The Biodiversity Footprint of German Soy-Imports in Brazil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.1.1. Map Based-Datasets
2.1.2. Impact of Land Use on Biodiversity
2.1.3. Global Trade and Supply Chain Data
2.1.4. Data Preparation
2.2. Biodiversity Intactness Index
2.3. Calculation of the Biodiversity Footprint
3. Results
3.1. Soy Exports to Germany and Related Land Occupation in Brazil
3.2. BII of the Exporting Municipalities
3.3. Changes in Brazilian Biodiversity Related to German Soy Imports
3.4. Impact on BII per Ton
4. Discussion
4.1. Impacts on Biodiversity by German Soy Imports
4.2. Comparison of the Results to Other Studies
4.3. Strengths and Limitations of the Applied Method
4.4. Application Possibilities
4.5. Research Orientation
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Input Data | Description | Source |
---|---|---|
Administrative boundaries | Vector layer of 5570 Brazilian municipalities | [26] |
Land cover | CCI Land Cover raster layer with a spatial resolution of 300 × 300 m per raster cell | [27] |
Species richness | Three Raster layers (one for each taxon) with a spatial resolution of 10 × 10 km | [28,29,30,31] |
Population impact | Literature data | [32,35,36] |
Soy cultivation | Data from TRASE—SEI-PCS Brazil soy v2.5.0 dataset | [41,42] |
Land-Use Type | Adapted Land Use Class | CCI-Land Cover—Land Use Class | Population Impact |
---|---|---|---|
Cropland | 1 | 10, 11, 12, 20 | 0.15 |
Pasture (intensive) | 2 | 130 | 0.3 |
Mosaic agricultural Area/rainforest | 3 | 30, 40 | 0.83 |
Rainforest | 4 | 50,60,61,62,70,71,72,80,81,82,90,160,170 | 1 |
Grassland, savannah, shrubland, wetland | 5 | 100,110,120,121,122,140,150,151,152,153,180 | 0.94 |
Fallow land | 6 | 200,201,202 | 0.5 |
Urban | 7 | 190 | 0.05 |
Water | 8 | 210 | 1 |
References
- Ceballos, G.; Ehrlich, P.R.; Barnosky, A.D.; García, A.; Pringle, R.M.; Palmer, T.M. Accelerated modern human-induced species losses: Entering the sixth mass extinction. Sci. Adv. 2015, 1, e1400253. [Google Scholar] [CrossRef] [Green Version]
- Ceballos, G.; Garcia, A.; Ehrlich, P.R. The sixth extinction crisis: Loss of animal populations and species. J. Cosmol. 2010, 8, 1821–1831. [Google Scholar]
- Bellard, C.; Leclerc, C.; Leroy, B.; Bakkenes, M.; Veloz, S.; Thuiller, W.; Courchamp, F. Vulnerability of biodiversity hotspots to global change. Glob. Ecol. Biogeogr. 2014, 23, 1376–1386. [Google Scholar] [CrossRef]
- Barnosky, A.D.; Matzke, N.; Tomiya, S.; Wogan, G.O.U.; Swartz, B.; Quental, T.B.; Marshall, C.; McGuire, J.L.; Lindsey, E.L.; Maguire, K.C.; et al. Has the Earth’s sixth mass extinction already arrived? Nature 2011, 471, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Delzeit, R.; Zabel, F.; Meyer, C.; Václavík, T. Addressing future trade-offs between biodiversity and cropland expansion to improve food security. Reg. Environ. Change 2017, 17, 1429–1441. [Google Scholar] [CrossRef] [Green Version]
- IPBES. Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services; Brondízio, E.S., Settele, J., Díaz, S., Ngo, H.T., Eds.; IPBES Secretariat: Bonn, Germany, 2019; ISBN 978-3-947851-20-1. [Google Scholar]
- Dudley, N.; Alexander, S. Agriculture and biodiversity: A review. Biodiversity 2017, 18, 45–49. [Google Scholar] [CrossRef]
- OECD. Crop Production—OECD Data. 2022. Available online: https://data.oecd.org/agroutput/crop-production.htm (accessed on 26 August 2022).
