Carbon Emission Measurement and Influencing Factors of China’s Beef Cattle Industry from a Whole Industry Chain Perspective
Abstract
:1. Introduction
2. Material and Methods
2.1. Material
- (1)
- Calculation of carbon emissions from the beef cattle industry
- (2)
- Factors influencing carbon emissions in the beef cattle industry
2.2. Carbon Emission Calculation of Beef Cattle Industry
2.2.1. Front-End Planting Link
2.2.2. Mid-End Breeding Link
2.2.3. Back-End Processing Link
2.2.4. Summary of Carbon Emissions of Beef Cattle Industry
2.3. Influencing Factors’ Analysis of Carbon Emission in the Beef Cattle Industry
2.3.1. Exploratory Spatial Data Analysis
2.3.2. Spatial Durbin Model
3. Results and Analysis
3.1. Spatial and Temporal Characteristics of Carbon Emissions from the Beef Cattle Industry
3.1.1. Time Characteristics
3.1.2. Spatial Feature
3.1.3. Structural Feature
3.2. Influencing Factors of Carbon Emissions in the Beef Cattle Industry and its Spatial Spillover Effect
3.2.1. Spatial Correlation Test
- (1)
- Global autocorrelation test
- (2)
- Local autocorrelation tests
3.2.2. Variable Selection
3.2.3. Empirical Analysis of the Durbin Model
3.2.4. Empirical Analysis of Spatial Spillover Effects
4. Conclusions and Policy Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Food and Agriculture Organization of the United Nations (FAO). World Agriculture: Towards 2030/2050; Interim Report: Rome, Italy, 2006. [Google Scholar]
- Panchasara, H.V.; Samrat, N.H.; Islam, N. Greenhouse Gas Emissions Trends and Mitigation Measures in Australian Agriculture Sector—A Review. Agriculture 2021, 11, 85. [Google Scholar] [CrossRef]
- Steinfeld, H.; Hann, O.; Black Burn, H. Livestock-Environment Interactions, Issues and Options; Food and Agriculture Organization of United Nations: Québec, QC, Canada, 2013. [Google Scholar]
- Musa, A.A. Contribution of Livestock Production to Global Greenhouse Gas Emission and Mitigation Strategies. J. Zool. Res. 2020, 1, 3. [Google Scholar] [CrossRef]
- Prasad, J.R.; Sourie, J.S.; Cherukuri, V.; Fita, L.; Merera, E.C. Global Warming: Genesis, Facts and Impacts on Livestock Farming and Mitigation Strategies. Int. J. Agric. Innov. Res. 2015, 3, 1595–1604. [Google Scholar]
- Lesschen, J.P.; van den Berg, M.V.; Westhoek, H.J.; Witzke, H.P.; Oenema, O. Greenhouse gas emission profiles of European livestock sectors. Anim. Feed. Sci. Technol. 2011, 166, 16–28. [Google Scholar] [CrossRef]
- Llonch, P.; Haskell, M.J.; Dewhurst, R.J.; Turner, S.P. Current available strategies to mitigate greenhouse gas emissions in livestock systems: An animal welfare perspective. Anim. Int. J. Anim. Biosci. 2017, 11, 274–284. [Google Scholar] [CrossRef] [Green Version]
- Mogensen, L.; Kristensen, T.; Nielsen, N.; Spleth, P.; Henriksson, M.; Swensson, C.; Hessle, A.; Vestergaard, M. Greenhouse gas emissions from beef production systems in Denmark and Sweden. Livest. Sci. 2015, 174, 126–143. [Google Scholar] [CrossRef]
