Data Driven Modelling and Control Strategies to Improve Biogas Quality and Production from High Solids Anaerobic Digestion: A Mini Review
Abstract
:1. Introduction
- the biogas quality requirements, and main treatment processes to obtain high-quality biogas;
- the data-driven mathematical models tailored for process optimization;
- the control strategies.
2. Biogas Quality
2.1. Biogas Composition
- (a)
- Filtration
- (b)
- Dehumidification
- (c)
- Desulphurization
2.2. Biogas Impurities
Removal of Siloxanes
3. Biogas Utilization
4. Operating Modes, Reactors and Stages
5. Data Driven Models
5.1. Phenomenological Models
5.2. Black-Box Models
5.3. Machine Learning
6. Process Control
- (1)
- Environmental legislation and safety;
- (2)
- High noise on the input variables, most of which cannot be manipulated;
- (3)
- High number of state variables influenced by the inputs;
- (4)
- Low number of controllable output variables.
6.1. Open-Loop and On/Off
6.2. Closed-Loop with PID Controllers
6.3. Adaptive Controllers and Adaptive Control
6.4. Expert Systems
6.5. Other Control Schemes
7. Discussion and Conclusions
Funding
Conflicts of Interest
References
- Scarlat, N.; Dallemand, J.-F.; Fahl, F. Biogas: Developments and perspectives in Europe. Renew. Energy 2018, 129, 457–472. [Google Scholar] [CrossRef]
- Khanh Nguyen, V.; Kumar Chaudhary, D.; Hari Dahal, R.; Hoang Trinh, N.; Kim, J.; Chang, S.W.; Hong, Y.; Duc La, D.; Nguyen, X.C.; Hao Ngo, H.; et al. Review on pretreatment techniques to improve anaerobic digestion of sewage sludge. Fuel 2020, 285, 119105. [Google Scholar] [CrossRef]
- Hanum, F.; Yuan, L.C.; Kamahara, H.; Aziz, H.A.; Atsuta, Y.; Yamada, T.; Daimon, H. Treatment of Sewage Sludge Using Anaerobic Digestion in Malaysia: Current State and Challenges. Front. Energy Res. 2019, 7, 19. [Google Scholar] [CrossRef] [Green Version]
- Li, K.; Liu, R.; Sun, C. A review of methane production from agricultural residues in China. Renew. Sustain. Energy Rev. 2016, 54, 857–865. [Google Scholar] [CrossRef]
- Xue, S.; Song, J.; Wang, X.; Shang, Z.; Sheng, C.; Li, C.; Zhu, Y.; Liu, J. A systematic comparison of biogas development and related policies between China and Europe and corresponding insights. Renew. Sustain. Energy Rev. 2019, 117, 109474. [Google Scholar] [CrossRef]
- Han, G.; Shin, S.G.; Lee, J.; Shin, J.; Hwang, S. A comparative study on the process efficiencies and microbial community structures of six full-scale wet and semi-dry anaerobic digesters treating food wastes. Bioresour. Technol. 2017, 245, 869–875. [Google Scholar] [CrossRef]
- Chiumenti, A.; da Borso, F.; Limina, S. Dry anaerobic digestion of cow manure and agricultural products in a full-scale plant: Efficiency and comparison with wet fermentation. Waste Manag. 2018, 71, 704–710. [Google Scholar] [CrossRef]
- Fagbohungbe, M.O.; Dodd, I.C.; Herbert, B.M.; Li, H.; Ricketts, L.; Semple, K.T. High solid anaerobic digestion: Operational challenges and possibilities. Environ. Technol. Innov. 2015, 4, 268–284. [Google Scholar] [CrossRef]
- Di Capua, F.; Spasiano, D.; Giordano, A.; Adani, F.; Fratino, U.; Pirozzi, F.; Esposito, G. High-solid anaerobic digestion of sewage sludge: Challenges and opportunities. Appl. Energy 2020, 278, 115608. [Google Scholar] [CrossRef]
- Tiwary, A.; Williams, I.; Pant, D.; Kishore, V. Emerging perspectives on environmental burden minimisation initiatives from anaerobic digestion technologies for community scale biomass valorisation. Renew. Sustain. Energy Rev. 2015, 42, 883–901. [Google Scholar] [CrossRef]
- Matheri, A.N.; Sethunya, V.L.; Belaid, M.; Muzenda, E. Analysis of the biogas productivity from dry anaerobic digestion of organic fraction of municipal solid waste. Renew. Sustain. Energy Rev. 2018, 81, 2328–2334. [Google Scholar] [CrossRef]
- Franca, L.S.; Bassin, J.P. The role of dry anaerobic digestion in the treatment of the organic fraction of municipal solid waste: A systematic review. Biomass Bioenergy 2020, 143, 105866. [Google Scholar] [CrossRef]
- Rocamora, I.; Wagland, S.T.; Villa, R.; Simpson, E.D.; Fernández, O.; Bajón-Fernández, Y. Dry anaerobic digestion of organic waste: A review of operational parameters and their impact on process performance. Bioresour. Technol. 2020, 299, 122681. [Google Scholar] [CrossRef] [PubMed]