- FAO. FAOSTAT. 2022. Available online: http://www.fao.org/faostat/en/#data/QCL/visualize (accessed on 26 August 2022).
- Brack, D.; Glover, A.; Wellesley, L. Agricultural Commodity Supply Chains: Trade, Consumption and Deforestation; Chatham House: London, UK, 2016. [Google Scholar]
- WWF. The Growth of Soy: Impacts and Solutions; WWF: Gland, Switzerland, 2014. [Google Scholar]
- Mittermeier, R.A. Hotspots Revisited: Earth’s Biologically Richest and Most Endangered Terrestrial Ecoregions, 1st ed.; CEMEX: Mexico City, Mexico, 2004. [Google Scholar]
- Mittermeier, R.A.; Turner, W.R.; Larsen, F.W.; Brooks, T.M.; Gascon, C. Global Biodiversity Conservation: The Critical Role of Hotspots. In Biodiversity Hotspots: Distribution and Protection of Conservation Priority Areas, 1st ed.; Zachos, F.E., Ed.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 3–22. [Google Scholar]
- Bringezu, S.; Schütz, H.; Arnold, K.; Merten, F.; Kabasci, S.; Borelbach, P.; Michels, C.; Reinhardt, G.A.; Rettenmaier, N. Global implications of biomass and biofuel use in Germany—Recent trends and future scenarios for domestic and foreign agricultural land use and resulting GHG emissions. J. Clean. Prod. 2009, 17, S57–S68. [Google Scholar] [CrossRef]
- Fischer, M. The regional Assessment Report on Biodiversity and Ecosystem Services for Europe and Central Asia: Summary for Policymakers; Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES): Bonn, Germany, 2018. [Google Scholar]
- Croft, S.A.; West, C.D.; Green, J.M.H. Capturing the heterogeneity of sub-national production in global trade flows. J. Clean. Prod. 2018, 203, 1106–1118. [Google Scholar] [CrossRef]
- Kastner, T.; Chaudhary, A.; Gingrich, S.; Marques, A.; Persson, U.M.; Bidoglio, G.; Le Provost, G.; Schwarzmüller, F. Global agricultural trade and land system sustainability: Implications for ecosystem carbon storage, biodiversity, and human nutrition. One Earth 2021, 4, 1425–1443. [Google Scholar] [CrossRef]
- Bringezu, S.; Distelkamp, M.; Lutz, C.; Wimmer, F.; Schaldach, R.; Hennenberg, K.J.; Böttcher, H.; Egenolf, V. Environmental and socioeconomic footprints of the German bioeconomy. Nat. Sustain. 2021, 4, 775–783. [Google Scholar] [CrossRef]
- Green, J.M.H.; Croft, S.A.; Durán, A.P.; Balmford, A.P.; Burgess, N.D.; Fick, S.; Gardner, T.A.; Godar, J.; Suavet, C.; Virah-Sawmy, M.; et al. Linking global drivers of agricultural trade to on-the-ground impacts on biodiversity. Proc. Natl. Acad. Sci. USA 2019, 116, 23202–23208. [Google Scholar] [CrossRef]
- Wilting, H.C.; Schipper, A.M.; Bakkenes, M.; Meijer, J.R.; Huijbregts, M.A.J. Quantifying Biodiversity Losses Due to Human Consumption: A Global-Scale Footprint Analysis. Environ. Sci. Technol. 2017, 51, 3298–3306. [Google Scholar] [CrossRef]
- Clift, R.; Sim, S.; King, H.; Chenoweth, J.L.; Christie, I.; Clavreul, J.; Mueller, C.; Posthuma, L.; Boulay, A.-M.; Chaplin-Kramer, R.; et al. The Challenges of Applying Planetary Boundaries as a Basis for Strategic Decision-Making in Companies with Global Supply Chains. Sustainability 2017, 9, 279. [Google Scholar] [CrossRef] [Green Version]