- Alemu, A.W.; Janzen, H.H.; Little, S.M.; Hao, X.; Thompson, D.J.; Baron, V.S.; Iwaasa, A.D.; Beauchemin, K.A.; Kröbel, R. Assessment of grazing management on farm greenhouse gas intensity of beef production systems in the Canadian Prairies using life cycle assessment. Agric. Syst. 2017, 158, 1–13. [Google Scholar] [CrossRef]
- Gao, Z.; Lin, Z.; Yang, Y.; Ma, W.; Liao, W.; Li, J.; Cao, Y.; Roelcke, M. Greenhouse gas emissions from the enteric fermentation and manure storage of dairy and beef cattle in China during 1961–2010. Environ. Res. 2014, 135, 111–119. [Google Scholar] [CrossRef]
- Baek, C.; Lee, K.; Park, K. Quantification and control of the greenhouse gas emissions from a dairy cow system. J. Clean. Prod. 2014, 70, 50–60. [Google Scholar] [CrossRef]
- Kanemoto, K.; Moran, D.D.; Lenzen, M.; Geschke, A. International trade undermines national emission reduction targets: New evidence from air pollution. Glob. Environ. Chang.-Hum. Policy Dimens. 2014, 24, 52–59. [Google Scholar] [CrossRef]
- Wang, X.Q.; Liang, D.L.; Wang, X.D.; Peng, S.; Zheng, J.Z. Using life cycle assessment method to assess greenhouse gas emissions from dairy farming systems. Chin. J. Agric. Eng. 2012, 28, 179–184. [Google Scholar]
- Li, T.Y.; Xiong, H.; Wang, M.L. How to develop my country’s dairy industry under the “double carbon” goal: A study on the carbon emissions of dairy industry from the perspective of the whole industry chain. Agric. Econ. Issues 2022, 2, 17–29. [Google Scholar]
- Zou, J.; Xiang, C.Y. A Study on Environmental Efficiency Measurement and Influencing Factors of Animal Husbandry in Mainland China. Environ. Pollut. Prev. 2016, 38, 90–96. [Google Scholar]
- Yao, C.S.; Qian, S.S.; Mao, Y.H.; Li, Z.T. Decomposition of influencing factors and spatial differentiation of carbon emission changes in China’s livestock industry. J. Agric. Eng. 2017, 33, 10–19. [Google Scholar]
- Kong, F.B.; Wang, Z.P.; Pan, D. Spatial and temporal characteristics analysis of greenhouse gas emissions in pig industry based on LCA method--Taking Poyang Lake Ecological Economic Zone as an example. Enterp. Econ. 2016, 09, 157–163. [Google Scholar]
- Tian, Y.; Zhang, J.B. Study on the Differentiation of Net Carbon Effects of Agricultural Production in China. J. Nat. Resour. 2013, 28, 1298–1309. [Google Scholar]
- FAO. Livestock Long Shadow; FAO: Rome, Italy, 2006; pp. 97–110. [Google Scholar]
- Intergovernmental Panel on Climate Change (IPCC). 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories; IPCC: Geneva, Switzerland, 2019. [Google Scholar]
- Department of Climate Change Response, National Development and Reform Commission. Guidelines for Compilation of Provincial Greenhouse Gas Inventories; China Environment Press: Beijing, China, 2011.
- Meng, X.H.; Cheng, G.Q.; Zhang, J.B.; Wang, Y.B.; Zhou, H.C. Analysis on the spatiotemporal characteristics of greenhouse gas emissions in the whole life cycle of animal husbandry in China. China Environ. Sci. 2014, 34, 2167–2176. [Google Scholar]
- Sun, Y.N.; Liu, J.J.; Ma, Z.H. Assessment of greenhouse gas emissions from large-scale dairy farms. Chin. J. Agric. Eng. 2010, 26, 296–301. [Google Scholar]
