Global Scientific Research and Trends Regarding Microbial Induced Calcite Precipitation: A Bibliometric Network Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source
2.2. Bibliometric Network Analysis
3. Results and Discussion
3.1. Document Types
3.2. Publications and Citations Trend Analysis
3.3. Countries and Collaborations Network Analysis
3.4. Institutions and Collaborations Network Analysis
3.5. Authors and Collaborations Network Analysis
3.6. Most Cited Articles
3.7. Journals Network Analysis
3.8. High Frequency Keyword Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhu, T.; Dittrich, M. Carbonate Precipitation through Microbial Activities in Natural Environment, and Their Potential in Biotechnology: A Review. Front. Bioeng. Biotechnol. 2016, 4, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dupraz, C.; Reid, R.P.; Braissant, O.; Decho, A.W.; Norman, R.S.; Visscher, P.T. Processes of carbonate precipitation in modern microbial mats. Earth-Sci. Rev. 2009, 96, 141–162. [Google Scholar] [CrossRef]
- Lamérand, C.; Shirokova, L.S.; Bénézeth, P.; Rols, J.-L.; Pokrovsky, O.S. Carbon sequestration potential of Mg carbonate and silicate biomineralization in the presence of cyanobacterium Synechococcus. Chem. Geol. 2022, 599, 120854. [Google Scholar] [CrossRef]
- Hoffmann, T.D.; Reeksting, B.J.; Susanne, G. Bacteria-induced mineral precipitation: A mechanistic review. Microbiology 2021, 167, 001049. [Google Scholar] [CrossRef] [PubMed]
- Görgen, S.; Benzerara, K.; Skouri-Panet, F.; Gugger, M.; Chauvat, F.; Cassier-Chauvat, C. The diversity of molecular mechanisms of carbonate biomineralization by bacteria. Discov. Mater. 2020, 1, 2. [Google Scholar] [CrossRef]
- Boquet, E.; Boronate, A.; Ramos-Cormenzana, A. Production of calcite (calcium carbonate) crystals by soil bacteria is a general phenomenon. Nature 1973, 246, 527–529. [Google Scholar] [CrossRef]
- Krumbein, W.E. On the precipitation of aragonite on the surface of marine bacteria. Die Nat. 1974, 61, 167. [Google Scholar] [CrossRef]
- Kamennaya, N.A.; Ajo-Franklin, C.M.; Northen, T.; Jansson, C. Cyanobacteria as biocatalysts for carbonate mineralization. Minerals 2012, 2, 338–364. [Google Scholar] [CrossRef]
- Pasquale, V.; Fiore, S.; Hlayem, D.; Lettino, A.; Huertas, F.J.; Chianese, E.; Dumontet, S. Biomineralization of carbonates induced by the fungi Paecilomyces inflatus and Plectosphaerella cucumerina. Int. Biodeterior. Biodegrad. 2019, 140, 57–66. [Google Scholar] [CrossRef]
- Nash, M.C.; Diaz-Pulido, G.; Harvey, A.S.; Adey, W. Coralline algal calcification: A morphological and process-based understanding. PLoS ONE 2019, 14, 0221396. [Google Scholar] [CrossRef]
- Samuels, T.; Bryce, C.; Landenmark, H.; Marie-Loudon, C.; Nicholson, N.; Stevens, A.H.; Cockell, C. Microbial weathering of minerals and rocks in natural environments. In Biogeochemical Cycles: Ecological Drivers and Environmental Impact; American Geophysical Union: Washington, DC, USA, 2020; pp. 59–79. [Google Scholar]
- Mulec, J.; Kosi, G.; Vrhovšek, D. Characterization of cave aerophytic algal communities and effects of irradiance levels on production of pigments. J. Cave Karst Stud. 2008, 70, 3–12. [Google Scholar]
- Ostrofsky, M.L.; Miller, C. Photosynthetically mediated calcite and phosphorus precipitation by submersed aquatic vascular plants in Lake Pleasant, Pennsylvania. Aquat. Bot. 2017, 143, 36–40. [Google Scholar] [CrossRef]
- Altermann, W.; Kazmierczak, J.; Oren, A.; Wright, D.T. Cyanobacterial calcification and its rock-building potential during 3.5 billion years of Earth history. Geobiology 2006, 4, 147–166. [Google Scholar] [CrossRef]