- Kondusamy, D.; Kalamdhad, A.S. Pre-treatment and anaerobic digestion of food waste for high rate methane production—A review. J. Environ. Chem. Eng. 2014, 2, 1821–1830. [Google Scholar] [CrossRef]
- Komilis, D.; Barrena, R.; Grando, R.L.; Vogiatzi, V.; Sánchez, A.; Font, X. A state of the art literature review on anaerobic digestion of food waste: Influential operating parameters on methane yield. Rev. Environ. Sci. Bio/Technol. 2017, 16, 347–360. [Google Scholar] [CrossRef] [Green Version]
- Ren, Y.; Yu, M.; Wu, C.; Wang, Q.; Gao, M.; Huang, Q.; Liu, Y. A comprehensive review on food waste anaerobic digestion: Research updates and tendencies. Bioresour. Technol. 2018, 247, 1069–1076. [Google Scholar] [CrossRef]
- Yang, L.; Xu, F.; Ge, X.; Li, Y. Challenges and strategies for solid-state anaerobic digestion of lignocellulosic biomass. Renew. Sustain. Energy Rev. 2015, 44, 824–834. [Google Scholar] [CrossRef]
- Ge, X.; Xu, F.; Li, Y. Solid-state anaerobic digestion of lignocellulosic biomass: Recent progress and perspectives. Bioresour. Technol. 2016, 205, 239–249. [Google Scholar] [CrossRef] [Green Version]
- Yao, Y.; Huang, G.; An, C.; Chen, X.; Zhang, P.; Xin, X.; Shen, J.; Agnew, J. Anaerobic digestion of livestock manure in cold regions: Technological advancements and global impacts. Renew. Sustain. Energy Rev. 2019, 119, 109494. [Google Scholar] [CrossRef]
- Momayez, F.; Karimi, K.; Taherzadeh, M.J. Energy recovery from industrial crop wastes by dry anaerobic digestion: A review. Ind. Crop. Prod. 2018, 129, 673–687. [Google Scholar] [CrossRef]
- Shapovalov, Y.; Zhadan, S.; Bochmann, G.; Salyuk, A.; Nykyforov, V. Dry Anaerobic Digestion of Chicken Manure: A Review. Appl. Sci. 2020, 10, 7825. [Google Scholar] [CrossRef]
- Croce, S.; Wei, Q.; D’Imporzano, G.; Dong, R.; Adani, F. Anaerobic digestion of straw and corn stover: The effect of biological process optimization and pre-treatment on total bio-methane yield and energy performance. Biotechnol. Adv. 2016, 34, 1289–1304. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Chen, Y.; Wu, J. Enhancement of methane production in anaerobic digestion process: A review. Appl. Energy 2019, 240, 120–137. [Google Scholar] [CrossRef]
- Filer, J.; Ding, H.H.; Chang, S. Biochemical Methane Potential (BMP) Assay Method for Anaerobic Digestion Research. Water 2019, 11, 921. [Google Scholar] [CrossRef] [Green Version]
- Villa, R.; Rodriguez, L.O.; Fenech, C.; Anika, O.C. Ensiling for anaerobic digestion: A review of key considerations to maximise methane yields. Renew. Sustain. Energy Rev. 2020, 134, 110401. [Google Scholar] [CrossRef]
- Kothari, R.; Pandey, A.; Kumar, S.; Tyagi, V.; Tyagi, S. Different aspects of dry anaerobic digestion for bio-energy: An overview. Renew. Sustain. Energy Rev. 2014, 39, 174–195. [Google Scholar] [CrossRef]
- Tauseef, S.; Abbasi, T.; Abbasi, S. Energy recovery from wastewaters with high-rate anaerobic digesters. Renew. Sustain. Energy Rev. 2013, 19, 704–741. [Google Scholar] [CrossRef]
- Náthia-Neves, G.; Berni, M.; Dragone, G.; Mussatto, S.I.; Forster-Carneiro, T. Anaerobic digestion process: Technological aspects and recent developments. Int. J. Environ. Sci. Technol. 2018, 15, 2033–2046. [Google Scholar] [CrossRef]
- Qiu, L.; Deng, Y.; Wang, F.; Davaritouchaee, M.; Yao, Y. A review on biochar-mediated anaerobic digestion with enhanced methane recovery. Renew. Sustain. Energy Rev. 2019, 115, 109373. [Google Scholar] [CrossRef]
- Chen, Q.; Wu, W.; Qi, D.; Ding, Y.; Zhao, Z. Review on microaeration-based anaerobic digestion: State of the art, challenges, and prospectives. Sci. Total. Environ. 2019, 710, 136388. [Google Scholar] [CrossRef]
- Peng, W.; Lü, F.; Hao, L.; Zhang, H.; Shao, L.; He, P. Digestate management for high-solid anaerobic digestion of organic wastes: A review. Bioresour. Technol. 2020, 297, 122485. [Google Scholar] [CrossRef] [PubMed]
- Hill, A.; Tait, S.; Baillie, C.; Virdis, B.; McCabe, B. Microbial electrochemical sensors for volatile fatty acid measurement in high strength wastewaters: A review. Biosens. Bioelectron. 2020, 165, 112409. [Google Scholar] [CrossRef]