- Maier, S.; Lindner, J.; Francisco, J. Conceptual Framework for Biodiversity Assessments in Global Value Chains. Sustainability 2019, 11, 1841. [Google Scholar] [CrossRef] [Green Version]
- De Palma, A.; Hoskins, A.; Gonzalez, R.E.; Börger, L.; Newbold, T.; Sanchez-Ortiz, K.; Ferrier, S.; Purvis, A. Annual changes in the Biodiversity Intactness Index in tropical and subtropical forest biomes, 2001–2012. Sci. Rep. 2021, 11, 20249. [Google Scholar] [CrossRef]
- Shumba, T.; de Vos, A.; Biggs, R.; Esler, K.J.; Ament, J.M.; Clements, H.S. Effectiveness of private land conservation areas in maintaining natural land cover and biodiversity intactness. Glob. Ecol. Conserv. 2020, 22, e00935. [Google Scholar] [CrossRef]
- Maney, C.; Sassen, M.; Hill, S.L.L. Modelling biodiversity responses to land use in areas of cocoa cultivation. Agric. Ecosyst. Environ. 2022, 324, 107712. [Google Scholar] [CrossRef]
- IBGE. Malha Municipal. 2022. Available online: https://www.ibge.gov.br/geociencias/organizacao-do-territorio/malhas-territoriais/15774-malhas.html?=&t=downloads (accessed on 26 August 2022).
- ESA. Land Cover Classification Gridded Maps from 1992 to Present Derived from Satellite Observations. 2022. Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-land-cover?tab=form (accessed on 26 August 2022).
- Jenkins, C.N.; Alves, M.A.S.; Uezu, A.; Vale, M.M. Data from: Patterns of Vertebrate Diversity and Protection in Brazil; Dryad: Davis, CA, USA, 2016. [Google Scholar]
- Jenkins, C.N.; Alves, M.A.S.; Uezu, A.; Vale, M.M. Patterns of Vertebrate Diversity and Protection in Brazil. PLoS ONE 2015, 10, e0145064. [Google Scholar] [CrossRef]
- BirdLife International. Bird Species Distribution Maps on the World. 2014. Available online: http://datazone.birdlife.org/species/requestdis (accessed on 26 August 2022).
- IUCN. The IUCN Red List of Threatened Species. 2014. Available online: https://www.iucnredlist.org/ (accessed on 26 August 2022).
- Göpel, J.; Schüngel, J.; Stuch, B.; Schaldach, R. Assessing the effects of agricultural intensification on natural habitats and biodiversity in Southern Amazonia. PLoS ONE 2020, 15, e0225914. [Google Scholar]
- Lindner, J.P.; Eberle, U.; Schmincke, E.; Luick, R.; Niblick, B.; Brethauer, L.; Knüpffer, E.; Beck, T.; Schwendt, P.; Schestak, I.; et al. Biodiversität in Ökobilanzen, 528th ed.; Bundesamt für Naturschutz: Bonn, Germany, 2019. [Google Scholar]
- De Baan, L.; Alkemade, R.; Koellner, T. Land use impacts on biodiversity in LCA: A global approach. Int J. Life Cycle Assess. 2013, 18, 1216–1230. [Google Scholar] [CrossRef]
- Alkemade, R.; Reid, R.S.; van den Berg, M.; de Leeuw, J.; Jeuken, M. Assessing the impacts of livestock production on biodiversity in rangeland ecosystems. Proc. Natl. Acad. Sci. USA 2013, 110, 20900–20905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alkemade, R.; van Oorschot, M.; Miles, L.; Nellemann, C.; Bakkenes, M.; Brink, B. ten. GLOBIO3: A Framework to Investigate Options for Reducing Global Terrestrial Biodiversity Loss. Ecosystems 2009, 12, 374–390. [Google Scholar] [CrossRef]
- Trase. The State of Forest-Risk Supply Chains: Executive Summary|Trase Yearbook 2020. Available online: https://insights.trase.earth/yearbook/summary/ (accessed on 26 August 2022).