- Ma, Z.H.; Wang, M.Z.; Ding, L.Y.; Liu, J.J. Life cycle assessment of greenhouse gas emissions from large-scale beef cattle feedlots. J. Agric. Environ. Sci. 2010, 29, 2244–2252. [Google Scholar]
- Wu, G.Y.; Chen, Y.; Sun, X.J. Regional Differences, Dynamic Evolution and Convergence Analysis of Carbon Offset Rates in China’s Planting Industry. Chin. J. Ecol. Agric. 2021, 29, 1774–1785. [Google Scholar]
- Tian, Y.; Yin, H. Re-estimation of China’s agricultural carbon emissions: Basic status, dynamic evolution and spatial spillover effects. China Rural. Econ. 2022, 03, 104–127. [Google Scholar]
- Liu, H.J.; Shao, M.J.; Ji, Y.M. The spatial pattern and distribution of carbon emissions in China: An empirical study based on county carbon emissions data. Geogr. Sci. 2021, 41, 1917–1924. [Google Scholar]
- Chen, Q.H.; Zhang, Y.Y. The evolution of China’s animal husbandry carbon emission reduction policy—Based on the analysis of 452 policy texts. J. Huazhong Agric. Univ. 2022, 01, 10–23. [Google Scholar] [CrossRef]
- Tian, Y.; Lin, Z.J. Coupling coordination between China’s provincial agricultural carbon emission efficiency and economic growth. China Popul. Resour. Environ. 2022, 32, 13–22. [Google Scholar]
- Jin, S.Q.; Lin, Y.; Niu, K.Y. Driving the Green Transformation of Agriculture with Low Carbon: Characteristics of China’s Agricultural Carbon Emissions and Its Emission Reduction Path. Reform 2021, 5, 29–37. [Google Scholar]
Based on the Whole Industry Chain | Link | Symbol | Emission Factor | Numerical Value | Unit | Reference Source |
---|---|---|---|---|---|---|
Front-End Planting | Feed Grain Cultivation | efj1 | CO2-Equivalent Emission Factor of Corn | 1.50 | t/t | Tian et al., (2011) [18] |
Feed Grain Transportation and Processing | efj2 | CO2-Equivalent Emission Factor of Corn | 0.0102 | t/t | FAO (2006) [19] | |
CO2-Equivalent Emission Factor of Soybean | 0.1013 | t/t | ||||
CO2-Equivalent Emission Factor of Wheat | 0.0319 | t/t | ||||
Mid-End Breeding | Gastrointestinal Fermentation of Beef Cattle | ef1 | CH4 Emission Factor | 54 | kg/head·year | IPCC (2019) [20] |
Manure Management System | ef2 | CH4 Emission Factor | 2.823 | kg/head·year | NDRC (2011) [21] | |
ef3 | N2O Emission Factor | 0.7657 | kg/head·year | NDRC (2011) [21] | ||
Energy Consumption of Beef Cattle | pricee | Unit Price of Electricity for Beef Cattle Breeding | 0.4275 | CNY/KWh | Meng et al., (2014) [22] | |
efe | CO2 Emission Factor of Electricity Consumption | 0.9734 | t/MWh | |||
pricec | Coal Unit Expenditure for Beef Cattle Breeding | 800.00 | CNY/t | Sun et al., (2010) [23] | ||
efc | Coal Consumption CO2 Emission Coefficient | 1.98 | t/t | |||
Back-End Processing | Beef Product Processing | MJ | Beef Product Processing Energy Consumption Coefficient | 4.37 | KJ/kg | Meng et al., (2014) [22] |
e | One Degree Electric Calorific Value | 3.60 | MJ/KWh | |||
- | - | GWPCH4 | CH4 Global Warming Potential | 21.00 | - | Sun et al., (2010) [23] |