- Madsen, M.; Holm-Nielsen, J.B.; Esbensen, K.H. Monitoring of anaerobic digestion processes: A review perspective. Renew. Sustain. Energy Rev. 2011, 15, 3141–3155. [Google Scholar] [CrossRef] [Green Version]
- Jimenez, J.; Latrille, E.; Harmand, J.; Robles, Á.; Ferrer, J.; Gaida, D.; Wolf, C.; Mairet, F.; Bernard, O.; Alcaraz-Gonzalez, V.; et al. Instrumentation and control of anaerobic digestion processes: A review and some research challenges. Rev. Environ. Sci. Bio/Technol. 2015, 14, 615–648. [Google Scholar] [CrossRef]
- Cruz, I.A.; Chuenchart, W.; Long, F.; Surendra, K.; Andrade, L.R.S.; Bilal, M.; Liu, H.; Figueiredo, R.T.; Khanal, S.K.; Ferreira, L.F.R. Application of machine learning in anaerobic digestion: Perspectives and challenges. Bioresour. Technol. 2021, 345, 126433. [Google Scholar] [CrossRef] [PubMed]
- Paladino, O.; Hodaifa, G.; Neviani, M.; Seyedsalehi, M.; Malvis, A. Modeling in environmental interfaces. Interface Sci. Technol. 2019, 30, 241–282. [Google Scholar] [CrossRef]
- Appels, L.; Baeyens, J.; Degrève, J.; Dewil, R. Principles and potential of the anaerobic digestion of waste-activated sludge. Prog. Energy Combust. Sci. 2008, 34, 755–781. [Google Scholar] [CrossRef]
- Pipatmanomai, S.; Kaewluan, S.; Vitidsant, T. Economic assessment of biogas-to-electricity generation system with H2S removal by activated carbon in small pig farm. Appl. Energy 2009, 86, 669–674. [Google Scholar] [CrossRef]
- APAT. Digestione Anaerobica Della Frazione Organica Dei Rifiuti Solidi. 2005. Available online: http://www.isprambiente.gov.it/contentfiles/00003400/3482-manuali-linee-guida-2005.pdf (accessed on 30 October 2022).
- Peu, P.; Picard, S.; Diara, A.; Girault, R.; Béline, F.; Bridoux, G.; Dabert, P. Prediction of hydrogen sulphide production during anaerobic digestion of organic substrates. Bioresour. Technol. 2012, 121, 419–424. [Google Scholar] [CrossRef]
- Busca, G.; Pistarino, C. Technologies for the abatement of sulphide compounds from gaseous streams: A com-parative overview. J. Loss Prev. Process Ind. 2003, 16, 363–371. [Google Scholar] [CrossRef]
- Okoro, O.V.; Sun, Z. Desulphurisation of Biogas: A Systematic Qualitative and Economic-Based Quantitative Review of Alternative Strategies. ChemEngineering 2019, 3, 76. [Google Scholar] [CrossRef] [Green Version]
- Overcamp, T.J. Modeling oxidizing scrubbers for odor control. Environ. Sci. Technol. 1999, 33, 155–156. [Google Scholar] [CrossRef]
- Kamata, Y.; Yamakoshi, Y.; Ebinuma, T.; Oyama, H.; Shimada, W.; Narita, H. Hydrogen Sulfide Separation Using Tetra-n-butyl Ammonium Bromide Semi-clathrate (TBAB). Hydrate Energy Fuels 2005, 19, 1717–1722. [Google Scholar] [CrossRef]
- Melo, D.M.A.; de Souza, J.R.; Melo, M.A.F.; Martinelli, A.E.; Cachima, G.H.B.; Cunha, J.D. Evaluation of the zinox and zeolite materials as adsorbents to remove H2S from natural gas. Colloids Surf. A Physicochem. Eng. Asp. 2006, 272, 32–36. [Google Scholar] [CrossRef]
- Zhou, L.; Zhong, L.; Yu, M.; Zhou, Y. Sorption and Desorption of a Minor Amount of H2S on Silica Gel Covered with a Film of Triethanolamine. Ind. Eng. Chem. Res. 2004, 43, 1765–1767. [Google Scholar] [CrossRef]
- Finocchio, E.; Montanari, T.; Garuti, G.; Pistarino, C.; Federici, F.; Cugino, M.; Busca, G. Pu-rification of Biogases from Siloxanes by Adsorption: On the Regenerability of Activated Carbon Sorbents. Energy Fuels 2009, 23, 4156–4159. [Google Scholar] [CrossRef]
- Bagreev, A.; Rahman, H.; Bandos, T.J. Study of H2S Adsorption and Water Regeneration of Spent Coconut-Based Activated Carbon. Environ. Sci. Technol. 2000, 34, 4587–4592. [Google Scholar] [CrossRef]
- Yan, R.; Chin, T.; Ng, Y.L.; Duan, H.; Liang, D.T.; Tay, J.H. Influence of Surface Properties on the Mechanism of H2S Removal by Alkaline Activated Carbons. Environ. Sci. Technol. 2003, 38, 316–323. [Google Scholar] [CrossRef] [PubMed]
- Bagreev, A.; Rahman, H.; Bandosz, T.J. Study of regeneration of activated carbons used as H2S adsorbents in water treatment plants. Adv. Environ. Res. 2002, 6, 303–311. [Google Scholar] [CrossRef]
- Schumberger. Available online: https://www.slb.com (accessed on 30 October 2022).