- Ferral-Pérez, H.; Galicia-García, M.; Alvarado-Tenorio, B.; Izaguirre-Pompa, A.; Aguirre-Ramírez, M. Novel method to achieve crystallinity of calcite by Bacillus subtilis in coupled and non-coupled calcium-carbon sources. AMB Express 2020, 10, 174. [Google Scholar] [CrossRef] [PubMed]
- Jarwar, M.A.; Dumontet, S.; Pasquale, V.; Chen, C. Microbial Induced Carbonate Precipitation: Environments, Applications, and Mechanisms. Geomicrobiol. J. 2022, 39, 833–851. [Google Scholar] [CrossRef]
- Rajasekar, A.; Moy, C.K.; Wilkinson, S.; Sekar, R. Microbially induced calcite precipitation performance of multiple landfill indigenous bacteria compared to a commercially available bacteria in porous media. PLoS ONE 2021, 16, 0254676. [Google Scholar] [CrossRef]
- Bang, S.S.; Galinat, J.K.; Ramakrishnan, V. Calcite precipitation induced by polyurethane-immobilized bacillus pasteurii. Enzym. Microb. Technol. 2001, 28, 404–409. [Google Scholar] [CrossRef]
- Dhami, N.K.; Reddy, M.S.; Mukherjee, A. Biomineralization of calcium carbonates and their engineered applications: A review. Front. Microbiol. 2013, 4, 314. [Google Scholar] [CrossRef] [Green Version]
- Wei, S.; Cui, H.; Jiang, Z.; Liu, H.; He, H.; Fang, N. Biomineralization processes of calcite induced by bacteria isolated from marine sediments. Braz. J. Microbiol. 2015, 46, 455–464. [Google Scholar] [CrossRef]
- Baumgartner, L.K.; Reid, R.P.; Dupraz, C.; Decho, A.W.; Buckley, D.H.; Spear, J.R.; Przekop, K.M.; Visscher, P.T. Sulfate reducing bacteria in microbial mats: Changing paradigms, new discoveries. Sediment. Geol. 2006, 185, 131–145. [Google Scholar] [CrossRef]
- Ben, C.K.; Rodriguez-Navarro, C.; Gonzalez-Muñoz, M.T.; Arias, J.M.; Cultrone, G.; Rodriguez-Gallego, M. Precipitation and growth morphology of calcium carbonate induced by Myxococcus xanthus: Implications for recognition of bacterial carbonates. J. Sed. Research. 2004, 74, 868–876. [Google Scholar] [CrossRef]
- Wright, D.T.; Wacey, D. Precipitation of dolomite using sulphate reducing bacteria from the Coorong Region, South Australia: Significance and implications. Sedimentology 2005, 52, 987–1008. [Google Scholar] [CrossRef]
- Visscher, P.T.; Reid, R.P.; Bebout, B.M. Micro scale observations of sulfate reduction: Correlation of microbial activity with lithified micritic laminae in modern marine stromatolites. Geology 2000, 28, 919–922. [Google Scholar] [CrossRef]
- Dupraz, C.; Visscher, P.T.; Baumgartner, L.K.; Reid, R.P. Microbe-mineral interactions: Early carbonate precipitation in a hypersaline lake (Eleuthera Island, Bahamas). Sedimentology 2004, 51, 745–765. [Google Scholar] [CrossRef]
- Riding, R.E. Microbial carbonate: The geological record of calcified algal mats and biofilms. Sedimentology 2000, 47, 179–214. [Google Scholar] [CrossRef]
- Bu, C.; Lu, X.; Zhu, D.; Liu, L.; Sun, Y.; Wu, Q.; Zhang, W.; Wei, Q. Soil improvement by microbially induced calcite precipitation (MICP): A review about mineralization mechanism, factors, and soil properties. Arab. J. Geosci. 2022, 15, 863. [Google Scholar] [CrossRef]
- Sohail, M.G.; Al Disi, Z.; Zouari, N.; Al Nuaimi, N.; Kahraman, R.; Gencturk, B.; Yildirim, Y. Bio self-healing concrete using MICP by an indigenous Bacillus cereus strain isolated from Qatari soil. Constr. Build. Mater. 2022, 328, 126943. [Google Scholar] [CrossRef]
- UN DESA. The Sustainable Development Goals Report 2022; United Nations: New York, NY, USA, 2022. Available online: https://unstats.un.org/sdgs/report/2022/ (accessed on 18 November 2022).