- Godar, J. Supply chain mapping in Trase. In Summary of Data and Methods; 2018; Unpublished. [Google Scholar]
- Godar, J.; Persson, U.M.; Tizado, E.J.; Meyfroidt, P. Towards more accurate and policy relevant footprint analyses: Tracing fine-scale socio-environmental impacts of production to consumption. Ecol. Econ. 2015, 112, 25–35. [Google Scholar] [CrossRef]
- Godar, J.; Suavet, C.; Gardner, T.A.; Dawkins, E.; Meyfroidt, P. Balancing detail and scale in assessing transparency to improve the governance of agricultural commodity supply chains. Environ. Res. Lett. 2016, 11, 35015. [Google Scholar] [CrossRef] [Green Version]
- Trase. Trase ´SEI-PCS Brazil Soy v2.5.0´ Supply Chain Map: Data Sources and Methods. 2020. Available online: resources.trase.earth/documents/data_methods/Brazil-soy-v2.5.0%20June%202020.pdf (accessed on 26 August 2022).
- Trase. Data Download. 2022. Available online: https://supplychains.trase.earth/data (accessed on 26 August 2022).
- Trase. Trase.earth. 2022. Available online: https://supplychains.trase.earth/flows?selectedColumnsIds=0_17-1_27-2_12-3_11&toolLayout=1&countries=27&commodities=1&selectedYears%5B%5D=2004&selectedYears%5B%5D=2018&selectedNodesIds%5B%5D=316 (accessed on 26 August 2022).
- Scholes, R.J.; Biggs, R. A biodiversity intactness index. Nature 2005, 434, 45–49. [Google Scholar] [CrossRef]
- Brook, B.W.; Ellis, E.C.; Perring, M.P.; Mackay, A.W.; Blomqvist, L. Does the terrestrial biosphere have planetary tipping points? Trends Ecol. Evol. 2013, 28, 396–401. [Google Scholar] [CrossRef] [Green Version]
- Mace, G.M.; Reyers, B.; Alkemade, R.; Biggs, R.; Chapin, F.S.; Cornell, S.E.; Díaz, S.; Jennings, S.; Leadley, P.; Mumby, P.J.; et al. Approaches to defining a planetary boundary for biodiversity. Glob. Environ. Change 2014, 28, 289–297. [Google Scholar] [CrossRef]
- Newbold, T.; Hudson, L.N.; Arnell, A.P.; Contu, S.; de Palma, A.; Ferrier, S.; Hill, S.L.L.; Hoskins, A.J.; Lysenko, I.; Phillips, H.R.P.; et al. Has land use pushed terrestrial biodiversity beyond the planetary boundary? A global assessment. Science (New York N.Y.) 2016, 353, 288–291. [Google Scholar] [CrossRef]
- Hooper, D.U.; Adair, E.C.; Cardinale, B.J.; Byrnes, J.E.K.; Hungate, B.A.; Matulich, K.L.; Gonzalez, A.; Duffy, J.E.; Gamfeldt, L.; O’Connor, M.I. A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 2012, 486, 105–108. [Google Scholar] [CrossRef] [PubMed]
- Hill, S.L.L.; Gonzalez, R.; Sanchez-Ortiz, K.; Caton, E.; Espinoza, F.; Newbold, T.; Tylianakis, J.; Scharlemann, J.P.W.; de Palma, A.; Purvis, A. Worldwide impacts of past and projected future land-use change on local species richness and the Biodiversity Intactness Index. BioRxiv 2018, 311787. [Google Scholar] [CrossRef] [Green Version]
- Sanchez-Ortiz, K.; Gonzalez, R.E.; de Palma, A.; Newbold, T.; Hill, S.L.L.; Tylianakis, J.M.; Börger, L.; Lysenko, I.; Purvis, A. Land-use and related pressures have reduced biotic integrity more on islands than on mainlands. BioRxiv 2019, 576546. [Google Scholar] [CrossRef] [Green Version]