- Truong, L.V.-A.; Abatzoglou, N. A H2S selective adsorption process for the purification of biogas prior to its use as a bioenergy vector. Biomass Bioenergy 2005, 29, 142–151. [Google Scholar] [CrossRef]
- Connelly–GPM, Inc. 2007. Available online: https://connellygpm.com/iron-sponge/ (accessed on 30 October 2022).
- Johnson Matthey. 2007. Available online: https://matthey.com (accessed on 30 October 2022).
- Iaquaniello, G.; Mangiapane, A. Integration of biomass gasification with MCFC. Int. J. Hydrogen Energy 2006, 31, 399–404. [Google Scholar] [CrossRef]
- Elias, A.; Barona, A.; Rios, F.J.; Arreguy, A.; Munguira, M.; Peñas, J.; Sanz, J.L. Application of biofiltration to the degra-dation of hydrogen sulfide in gas effluents. Biodegradation 2000, 11, 423–427. [Google Scholar] [CrossRef]
- Ruitenberg, R.; Dijkman, H.; Buisman, C.J.N. Biologically removing sulfur from dilute gas flows. JOM 1999, 51, 45. [Google Scholar] [CrossRef]
- UGN–Umwelttechnik. Available online: https://www.ugn-umwelttechnik.de/en/gas-desulphurisation/gas-desulphurisation-systems/ (accessed on 30 October 2022).
- Dewil, R.; Appels, L.; Baeyens, J. Energy use of biogas hampered by the presence of siloxanes. Energy Convers. Manag. 2006, 47, 1711–1722. [Google Scholar] [CrossRef]
- Schweigkofler, M.; Niessner, R. Removal of siloxanes in biogases. J. Hazard. Mater. 2001, B83, 183–196. [Google Scholar] [CrossRef]
- Finocchio, E.; Garuti, G.; Baldi, M.; Busca, G. Decomposition of hexamethylcyclotrisiloxane over solid oxides. Chemosphere 2008, 72, 1659–1663. [Google Scholar] [CrossRef] [PubMed]
- Huppmann, R.; Lohoff, H.W.; Schröder, H.F. Cyclic siloxanes in the biological waste water treatment pro-cess—Determination, quantification and possibilities of elimination. Fresenius J. Anal. Chem. 1996, 354, 66–71. [Google Scholar]
- Stoddart, J.; Zhu, M.; Staines, J.; Rothery, E.; Lewicki, R. Experience with halogenated hydrocarbons removal from landfill gas. In Proceedings of the Sardinia 1999, Seventh International Waste Management and Landfill Symposium, Sardinia, Italy, 4–8 October 1999; Volume 2, pp. 489–498. [Google Scholar]
- Tian, H.; Wang, X.; Lim, E.Y.; Lee, J.T.; Ee, A.W.; Zhang, J.; Tong, Y.W. Life cycle assessment of food waste to energy and resources: Centralized and decentralized anaerobic digestion with different downstream biogas utilization. Renew. Sustain. Energy Rev. 2021, 150, 111489. [Google Scholar] [CrossRef]
- Ansaldo Energia. Cogenerazione Con Microturbine a Gas: L’esperienza Ansaldo Energia col Biogas. HELE–High Efficiency Low Emissions, Milan, September 2016. Available online: http://prodottieditoriali.animp.it/prodotti_editoriali/materiali/convegni/pdf/energia_2016_1/nb2%20Enrico%20BIANCHI%20ANSALDO%20ENERGIA.pdf (accessed on 30 October 2022).
- Spiegel, R.; Preston, J. Test results for fuel cell operation on anaerobic digester gas. J. Power Sources 2000, 86, 283–288. [Google Scholar] [CrossRef]
- Guan, T.; Alvfors, P. An Overview of Biomass-fuelled Proton Exchange Membrane Fuel Cell (PEMFC) Systems. Energy Procedia 2015, 75, 2003–2008. [Google Scholar] [CrossRef] [Green Version]
- Authayanun, S.; Aunsup, P.; Patcharavorachot, Y.; Arpornwichanop, A. Theoretical analysis of a biogas-fed PEMFC system with different hydrogen purifications: Conventional and membrane-based water gas shift processes. Energy Convers. Manag. 2014, 86, 60–69. [Google Scholar] [CrossRef]
- Agll, A.A.A.; Hamad, Y.M.; Hamad, T.A.; Thomas, M.; Bapat, S.; Martin, K.B.; Sheffield, J.W. Study of a molten carbonate fuel cell combined heat, hydrogen and power system: Energy analysis. Appl. Therm. Eng. 2013, 59, 634–638. [Google Scholar] [CrossRef]
- Hamad, T.A.; Agll, A.A.; Hamad, Y.M.; Bapat, S.; Thomas, M.; Martin, K.B.; Sheffield, J.W. Study of combined heat, hydrogen and power system based on a molten carbonate fuel cell fed by biogas produced by anaerobic digestion. Energy Convers. Manag. 2014, 81, 184–191. [Google Scholar] [CrossRef]
- Krumbeck, M.; Klinge, T.; Döding, B. First European fuel cell installation with anaerobic digester gas in a molten carbonate fuel cell. J. Power Sources 2006, 157, 902–905. [Google Scholar] [CrossRef]