- | GWPN2O | N2O Global Warming Potential | 310.00 | - |
Province | 2008 | 2020 | Change Rate I (%) | Change Rate II (%) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Total (10,000 tons) | Rank | Strength (Ton/CNY 10,000) | Rank | Total (10,000 tons) | Rank | Strength (Ton/CNY 10,000) | Rank | |||
Beijing | 13.695 | 29 | 4.197 | 6 | 4.402 | 30 | 1.102 | 6 | −67.86 | −73.75 |
Tianjin | 22.455 | 28 | 4.372 | 5 | 31.458 | 26 | 1.086 | 7 | 40.09 | −75.17 |
Hebei | 319.829 | 13 | 3.609 | 12 | 449.992 | 13 | 0.933 | 28 | 40.70 | −74.14 |
Shanxi | 48.227 | 23 | 3.389 | 18 | 132.043 | 24 | 1.000 | 15 | 173.79 | −70.49 |
Inner Mongolia | 489.463 | 10 | 3.391 | 17 | 932.734 | 3 | 1.041 | 13 | 90.56 | −69.31 |
Liaoning | 356.874 | 11 | 3.571 | 13 | 427.875 | 14 | 1.045 | 12 | 19.90 | −70.75 |
Jilin | 565.251 | 7 | 3.231 | 19 | 481.002 | 11 | 1.068 | 9 | −14.90 | −66.95 |
Heilongjiang | 489.505 | 9 | 2.481 | 30 | 695.293 | 9 | 0.937 | 25 | 42.04 | −62.22 |
Shanghai | 0.092 | 31 | 0.394 | 31 | 0.724 | 31 | 0.050 | 31 | 685.46 | −87.27 |
Jiangsu | 24.043 | 27 | 3.809 | 9 | 26.584 | 28 | 1.124 | 5 | 10.57 | −70.48 |
Zhejiang | 5.709 | 30 | 4.640 | 3 | 18.186 | 29 | 1.060 | 10 | 218.53 | −77.15 |
Anhui | 176.802 | 15 | 3.479 | 15 | 133.969 | 23 | 1.049 | 11 | −24.23 | −69.84 |
Fujian | 43.863 | 25 | 3.048 | 21 | 30.131 | 27 | 1.077 | 8 | −31.31 | −64.66 |
Jiangxi | 118.486 | 18 | 3.407 | 16 | 417.545 | 15 | 0.951 | 19 | 252.40 | −72.09 |
Shandong | 633.228 | 4 | 3.637 | 11 | 415.830 | 16 | 0.945 | 21 | −34.33 | −74.00 |
Henan | 1131.931 | 1 | 3.539 | 14 | 475.247 | 12 | 1.159 | 4 | −58.01 | −67.24 |
Hubei | 131.778 | 16 | 3.761 | 10 | 276.158 | 17 | 0.999 | 16 | 109.56 | −73.43 |
Hunan | 112.848 | 19 | 3.849 | 8 | 675.860 | 10 | 0.937 | 26 | 498.91 | −75.66 |
Guangdong | 130.408 | 17 | 3.017 | 23 | 134.329 | 22 | 0.939 | 24 | 3.01 | −68.87 |
Guangxi | 597.888 | 5 | 2.845 | 27 | 211.948 | 18 | 1.022 | 14 | −64.55 | −64.08 |
Hainan | 91.178 | 21 | 2.869 | 26 | 70.617 | 25 | 0.943 | 22 | −22.55 | −67.15 |
Chongqing | 29.360 | 26 | 4.574 | 4 | 145.545 | 21 | 0.987 | 17 | 395.73 | −78.43 |
Sichuan | 895.834 | 2 | 2.922 | 25 | 879.717 | 4 | 0.965 | 18 | −1.80 | −67.00 |
Guizhou | 219.422 | 14 | 3.032 | 22 | 762.074 | 6 | 0.937 | 27 | 247.31 | −69.10 |
Yunnan | 496.979 | 8 | 3.078 | 20 | 1269.859 | 1 | 0.941 | 23 | 155.52 | −69.43 |
Tibet | 732.744 | 3 | 2.834 | 28 | 819.735 | 5 | 0.927 | 29 | 11.87 | −67.30 |
Shaanxi | 47.971 | 24 | 4.115 | 7 | 197.640 | 20 | 1.166 | 3 | 312.00 | −71.66 |
Gansu | 337.144 | 12 | 3.011 | 24 | 710.574 | 7 | 0.948 | 20 | 110.76 | −68.52 |
Qinghai | 585.136 | 6 | 2.788 | 29 | 965.439 | 2 | 0.913 | 30 | 64.99 | −67.24 |
Ningxia | 72.391 | 22 | 5.073 | 2 | 201.228 | 19 | 1.309 | 2 | 177.97 | −74.20 |
Xinjiang | 94.045 | 20 | 15.648 | 1 | 698.417 | 8 | 1.435 | 1 | 642.64 | −90.83 |
Index | Period | Moving Direction | Moving Distance/m | Moving Speed/(m/a) |
---|---|---|---|---|
Carbon emissions from the beef cattle industry | 2008–2012 | Southeast | 10,159 | 2539.75 |