- Steffen, W.; Richardson, K.; Rockström, J.; Cornell, S.E.; Fetzer, I.; Bennett, E.M.; Biggs, R.; Carpenter, S.R.; de Vries, W.; de Wit, C.A.; et al. Planetary boundaries: Guiding human development on a changing planet. Science 2015, 347, 1259855. [Google Scholar] [CrossRef] [PubMed]
- Kitzes, J.; Berlow, E.; Conlisk, E.; Erb, K.; Iha, K.; Martinez, N.; Newman, E.A.; Plutzar, C.; Smith, A.B.; Harte, J. Consumption-Based Conservation Targeting: Linking Biodiversity Loss to Upstream Demand through a Global Wildlife Footprint. Conserv. Lett. 2017, 10, 531–538. [Google Scholar] [CrossRef] [PubMed]
- OECD-FAO. Agricultural Outlook 2017–2026: Special Focus: Southeast Asia; OECD Publishing: Paris, France, 2017. [Google Scholar]
- Koellner, T.; de Baan, L.; Beck, T.; Brandão, M.; Civit, B.; Margni, M.; i Canals, L.M.; Saad, R.; de Souza, D.M.; Müller-Wenk, R. UNEP-SETAC guideline on global land use impact assessment on biodiversity and ecosystem services in LCA. Int J. Life Cycle Assess. 2013, 18, 1188–1202. [Google Scholar] [CrossRef] [Green Version]
- Sun, Z.; Behrens, P.; Tukker, A.; Bruckner, M.; Scherer, L. Global Human Consumption Threatens Key Biodiversity Areas. Environ. Sci. Technol. 2022, 56, 9003–9014. [Google Scholar] [CrossRef] [PubMed]
- Leclère, D.; Obersteiner, M.; Barrett, M.; Butchart, S.H.M.; Chaudhary, A.; de Palma, A.; DeClerck, F.A.J.; Di Marco, M.; Doelman, J.C.; Dürauer, M.; et al. Bending the curve of terrestrial biodiversity needs an integrated strategy. Nature 2020, 585, 551–556. [Google Scholar] [CrossRef]
- Newbold, T.; Hudson, L.N.; Hill, S.L.L.; Contu, S.; Lysenko, I.; Senior, R.A.; Börger, L.; Bennett, D.J.; Choimes, A.; Collen, B.; et al. Global effects of land use on local terrestrial biodiversity. Nature 2015, 520, 45–50. [Google Scholar]
- Hák, T.; Janoušková, S.; Moldan, B. Sustainable Development Goals: A need for relevant indicators. Ecol. Indic. 2016, 60, 565–573. [Google Scholar] [CrossRef]
- Tscharntke, T.; Clough, Y.; Wanger, T.C.; Jackson, L.; Motzke, I.; Perfecto, I.; Vandermeer, J.; Whitbread, A. Global food security, biodiversity conservation and the future of agricultural intensification. Biol. Conserv. 2012, 151, 53–59. [Google Scholar] [CrossRef]
- Chaudhary, A.; Kastner, T. Land use biodiversity impacts embodied in international food trade. Glob. Environ. Chang. 2016, 38, 195–204. [Google Scholar] [CrossRef]
- Chaudhary, A.; Brooks, T.M. Land Use Intensity-Specific Global Characterization Factors to Assess Product Biodiversity Footprints. Environ. Sci. Technol. 2018, 52, 5094–5104. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, A.; Carrasco, L.R.; Kastner, T. Linking national wood consumption with global biodiversity and ecosystem service losses. Sci. Total Environ. 2017, 586, 985–994. [Google Scholar] [CrossRef] [PubMed]
- Gollnow, F.; Lakes, T. Policy change, land use, and agriculture: The case of soy production and cattle ranching in Brazil, 2001–2012. Appl. Geogr. 2014, 55, 203–211. [Google Scholar] [CrossRef]
- Grass, I.; Loos, J.; Baensch, S.; Batáry, P.; Librán-Embid, F.; Ficiciyan, A.; Klaus, F.; Riechers, M.; Rosa, J.; Tiede, J.; et al. Land-sharing/-sparing connectivity landscapes for ecosystem services and biodiversity conservation. People Nat. 2019, 1, 262–272. [Google Scholar] [CrossRef] [Green Version]