- Ciccoli, R.; Cigolotti, V.; Presti, R.L.; Massi, E.; McPhail, S.; Monteleone, G.; Moreno, A.; Naticchioni, V.; Paoletti, C.; Simonetti, E.; et al. Molten carbonate fuel cells fed with biogas: Combating H2S. Waste Manag. 2010, 30, 1018–1024. [Google Scholar] [CrossRef]
- Verda, V.; Sciacovelli, A. Optimal design and operation of a biogas fuelled MCFC (molten carbonate fuel cells) system integrated with an anaerobic digester. Energy 2012, 47, 150–157. [Google Scholar] [CrossRef] [Green Version]
- Gandiglio, M.; De Sario, F.; Lanzini, A.; Bobba, S.; Santarelli, M.; Blengini, G.A. Life Cycle Assessment of a Biogas-Fed Solid Oxide Fuel Cell (SOFC) Integrated in a Wastewater Treatment Plant. Energies 2019, 12, 1611. [Google Scholar] [CrossRef] [Green Version]
- Papurello, D.; Lanzini, A.; Tognana, L.; Silvestri, S.; Santarelli, M. Waste to energy: Exploitation of biogas from organic waste in a 500 Wel solid oxide fuel cell (SOFC) stack. Energy 2015, 85, 145–158. [Google Scholar] [CrossRef]
- Leone, P.; Lanzini, A.; Santarelli, M.; Calì, M.; Sagnelli, F.; Boulanger, A.; Scaletta, A.; Zitella, P. Methane-free biogas for direct feeding of solid oxide fuel cells. J. Power Sources 2010, 195, 239–248. [Google Scholar] [CrossRef]
- Rayner, A.J.; Briggs, J.; Tremback, R.; Clemmer, R.M. Design of an organic waste power plant coupling anaerobic digestion and solid oxide fuel cell technologies. Renew. Sustain. Energy Rev. 2017, 71, 563–571. [Google Scholar] [CrossRef]
- Saadabadi, S.A.; Thattai, A.T.; Fan, L.; Lindeboom, R.E.; Spanjers, H.; Aravind, P. Solid Oxide Fuel Cells fuelled with biogas: Potential and constraints. Renew. Energy 2018, 134, 194–214. [Google Scholar] [CrossRef]
- Devi, S.; Sahoo, N.; Muthukumar, P. Experimental studies on biogas combustion in a novel double layer inert Porous Radiant Burner. Renew. Energy 2019, 149, 1040–1052. [Google Scholar] [CrossRef]
- Kim, E.; Lee, J.; Han, G.; Hwang, S. Comprehensive analysis of microbial communities in full-scale mesophilic and thermophilic anaerobic digesters treating food waste-recycling wastewater. Bioresour. Technol. 2018, 259, 442–450. [Google Scholar] [CrossRef] [PubMed]
- Bi, S.; Qiao, W.; Xiong, L.; Ricci, M.; Adani, F.; Dong, R. Effects of organic loading rate on anaerobic digestion of chicken manure under mesophilic and thermophilic conditions. Renew. Energy 2019, 139, 242–250. [Google Scholar] [CrossRef]
- Gu, J.; Liu, R.; Cheng, Y.; Stanisavljevic, N.; Li, L.; Djatkov, D.; Peng, X.; Wang, X. Anaerobic co-digestion of food waste and sewage sludge under mesophilic and thermophilic conditions: Focusing on synergistic effects on methane production. Bioresour. Technol. 2020, 301, 122765. [Google Scholar] [CrossRef]
- Ting, H.N.J.; Lin, L.; Cruz, R.B.; Chowdhury, B.; Karidio, I.; Zaman, H.; Dhar, B.R. Transitions of microbial communities in the solid and liquid phases during high-solids anaerobic digestion of organic fraction of municipal solid waste. Bioresour. Technol. 2020, 317, 123951. [Google Scholar] [CrossRef]
- Walter, E.; Pronzato, L. Qualitative and quantitative experiment design for phenomenological models—A survey. Automatica 1990, 26, 195–213. [Google Scholar] [CrossRef]
- Holubar, P.; Zani, L.; Hagar, M.; Fröschl, W.; Radak, Z.; Braun, R. Modelling of anaerobic digestion using self-organizing maps and artificial neural networks. Water Sci. Technol. 2000, 41, 149–156. [Google Scholar] [CrossRef]
- Ljung, L. Black-box models from input-output measurements. IEEE Instrum. Meas. Technol. Conf. 2002, 1, 138–146. [Google Scholar] [CrossRef] [Green Version]
- Juditsky, A.; Hjalmarsson, H.; Benveniste, A.; Delyon, B.; Ljung, L.; Sjöberg, J.; Zhang, Q. Nonlinear black-box models in system identification: Mathematical foundations. Automatica 1995, 31, 1725–1750. [Google Scholar] [CrossRef]
- Sjöberg, J.; Zhang, Q.; Ljung, L.; Benveniste, A.; Delyon, B.; Glorennec, P.-Y.; Hjalmarsson, H.; Juditsky, A. Nonlinear black-box modeling in system identification: A unified overview. Automatica 1995, 31, 1691–1724. [Google Scholar] [CrossRef]
- Premier, G.; Dinsdale, R.; Guwy, A.; Hawkes, F.; Hawkes, D.; Wilcox, S. A comparison of the ability of black box and neural network models of ARX structure to represent a fluidized bed anaerobic digestion process. Water Res. 1999, 33, 1027–1037. [Google Scholar] [CrossRef]
- Novotny, V.; Jones, H.; Feng, X.; Capodaglio, A.G. Time Series Analysis Models of Activated Sludge Plants. Water Sci. Technol. 1991, 23, 1107–1116. [Google Scholar] [CrossRef]
