0.999 | |
Freundlich | KF | n | R2 |
430.880 | 10.364 | 0.895 |
T (K) | lnK | ΔG (KJ/mol) | ΔH (kJ/mol) | ΔS (J/mol/K) |
---|---|---|---|---|
298 | 2.386 | −5.912 | 2.02 | 26.63 |
303 | 2.399 | −6.043 | ||
308 | 2.412 | −6.176 | ||
313 | 2.425 | −6.311 |
Desorption Reagent | Dose (mL) | Desorption Rate (%) | Time (min) |
---|---|---|---|
10% HCl | 10 | 100 | 180 |
95% C2H5OH | 10 | 100 | 120 |
Number of cycles | Adsorption rate (%) | ||
0 | 98.63 | ||
1 | 95.53 | ||
2 | 93.67 | ||
3 | 90.44 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bu, J.; Yuan, L.; Jiang, H.; Wang, C. Study on Removal of Methylene Blue by Condensation Self-Assembled Graphene Oxide/Thiourea Composite Adsorbent. Sustainability 2022, 14, 15290. https://doi.org/10.3390/su142215290
Bu J, Yuan L, Jiang H, Wang C. Study on Removal of Methylene Blue by Condensation Self-Assembled Graphene Oxide/Thiourea Composite Adsorbent. Sustainability. 2022; 14(22):15290. https://doi.org/10.3390/su142215290
Chicago/Turabian StyleBu, Jiaqi, Lu Yuan, Hongru Jiang, and Chongqing Wang. 2022. "Study on Removal of Methylene Blue by Condensation Self-Assembled Graphene Oxide/Thiourea Composite Adsorbent" Sustainability 14, no. 22: 15290. https://doi.org/10.3390/su142215290
APA StyleBu, J., Yuan, L., Jiang, H., & Wang, C. (2022). Study on Removal of Methylene Blue by Condensation Self-Assembled Graphene Oxide/Thiourea Composite Adsorbent. Sustainability, 14(22), 15290. https://doi.org/10.3390/su142215290