2012–2016 | Southwest | 26,880 | 6720.00 | |
2016–2020 | Northwest | 173,296 | 43,324.00 |
Year | PCP | Percentage | PGP | Percentage | PEF | Percentage | PMM | Percentage | PDH | Percentage | PMP | Percentage | PTOUTAL |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2008 | 1382.13 | 15.25% | 18.33 | 0.20% | 5957.24 | 65.73% | 1558.39 | 17.20% | 145.78 | 1.61% | 0.73 | 0.0081% | 9062.60 |
2009 | 1401.15 | 13.98% | 19.88 | 0.20% | 6711.92 | 66.95% | 1755.81 | 17.51% | 135.99 | 1.36% | 0.74 | 0.0074% | 10,025.49 |
2010 | 1407.64 | 12.55% | 18.98 | 0.17% | 7641.91 | 68.14% | 1999.09 | 17.82% | 146.76 | 1.31% | 0.74 | 0.0066% | 11,215.13 |
2011 | 1366.47 | 12.39% | 18.73 | 0.17% | 7537.02 | 68.34% | 1971.65 | 17.88% | 134.08 | 1.22% | 0.72 | 0.0065% | 11,028.67 |
2012 | 1375.42 | 12.36% | 19.95 | 0.18% | 7595.65 | 68.24% | 1986.99 | 17.85% | 152.81 | 1.37% | 0.73 | 0.0065% | 11,131.53 |
2013 | 1371.84 | 12.11% | 19.05 | 0.17% | 7754.97 | 68.45% | 2028.67 | 17.91% | 153.41 | 1.35% | 0.72 | 0.0064% | 11,328.66 |
2014 | 1377.65 | 11.85% | 20.06 | 0.17% | 7984.38 | 68.66% | 2088.68 | 17.96% | 157.02 | 1.35% | 0.73 | 0.0063% | 11,628.53 |
2015 | 1380.34 | 11.40% | 19.84 | 0.16% | 8360.87 | 69.06% | 2187.17 | 18.07% | 157.63 | 1.30% | 0.73 | 0.0060% | 12,106.58 |
2016 | 1380.34 | 11.31% | 20.19 | 0.17% | 8438.09 | 69.14% | 2207.37 | 18.09% | 156.81 | 1.28% | 0.73 | 0.0060% | 12,203.53 |
2017 | 1419.94 | 12.85% | 21.04 | 0.19% | 7504.70 | 67.92% | 1963.20 | 17.77% | 139.67 | 1.26% | 0.75 | 0.0068% | 11,049.30 |
2018 | 1441.20 | 13.01% | 22.30 | 0.20% | 7505.27 | 67.74% | 1963.35 | 17.72% | 146.64 | 1.32% | 0.76 | 0.0069% | 11,079.51 |
2019 | 1493.11 | 12.76% | 26.83 | 0.23% | 7935.73 | 67.84% | 2075.96 | 17.75% | 165.47 | 1.41% | 0.79 | 0.0067% | 11,697.89 |
2020 | 1504.52 | 11.84% | 27.88 | 0.22% | 8714.90 | 68.58% | 2279.78 | 17.94% | 180.43 | 1.42% | 0.79 | 0.0063% | 12,708.31 |
Annual Growth Rate/% | 0.71% | - | 3.56% | - | 3.22% | - | 3.22% | - | 1.79% | - | 0.66% | - | 2.86% |
Year | Moran’s I | Z(I) | p-Value |
---|---|---|---|
2008 | 0.221 | 2.167 | 0.015 |
2009 | 0.246 | 2.376 | 0.009 |
2010 | 0.277 | 2.608 | 0.005 |
2011 | 0.280 | 2.634 | 0.004 |
2012 | 0.275 | 2.585 | 0.005 |
2013 | 0.276 | 2.589 | 0.005 |
2014 | 0.277 | 2.596 | 0.005 |
2015 | 0.281 | 2.627 | 0.004 |
2016 | 0.295 | 2.746 | 0.003 |
2017 | 0.414 | 3.762 | 0.000 |
2018 | 0.426 | 3.869 | 0.000 |
2019 | 0.450 | 4.060 | 0.000 |
2020 | 0.470 | 4.217 | 0.000 |
Year | Spatial Relations | |||
---|---|---|---|---|
Areas with ‘High’ Carbon Emissions from the Beef Industry (High–High H-H) | Areas with ‘Higher’ Carbon Emissions from the Beef Industry (Low–High L-H) | Areas with ‘Lower’ Carbon Emissions from the Beef Cattle Industry (Low–Low L-L) | Areas with ‘Low’ Carbon Emissions from the Beef Industry (High–Low H-L) | |
2008 | Liaoning, Heilongjiang, Jilin, Shandong, Hebei, Gansu, Yunnan, Qinghai, Tibet, Sichuan, | Guizhou, Anhui, Shaanxi, Shanxi, Xinjiang | Ningxia, Chongqing, Hubei, Jiangsu, Beijing, Tianjin, Hunan, Guangdong, Hainan, Fujian, Jiangxi, Zhejiang, Shanghai | Inner Mongolia, Guangxi, Henan |