- Capodaglio, A.G.; Novotny, V.; Fortina, L. Modelling wastewater treatment plants through time series analysis. Environmetrics 1992, 3, 99–120. [Google Scholar] [CrossRef]
- Van Dongen, G.; Geuens, L. Modeling multivariate time series analysis for design and operation of a biological wastewater treatment plant. Water Res. 1998, 32, 691–700. [Google Scholar] [CrossRef]
- Sotomayor, O.A.Z.; Park, S.W.; Garcia, C. Multivariable identification of an activated sludge process with subspace-based algorithms. In Proceedings of the 6th IFAC Symposium on Dynamics and Control of Process Systems (DyCoPs6), Jejudo, Korea, 4–6 June 2001. [Google Scholar]
- Algapani, D.E.; Wang, J.; Qiao, W.; Su, M.; Goglio, A.; Wandera, S.M.; Jiang, M.; Pan, X.; Adani, F.; Dong, R. Improving methane production and anaerobic digestion stability of food waste by extracting lipids and mixing it with sewage sludge. Bioresour. Technol. 2017, 244, 996–1005. [Google Scholar] [CrossRef]
- Vivekanand, V.; Mulat, D.G.; Eijsink, V.G.H.; Horn, S.J. Synergistic effects of anaerobic co-digestion of whey, manure and fish ensilage. Bioresour. Technol. 2018, 249, 35–41. [Google Scholar] [CrossRef]
- Valenti, F.; Zhong, Y.; Sun, M.; Porto, S.M.; Toscano, A.; Dale, B.E.; Sibilla, F.; Liao, W. Anaerobic co-digestion of multiple agricultural residues to enhance biogas production in southern Italy. Waste Manag. 2018, 78, 151–157. [Google Scholar] [CrossRef]
- Jin, W.; Xu, X.; Yang, F.; Li, C.; Zhou, M. Performance enhancement by rumen cultures in anaerobic co-digestion of corn straw with pig manure. Biomass Bioenergy 2018, 115, 120–129. [Google Scholar] [CrossRef]
- González, L.M.L.; Reyes, I.P.; Romero, O.R. Anaerobic co-digestion of sugarcane press mud with vinasse on methane yield. Waste Manag. 2017, 68, 139–145. [Google Scholar] [CrossRef]
- Marques, I.P.; Batista, A.P.; Coelho, A.; da Silva, T.L. Co-digestion of Rhodosporidium toruloides biorefinery wastes for biogas production. Process. Biochem. 2018, 64, 221–227. [Google Scholar] [CrossRef]
- Thorin, E.; Olsson, J.; Schwede, S.; Nehrenheim, E. Co-digestion of sewage sludge and microalgae—Biogas production investigations. Appl. Energy 2018, 227, 64–72. [Google Scholar] [CrossRef] [Green Version]
- Mahanty, B.; Zafar, M.; Park, H.-S. Characterization of co-digestion of industrial sludges for biogas production by artificial neural network and statistical regression models. Environ. Technol. 2013, 34, 2145–2153. [Google Scholar] [CrossRef] [PubMed]
- Jacob, S.; Banerjee, R. Modeling and optimization of anaerobic codigestion of potato waste and aquatic weed by response surface methodology and artificial neural network coupled genetic algorithm. Bioresour. Technol. 2016, 214, 386–395. [Google Scholar] [CrossRef]
- Xu, F.; Wang, Z.-W.; Li, Y. Predicting the methane yield of lignocellulosic biomass in mesophilic solid-state anaerobic digestion based on feedstock characteristics and process parameters. Bioresour. Technol. 2014, 173, 168–176. [Google Scholar] [CrossRef]
- Sinha, S.; Bose, P.; Jawed, M.; John, S.; Tare, V. Application of neural network for simulation of upflow anaerobic sludge blanket (UASB) reactor performance. Biotechnol. Bioeng. 2002, 77, 806–814. [Google Scholar] [CrossRef]
- Wang, X.; Bai, X.; Li, Z.; Zhou, X.; Cheng, S.; Sun, J.; Liu, T. Evaluation of artificial neural network models for online monitoring of alkalinity in anaerobic codigestion system. Biochem. Eng. J. 2018, 140, 85–92. [Google Scholar] [CrossRef]
- Antwi, P.; Li, J.; Meng, J.; Deng, K.; Quashie, F.K.; Li, J.; Boadi, P.O. Feedforward neural network model estimating pollutant removal process within mesophilic upflow anaerobic sludge blanket bioreactor treating industrial starch processing wastewater. Bioresour. Technol. 2018, 257, 102–112. [Google Scholar] [CrossRef] [Green Version]
- Pai, T.Y.; Wan, T.J.; Hsu, S.T.; Chang, T.C.; Tsai, Y.P.; Lin, C.Y.; Yu, L.F. Using fuzzy inference system to improve neural network for pre-dicting hospital wastewater treatment plant effluent. Comput. Chem. Eng. 2009, 33, 1272–1278. [Google Scholar] [CrossRef]