- Sweileh, W.M.; Shraim, N.Y.; Al-Jabi, S.W.; Sawalha, A.F.; AbuTaha, A.S.; Zyoud, S.E.H. Bibliometric analysis of global scientific research on carbapenem resistance (1986–2015). Ann. Clin. Microbiol. Antimicrob. 2016, 15, 56. [Google Scholar] [CrossRef] [Green Version]
- Otte, E.; Rousseau, R. Social network analysis: A powerful strategy, also for the information sciences. J. Inf. Sci. 2002, 28, 441–453. [Google Scholar] [CrossRef]
- Xiao, P.; Wu, D.; Wang, J. Bibliometric analysis of global research on white rot fungi biotechnology for environmental application. Environ. Sci. Pollut. Res. 2022, 29, 1491–1507. [Google Scholar] [CrossRef]
- Li, C.; Wu, K.; Wu, J. A bibliometric analysis of research on haze during 2000–2016. Environ. Sci. Pollut. Res. 2017, 24, 24733–24742. [Google Scholar] [CrossRef] [PubMed]
- Qi, Y.; Chen, X.; Hu, Z.; Song, C.; Cui, Y. Bibliometric analysis of algal-bacterial symbiosis in wastewater treatment. Int. J. Environ. Res. Public Health 2019, 16, 1077. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vanzetto, G.V.; Thomé, A. Bibliometric study of the toxicology of nanoescale zero valent iron used in soil remediation. Environ. Pollut. 2019, 252, 74–83. [Google Scholar] [CrossRef] [PubMed]
- AlRyalat, S.A.S.; Malkawi, L.W.; Momani, S.M. Comparing bibliometric analysis using PubMed, Scopus, and Web of Science databases. J. Vis. Exp. 2019, 152, 58494. [Google Scholar] [CrossRef]
- Reuters, T. Whitepaper Using Bibliometrics in Evaluating Research. 2008, Volume 12. Available online: http://openscience.ens.fr/MARIE_FARGE/CONFERENCES/2014_12_02_BIBLIOMETRIE_ET_EVALUATION_DE_LA_RECHERCHE_ABDU_PARIS/InCites_Thomson-Reuters.pdf (accessed on 18 November 2022).
- Zou, X.; Yue, W.L.; Le Vu, H. Visualization and analysis of mapping knowledge domain of road safety studies. Accid. Anal. Prev. 2018, 118, 131–145. [Google Scholar] [CrossRef]
- Chen, D.; Liu, Z.; Luo, Z.; Webber, M.; Chen, J. Bibliometric and visualized analysis of emergy research. Ecol. Eng. 2016, 90, 285–293. [Google Scholar] [CrossRef]
- Van Eck, N.J.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef] [Green Version]
- Van Eck, N.J.; Waltman, L. Manual for VOSviewer Version 1.6.18, CWTS Meaningful Metrics; Universiteit Leiden: Leiden, The Netherlands, 2022; Available online: https://www.vosviewer.com/documentation/Manual_VOSviewer_1.6.18.pdf (accessed on 18 November 2022).