2012 | Heilongjiang, Jilin, Liaoning, Sichuan, Guizhou, Qinghai, Tibet, Yunnan, Gansu, Shandong, Inner Mongolia | Hubei, Hebei, Anhui, Xinjiang, Guangxi, Shaanxi, Chongqing, Ningxia, Shanxi | Guangdong, Fujian, Hainan, Zhejiang, Jiangsu, Beijing, Tianjin | Hunan, Henan |
2016 | Yunnan, Shandong, Gansu, Sichuan, Guizhou, Liaoning, Jilin, Qinghai, Tibet, Heilongjiang | Hubei, Chongqing, Hebei, Shaanxi, Ningxia, Shanxi, Guangxi, Xinjiang | Guangdong, Shanghai, Hainan, Jiangsu, Fujian, Beijing, Tianjin, Zhejiang | Inner Mongolia, Hunan, Henan, Jiangxi |
2020 | Liaoning, Jilin, Heilongjiang, Gansu, Guizhou, Sichuan, Xinjiang, Qinghai, Tibet, Yunnan | Guangxi, Ningxia, Chongqing, Shanxi, Shaanxi | Hubei, Anhui, Guangdong, Beijing, Tianjin, Fujian, Jiangsu, Zhejiang, Hainan, Shanghai | Hebei, Shandong, Jiangxi, Henan, Hunan, Inner Mongolia |
Variable Type | Research Object | Indicator | Data Source |
---|---|---|---|
- | Carbon Emissions of Beef Cattle Industry | Carbon Emissions of Beef Cattle Industry | Calculated |
Macroeconomic Level | Economic Development Level | GDP by region (GDP)/CNY 100 million | Statistical yearbooks of provinces and cities |
Urban–Rural Income Gap | Per capita disposable income of urban residents/per capita disposable income of rural residents/% | China Statistical Yearbook | |
The Level of Technological Progress | Mechanization Level | Total power of agricultural machinery/number of employees in agriculture, forestry, animal husbandry, and fishery/% | China Rural Statistical Yearbook and Provincial and Municipal Statistical Yearbooks |
Breeding Technology Level | Number of employees with junior technical titles and above in animal husbandry stations, livestock breeding and improvement stations, feed supervision institutes, grassland workstations at all levels/number of employees on staff/% | China Animal Husbandry and Veterinary Statistical Yearbook | |
Industrial Structure | Scale of Beef Cattle Breeding | Number of farms (households) with a beef cattle breeding scale of more than 100 | China Animal Husbandry Statistical Yearbook |
Environmental Governance | Environmental Pollution Control Investment | Environmental pollution control investment/GDP/% | China Environmental Statistical Yearbook and China Eco-Environmental Statistical Yearbook |
Human Capital | Educational Level | Educational level per capita in rural areas/year | China Population and Employment Statistics Yearbook |
Import Dependency | Import Dependency | Total imports by region/GDP/% | China Statistical Yearbook |
Testing Method | Index | Statistic | p-Value |
---|---|---|---|
Hausman Test | Hausman | 30.94 | 0.000 |
LM Test | LM-err | 195.224 | 0.000 |
R-LM-err | 13.022 | 0.000 | |
LM-lag | 209.785 | 0.000 | |
R-LM-lag | 27.584 | 0.000 | |
LR Test | LR-err | 37.67 | 0.000 |
LR-lag | 55.08 | 0.000 | |
Wald Test | Wald-err | 41.1 | 0.000 |
Wald-lag | 47.73 | 0.000 |