- De Clercq, D.; Wen, Z.; Fei, F.; Caicedo, L.; Yuan, K.; Shang, R. Interpretable machine learning for predicting biomethane production in industrial-scale anaerobic co-digestion. Sci. Total. Environ. 2019, 712, 134574. [Google Scholar] [CrossRef]
- Zhou, H.; Li, H.; Wang, F. Anaerobic digestion of different organic wastes for biogas production and its operational control per-formed by the modified ADM1. J. Environ. Sci. Health Part A 2012, 47, 84–92. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Ramirez, J.; Meraz, M.; Monroy, O.; Velasco, A. Feedback control design for an anaerobic digestion process. J. Chem. Technol. Biotechnol. 2002, 77, 725–734. [Google Scholar] [CrossRef]
- Mu, S.; Zeng, Y.; Wu, P. Multivariable control of anaerobic reactor by using external recirculation and bypass ratio. J. Chem. Technol. Biotechnol. 2008, 83, 892–903. [Google Scholar] [CrossRef]
- Smith, P.J.; Vigneswaran, S.; Ngo, H.H.; Ben-Aim, R.; Nguyen, H. A new approach to backwash initiation in membrane systems. J. Membrane Sci. 2006, 278, 381–389. [Google Scholar] [CrossRef]
- Park, H.D.; Lee, Y.H.; Kim, H.B.; Moon, J.; Ahn, C.H.; Kim, K.T.; Kang, M.S. Reduction of membrane fouling by simultaneous upward and downward air sparging in a pilot-scale submerged membrane bioreactor treating municipal wastewater. Desalination 2010, 251, 75–82. [Google Scholar] [CrossRef]
- Robles, A.; Durán, F.; Ruano, M.V.; Ribes, J.; Rosado, A.; Seco, A.; Ferrer, J. Instrumentation, control, and automation for sub-merged anaerobic membrane bioreactors. Environ. Technol. 2015, 36, 1795–1806. [Google Scholar] [CrossRef]
- Nguyen, D.; Gadhamshetty, V.; Nitayavardhana, S.; Khanal, S.K. Automatic process control in anaerobic digestion technology: A critical review. Bioresour. Technol. 2015, 193, 513–522. [Google Scholar] [CrossRef] [PubMed]
- Gaida, D.; Wolf, C.; Bongards, M. Feed control of anaerobic digestion processes for renewable energy production: A review. Renew. Sustain. Energy Rev. 2017, 68, 869–875. [Google Scholar] [CrossRef]
- von Sachs, J.; Meyer, U.; Rys, P.; Feitkenhauer, H. New approach to control the methanogenic reactor of a two-phase anaerobic digestion system. Water Res. 2003, 37, 973–982. [Google Scholar] [CrossRef]
- Alferes, J.; Irizar, I. Combination of extremum-seeking algorithms with effective hydraulic handling of equalization tanks to control anaerobic digesters. Water Sci. Technol. 2010, 61, 2825–2834. [Google Scholar] [CrossRef]
- García-Diéguez, C.; Molina, F.; Roca, E. Multi-objective cascade controller for an anaerobic digester. Process. Biochem. 2011, 46, 900–909. [Google Scholar] [CrossRef]
- Ignatova, M.N.; Lyubenova, V.N.; García, M.R.; Vilas, C.; Alonso, A.A. Indirect adaptive linearizing control of a class of bio-processes—Estimator tuning procedure. J. Process. Contr. 2008, 18, 27–35. [Google Scholar] [CrossRef]
- Méndez-Acosta, H.O.; Palacios-Ruiz, B.; Alcaraz-González, V.; González-Álvarez, V.; García-Sandoval, J.P. Arobust control scheme to improve the stability of anaerobic digestion processes. J. Process. Contr. 2010, 20, 375–383. [Google Scholar] [CrossRef]
- Alcaraz-González, V.; Harmand, J.; Rapaport, A.; Steyer, J.P.; González-Alvarez, V.; Pelayo-Ortiz, C. Robust interval-based regulation for anaerobic digestion processes. Water Sci. Technol. 2005, 52, 449–456. [Google Scholar] [CrossRef] [PubMed]
- Aguilar-Garnica, E.; Dochain, D.; Alcaraz-González, V.; González-Álvarez, V. A multivariable control scheme in a two-stage anaerobic digestion system described by partial differential equations. J. Process. Contr. 2009, 19, 1324–1332. [Google Scholar] [CrossRef]
- Lara-Cisneros, G.; Aguilar-López, R.; Femat, R. On the dynamic optimization of methane production in anaerobic diges-tion via extremum-seeking control approach. Comput. Chem. Eng. 2015, 75, 49–59. [Google Scholar] [CrossRef]
- Verbruggen, H.B.; Bruijn, P.M. Fuzzy control and conventional control: What is (and can be) the real contribution of Fuzzy Systems? Fuzzy Set Syst. 1997, 90, 151–160. [Google Scholar] [CrossRef]
- Steyer, J.; Rolland, D.; Bouvier, J.C.; Moletta, R. Hybrid fuzzy neural network for diagnosis application to the anaerobic treatment of wine distillery wastewater in a fluidized bed reactor. Water Sci. Technol. 1997, 36, 209–217. [Google Scholar] [CrossRef]
- Paladino, O. A fuzzy operating database to support diagnosis on a wastewater treatment plant. Chem. Bio-Chem. Eng. Q. 1999, 13, 1–8. [Google Scholar]