- Chen, W.; Geng, Y.; Zhong, S.; Zhuang, M.; Pan, H. A bibliometric analysis of ecosystem services evaluation from 1997 to 2016. Environ. Sci. Pollut. Res. 2020, 27, 23503–23513. [Google Scholar] [CrossRef]
- He, M.; Zhang, Y.; Gong, L.; Zhou, Y.; Song, X.; Zhu, W.; Zhang, Z. Bibliometrical analysis of hydrogen storage. Int. J. Hydrogen Energy 2019, 44, 28206–28226. [Google Scholar] [CrossRef]
Term | Description |
---|---|
Items | Objects of interest (e.g., publications, researchers, keywords, authors). |
Link | Connection or relationship between two items (e.g., co-occurrence of keywords). |
Link strength | Attribute of each link, expressed by a positive numerical value. In the case of co-authorship links, the higherthe value, the higher the number of publications the two researchers have co-authored. |
Network | Set of items connected by their links. |
Cluster | Sets of items included in a map. One item can belong to only one cluster. |
Number of links | The number of links of an item with other items |
Total link strength | The cumulative strength of the links of an item with other items. |
Rank | Document Types | Numbers | Percentage (%) |
---|---|---|---|
1 | Articles | 1359 | 86.013 |
2 | Proceedings Papers | 176 | 11.139 |
3 | Review Articles | 65 | 4.114 |
4 | Early Access | 30 | 1.9 |
5 | Book Chapters | 1 | 0.063 |
6 | Editorial Materials | 5 | 0.316 |
8 | Meeting Abstracts | 1 | 0.063 |
Rank | Title | Paper Type | First Author | Journal/Conference | Total Citations | Year |
---|---|---|---|---|---|---|
1 | Microbially induced cementation to control sand response to undrained shear | Article | Jason DeJong | Geotechnical and Geoenvironmental Engg. | 788 | 2006 |
2 | Microbial carbonate precipitation in construction materials: A review | Proceedings Paper | Willen De Maynck | 1st Int. Conference on BioGeoCivil Engg. | 699 | 2010 |
3 | Quantifying Biomediated Ground Improvement by Ureolysis: Large-Scale Biogrout Experiment | Article | Leon van Paassen | Geotechnical and Geoenvironmental Engg. | 457 | 2010 |
4 | Fixation and distribution of bacterial activity in sand to induce carbonate precipitation for ground reinforcement | Proceedings Paper | Marien P Harkes | 1st Int. Conference on BioGeoCivil Engg. | 367 | 2010 |
5 | Factors Affecting Efficiency of Microbially Induced Calcite Precipitation | Article | Ahmed Al Qabany | Geotechnical and Geoenvironmental Engg. | 339 | 2012 |
6 | Cementation of sand soil by microbially induced calcite precipitation at various degrees of saturation | Article | Liang Cheng | Canadian Geotechnical | 336 | 2013 |
7 | Effect of chemical treatment used in MICP on engineering properties of cemented soils | Article | Ahmed Al Qabany | GeoTechnique | 288 | 2013 |
8 | Effects of environmental factors on microbial induced calcium carbonate precipitation | Article | Brina Mortensen | Applied Microbiology | 286 | 2011 |
9 | Formations of calcium carbonate minerals by bacteria and its multiple applications | Article | Periasamy Anbu | Springerplus 5 | 278 | 2016 |
10 | Experimental Optimization of Microbial-Induced Carbonate Precipitation for Soil Improvement | Article | Belen Carro Martinez | Geotechnical and Geoenvironmental Engg. | 254 | 2013 |
Keyword | Frequency | Link | Total Link Strength |
---|---|---|---|
MICP | 251 | 257 | 1600 |
Carbonate Precipitation | 213 | 218 | 1361 |
Cementation | 171 | 188 | 1223 |
Improvement | 165 | 195 | 1136 |
Sand | 130 | 175 | 913 |
Bacteria | 129 | 186 | 974 |
Biomineralization | 114 | 176 | 879 |
Soil improvement | 96 | 160 | 685 |
Urease | 94 | 157 | 715 |
Bio Cementation | 86 | 163 | 696 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jarwar, M.A.; Dumontet, S.; Nastro, R.A.; Sanz-Montero, M.E.; Pasquale, V. Global Scientific Research and Trends Regarding Microbial Induced Calcite Precipitation: A Bibliometric Network Analysis. Sustainability 2022, 14, 16114. https://doi.org/10.3390/su142316114
Jarwar MA, Dumontet S, Nastro RA, Sanz-Montero ME, Pasquale V. Global Scientific Research and Trends Regarding Microbial Induced Calcite Precipitation: A Bibliometric Network Analysis. Sustainability. 2022; 14(23):16114. https://doi.org/10.3390/su142316114
Chicago/Turabian StyleJarwar, Mazhar Ali, Stefano Dumontet, Rosa Anna Nastro, M. Esther Sanz-Montero, and Vincenzo Pasquale. 2022. "Global Scientific Research and Trends Regarding Microbial Induced Calcite Precipitation: A Bibliometric Network Analysis" Sustainability 14, no. 23: 16114. https://doi.org/10.3390/su142316114
APA StyleJarwar, M. A., Dumontet, S., Nastro, R. A., Sanz-Montero, M. E., & Pasquale, V. (2022). Global Scientific Research and Trends Regarding Microbial Induced Calcite Precipitation: A Bibliometric Network Analysis. Sustainability, 14(23), 16114. https://doi.org/10.3390/su142316114