Variable Name | Individual Fixed Effects Model | Time Fixed Effect Model | Double Fixed Effect Model |
---|---|---|---|
econ | −0.005 *** (−5.71) | −0.002 *** (−3.59) | −0.005 *** (−6.09) |
scale | 0.081 *** (6.67) | 0.233 *** (17.47) | 0.085 *** (6.80) |
mech | 7.321 (1.20) | 20.617 ** (2.67) | 7.544 (1.24) |
envi | −2415.356 ** (−2.71) | −9015.956 *** (−6.71) | −2450.107 ** (−2.67) |
educ | 79.943 ** (2.99) | −127.382 *** (−6.37) | 74.554 ** (2.59) |
tech | 17.864 (0.58) | 85.829 * (1.98) | 23.740 (0.76) |
inco | 64.129 (1.55) | 243.644 *** (7.19) | 64.288 (1.56) |
input | −21.796 (−0.21) | 106.620 (1.41) | 6.817 (0.06) |
W*econ | −0.006 *** (−5.56) | −0.005 *** (−4.79) | −0.006 *** (−5.59) |
W*scale | 0.022 (0.93) | −0.0103 (−0.30) | 0.024 (0.89) |
W*mech | 28.415 ** (3.11) | 0.809 (0.06) | 26.153 * (2.06) |
W*envi | −2525.721 (−1.67) | −6703.154 * (−2.29) | −3028.104 (−1.77) |
W*educ | 180.899 *** (3.98) | −147.328 *** (−4.11) | 146.674 * (2.13) |
W*tech | 103.906 (1.92) | −67.335 (−0.69) | 119.050 * (2.00) |
W*inco | −185.263 *** (−3.44) | −25.333 (−0.38) | −107.900 (−1.42) |
W*input | −152.966 (−0.87) | 314.598 * (2.25) | 46.829 (0.22) |
ρ | −0.278 *** (−3.52) | −0.205 * (−2.5) | −0.326 *** (−4.06) |
N | 403 | 403 | 403 |
Direct Effect | Indirect Effect | Total Effect | ||||
---|---|---|---|---|---|---|
Variable | Coefficient | T Value | Coefficient | T Value | Coefficient | T Value |
econ | −0.002 *** | −3.29 | −0.004 *** | −4.52 | −0.006 *** | −5.52 |
scale | 0.235 *** | 17.37 | −0.049 * | −1.79 | 0.186 *** | 7.72 |
mech | 21.570 *** | 2.79 | −3.505 | −0.29 | 18.065 * | 1.80 |
envi | −8852.694 *** | −6.90 | −4084.00 | −1.53 | −12,936.693 *** | −4.69 |
educ | −120.721 *** | −6.05 | −110.856 *** | −3.50 | −231.577 *** | −8.90 |
tech | 89.892 ** | 2.08 | −71.608 | −0.80 | 18.284 | 0.21 |
inco | 248.311 *** | 6.73 | −68.52 | −1.27 | 179.790 *** | 3.44 |
input | 93.235 | 1.25 | 256.434 ** | 2.03 | 349.669 *** | 2.71 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Yang, C.; Wang, M.; Xiong, X.; Long, X. Carbon Emission Measurement and Influencing Factors of China’s Beef Cattle Industry from a Whole Industry Chain Perspective. Sustainability 2022, 14, 15554. https://doi.org/10.3390/su142315554
Sun Y, Yang C, Wang M, Xiong X, Long X. Carbon Emission Measurement and Influencing Factors of China’s Beef Cattle Industry from a Whole Industry Chain Perspective. Sustainability. 2022; 14(23):15554. https://doi.org/10.3390/su142315554
Chicago/Turabian StyleSun, Yumeng, Chun Yang, Mingli Wang, Xuezhen Xiong, and Xuefen Long. 2022. "Carbon Emission Measurement and Influencing Factors of China’s Beef Cattle Industry from a Whole Industry Chain Perspective" Sustainability 14, no. 23: 15554. https://doi.org/10.3390/su142315554
APA StyleSun, Y., Yang, C., Wang, M., Xiong, X., & Long, X. (2022). Carbon Emission Measurement and Influencing Factors of China’s Beef Cattle Industry from a Whole Industry Chain Perspective. Sustainability, 14(23), 15554. https://doi.org/10.3390/su142315554