- Estaben, M.; Polit, M.; Steyer, J. Fuzzy control for an anaerobic digester. Control. Eng. Pract. 1997, 5, 1303–1310. [Google Scholar] [CrossRef]
- Pullammanappallil, P.C.; Svoronos, S.A.; Chynoweth, D.P.; Lyberatos, G. Expert system for control of anaerobic digesters. Biotechnol. Bioeng. 1998, 58, 13–22. [Google Scholar] [CrossRef]
- Murnleitner, E.; Becker, T.M.; Delgado, A. State detection and control of overloads in the anaerobic wastewater treatment using fuzzy logic. Water Res. 2002, 36, 201–211. [Google Scholar] [CrossRef] [PubMed]
- Carlos-Hernandez, S.; Sanchez, E.; Beteau, J. Fuzzy Control Strategy for an Anaerobic Wastewater Treatment Process. Chem. Biochem. Eeng. Q. 2010, 24, 235–245. [Google Scholar]
- Heredia-Molinero, M.C.; Sánchez-Prieto, J.; Briongos, J.V.; Palancar, M.C. Feedback PID-like fuzzy controller for pH regu-latory control near the equivalence point. J. Process Control. 2014, 24, 1023–1037. [Google Scholar] [CrossRef]
- Tay, J.-H.; Zhang, X. A fast predicting neural fuzzy model for high-rate anaerobic wastewater treatment systems. Water Res. 2000, 34, 2849–2860. [Google Scholar] [CrossRef]
- Waewsak, C.; Nopharatana, A.; Chaiprasert, P. Neural-fuzzy control system application for monitoring process response and control of anaerobic hybrid reactor in wastewater treatment and biogas production. J. Environ. Sci. 2010, 22, 1883–1890. [Google Scholar] [CrossRef]
- Méndez-Acosta, H.O.; Campos-Delgado, D.U.; Femat, R.; González-Alvarez, V. A robust feedforward/feedback control for an anaerobic digester. Comput. Chem. Eng. 2005, 29, 1613–1623. [Google Scholar] [CrossRef]
- Liu, J.; Olsson, G.; Mattiasson, B. Extremum-seeking with variable gain control for intensifying biogas production in an-aerobic fermentation. Water Sci. Technol. 2006, 53, 35–44. [Google Scholar] [CrossRef] [Green Version]
- Steyer, J.P.; Buffière, P.; Rolland, D.; Moletta, R. Advanced control of anaerobic digestion processes through disturbances monitoring. Water Res 1999, 33, 2059–2068. [Google Scholar] [CrossRef]
- Rossi, E.; Pecorini, I.; Iannelli, R. Multilinear Regression Model for Biogas Production Prediction from Dry Anaerobic Digestion of OFMSW. Sustainability 2022, 14, 4393. [Google Scholar] [CrossRef]
Typical Composition of Biogas [%] | |
---|---|
CH4 | 50–65% |
CO2 | 35–45% |
H2O | 0–5% |
H2S | 0.02–0.2% |
Siloxanes | Traces |
N2 | Traces |
H2 | Traces |
O2 | Traces |
Operating Parameter: Temperature | |
---|---|
Thermophilic | Mesophilic |
55 ± 2 °C | 35 ± 2 °C |
higher yields in biogass maller volumes higher energy consumption enhanced diffusion of organic substrates to the microbial cells | higher hydraulic retention time (HRT) better diversity of methanogenic microorganisms higher volatile solid reduction |
Operating Parameter: Total Solids | |
---|---|
HSADs | LSAD |
Up to 50% | Up to 15% |
does not need waste pre-treatment (dimension reduction to about 4 cm) usually uses segregated reactors (no mixing requested) lower residence times lower costs (volumes, pumping and energy) | more consolidated needs dilution with water mixing problems are often observed, with by-pass or separation higher volume possibility to correct process parameters and peak values by dilution simpler pumping systems (liquid biomass) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paladino, O. Data Driven Modelling and Control Strategies to Improve Biogas Quality and Production from High Solids Anaerobic Digestion: A Mini Review. Sustainability 2022, 14, 16467. https://doi.org/10.3390/su142416467
Paladino O. Data Driven Modelling and Control Strategies to Improve Biogas Quality and Production from High Solids Anaerobic Digestion: A Mini Review. Sustainability. 2022; 14(24):16467. https://doi.org/10.3390/su142416467
Chicago/Turabian StylePaladino, Ombretta. 2022. "Data Driven Modelling and Control Strategies to Improve Biogas Quality and Production from High Solids Anaerobic Digestion: A Mini Review" Sustainability 14, no. 24: 16467. https://doi.org/10.3390/su142416467
APA StylePaladino, O. (2022). Data Driven Modelling and Control Strategies to Improve Biogas Quality and Production from High Solids Anaerobic Digestion: A Mini Review. Sustainability, 14(24), 16467. https://doi.org/10.3390/su142416467