- Phalan, B.; Onial, M.; Balmford, A.; Green, R.E. Reconciling food production and biodiversity conservation: Land sharing and land sparing compared. Science 2011, 333, 1289–1291. [Google Scholar] [CrossRef]
- Foley, J.A.; Defries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [Green Version]
- Freitas, F.L.M.; Sparovek, G.; Berndes, G.; Persson, U.M.; Englund, O.; Barretto, A.; Mörtberg, U. Potential increase of legal deforestation in Brazilian Amazon after Forest Act revision. Nat. Sustain. 2018, 1, 665–670. [Google Scholar] [CrossRef]
- Olson, D.M.; Dinerstein, E.; Wikramanayake, E.D.; Burgess, N.D.; Powell, G.V.N.; Underwood, E.C.; D’amico, J.A.; Itoua, I.; Strand, H.E.; Morrison, J.C.; et al. Terrestrial Ecoregions of the World: A New Map of Life on Earth. BioScience 2001, 51, 933. [Google Scholar] [CrossRef]
- Newbold, T.; Hudson, L.N.; Hill, S.L.L.; Contu, S.; Gray, C.L.; Scharlemann, J.P.W.; Börger, L.; Phillips, H.R.P.; Sheil, D.; Lysenko, I.; et al. Global patterns of terrestrial assemblage turnover within and among land uses. Ecography 2016, 39, 1151–1163. [Google Scholar] [CrossRef]
- Newbold, T.; Hudson, L.N.; Arnell, A.P.; Contu, S.; de Palma, A.; Ferrier, S.; Hill, S.L.L.; Hoskins, A.J.; Lysenko, I.; Phillips, H.R.P.; et al. Global Map of the Biodiversity Intactness Index, from Newbold et al. (2016) Science; Natural History Museum: Singapore, 2016. [Google Scholar]
- Hudson, L.N.; Newbold, T.; Contu, S.; Hill, S.L.L.; Lysenko, I.; de Palma, A.; Phillips, H.R.P.; Alhusseini, T.I.; Bedford, F.E.; Bennett, D.J.; et al. The database of the PREDICTS (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems) project. Ecol. Evol. 2017, 7, 145–188. [Google Scholar]
Reporting Year | 2004 | 2011 | 2018 | |
---|---|---|---|---|
Base Year | ||||
1997 | −0.000162369 ∆BII (−):134 (0):10 (+):123 | −0.000458 ∆BII (−):163 (0):7 (+):113 | −0.000289251 ∆BII (−):95 (0):0 (+):55 | |
2004 | X | −0.0001374 ∆BII (−):156 (0):15 (+):112 | −0.000049182 ∆BII (−):78 (0):0 (+):72 | |
2011 | X | X | −0.000010129 ∆BII (−):84 (0):1 (+):65 |
Reporting Year | 2004 | 2011 | 2018 | |
---|---|---|---|---|
Base Year | ||||
1997 | −9.60 × 10−11 ∆BII/t | −2.62 × 10−10 ∆BII/t | −2.52 × 10−10 ∆BII/t | |
2004 | X | −7.86 × 10−11 ∆BII/t | −4.28 × 10−11 ∆BII/t | |
2011 | X | X | −8.82 × 10−12 ∆BII/t |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahlich, L.; Jung, C.; Schaldach, R. The Biodiversity Footprint of German Soy-Imports in Brazil. Sustainability 2022, 14, 16272. https://doi.org/10.3390/su142316272
Mahlich L, Jung C, Schaldach R. The Biodiversity Footprint of German Soy-Imports in Brazil. Sustainability. 2022; 14(23):16272. https://doi.org/10.3390/su142316272
Chicago/Turabian StyleMahlich, Lukas, Christopher Jung, and Rüdiger Schaldach. 2022. "The Biodiversity Footprint of German Soy-Imports in Brazil" Sustainability 14, no. 23: 16272. https://doi.org/10.3390/su142316272
APA StyleMahlich, L., Jung, C., & Schaldach, R. (2022). The Biodiversity Footprint of German Soy-Imports in Brazil. Sustainability, 14(23), 16272. https://doi.org/10.3390/su142316272