Biogenic Production of Thiosulfate from Organic and Inorganic Sulfur Substrates for Application to Gold Leaching
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Bacterial Culture
2.3. Bio-TS Production Method
2.4. Leaching Method
2.5. Analysis
2.6. Sample Characterization
3. Results and Discussion
3.1. Biogenic Thiosulfate Production Using M. sulfidovorans
3.1.1. Kinetic Growth Experiment
3.1.2. Bio-TS Yield at Different Substrate Concentration
3.2. Bio-TS Gold Leaching
3.2.1. Gold Powder Bio-TS Leaching
3.2.2. Gold Ore Bio-TS Leaching
3.3. Biogenic Thiosulfate Production in Mixed Seawater Media
3.4. Discussion of Substrate Viability
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Corti, C.; Holliday, R. Gold: Science and Applications; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Calvo, G.; Mudd, G.; Valero, A. Decreasing Ore Grades in Global Metallic Mining: A Theoretical Issue or a Global Reality? Resources 2016, 5, 36. [Google Scholar] [CrossRef] [Green Version]
- Senchenko, A.; Aksenov, A.; Vasiliev, A.; Seredkin, Y. Technology for Processing of Refractory Gold-Containing Concentrates Based on Ultrafine Grinding and Atmospheric Oxidation. Proc. IMPC 2016. Available online: https://www.glencoretechnology.com/.rest/api/v1/documents/ebfb224d6cdd115d612332980915513b/TECHNOLOGY-FOR-PROCESSING-OF-REFRACTORY-GOLD-CONTAINING-CONCENTRATES-IMPC-2016-TOMS-institute-Paper-398.pdf (accessed on 13 January 2022).
- Akcil, A. A New Global Approach of Cyanide Management: International Cyanide Management Code for the Manufacture, Transport, and Use of Cyanide in the Production of Gold. Miner. Process. Extr. Metall. Rev. 2010, 31, 135–149. [Google Scholar] [CrossRef]
- Aylmore, M. Thiosulfate as an Alternative Lixiviant to Cyanide for Gold Ores. In Gold Ore Processing, 2nd ed.; Adams, M.D., Ed.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 485–523. [Google Scholar]
- Jorjani, E.; Sabzkoohi, H.A. Gold leaching from ores using biogenic lixiviants—A review. Curr. Res. Biotechnol. 2022, 4, 10–20. [Google Scholar] [CrossRef]
- Azizi, A.; Wang, J.; Ramsay, J.; Ghahreman, A. A review of thiocyanate gold leaching—Chemistry, thermodynamics, kinetics and processing. Miner. Eng. 2021, 160, 106689. [Google Scholar]
- Li, J.; Miller, J.D. A Review of Gold LEaching in Acid Thiourea Solutions. Miner. Process. Extr. Metall. Rev. 2006, 27, 177–214. [Google Scholar] [CrossRef]
- Sun, C.-B.; Zhang, X.-L.; Kou, J.; Xing, Y. A review of gold extraction using noncyanide lixiviants: Fundamentals, advancements, and challenges toward alkaline sulfur-containing leaching agents. Int. J. Miner. Metall. Mater. 2020, 27, 417–431. [Google Scholar] [CrossRef]
- Marsden, J.; House, C. Chemistry of Gold Extraction, 2nd ed.; SME: Littleton, CO, USA, 2006. [Google Scholar]
- Sitando, O.; Senanayake, G.; Dai, X.; Nikoloski, A.; Breuer, P. A review of factors affecting gold leaching in non-ammoniacal thiosulfate solutions including degradation and in-situ generation of thiosulfate. Hydrometallurgy 2018, 178, 151–175. [Google Scholar] [CrossRef]
- Daenzer, R. The Modes of Gold Loss in the Calcium Thiosulfate Leaching System; McGill University: Montreal, QC, Canada, 2011. [Google Scholar]
- Laitos, J. Cyanide, Mining, and the Environment. Pace Environ. Law Rev. 2013, 3, 869–949. [Google Scholar]
- Kaksonen, A.H.; Deng, X.; Bohu, T.; Zea, L.; Khaleque, H.N.; Gumulya, Y.; Boxall, N.J.; Morris, C.; Cheng, K.Y. Prospective directions for biohydrometallurgy. Hydrometallurgy 2020, 195, 105376. [Google Scholar] [CrossRef]
- Hao, J.; Wang, Y.; Wu, Y.; Guo, F. Metal recovery from waste printed circuit boards: A review for current status and perspectives. Resour. Conserv. Recycl. 2020, 157, 104787. [Google Scholar] [CrossRef]
- Reuter, M.; Schaik, A. Gold-A Key Enabler of a Circular Economy: Recycling of Waste Electric and Electronic Equipment. In Gold Ore Processing-Project Development and Operations; Elsevier: Singapore, 2016; pp. 937–958. [Google Scholar]
- Faraji, F.; Wang, J.; Mahindra, H.; Ghahreman, G. A Green and Sustainable Process for the Recovery of Gold from LowGrade Sources Using Biogenic Cyanide Generated by Bacillus. ACS Sustain. Chem. Eng. 2021, 9, 236–245. [Google Scholar] [CrossRef]
- McNeice, J.; Mahandra, H.; Ghahreman, A. Application of Biogenic Thiosulfate Produced by Methylophaga. ACS Sustain. Chem. Eng. 2022, 10, 10034–10046. [Google Scholar] [CrossRef]
- Mubarok, M.Z.; Winarko, R.; Chaerun, S.K.; Rizki, I.N.; Ichlas, Z.T. Improving Gold Recovery from Refractory Gold Ores Through Biooxidation using Iron-Sulfur-Oxidizing/Sulfur-Oxidizing Mixotrophic Bacteria. Hydrometallurgy 2016, 168. [Google Scholar] [CrossRef]
- Vestola, E.A.; Kuusenaho, M.K.; Närhi, H.M.; Tuovinen, O.H.; Puhakka, J.A.; Plumb, J.J.; Kaksonen, A. Acid bioleaching of solid waste materials from copper, steel and recycling industries. Hydrometallurgy 2010, 103, 74–794. [Google Scholar] [CrossRef]
- Xiao, L.; Wang, Y.; Sun, Z.H.; Qian, P.; Han, P.-W.; Yu, B.; Ye, S. A Novel, Solvent-Free Mechanochemistry Approach for Gold Extraction from Anode Slime. ACS Sustain. Chem. Eng. 2019, 7, 11415–11425. [Google Scholar] [CrossRef]
- McNeice, J.; Mahandra, H.; Ghahreman, A. Biogenesis of thiosulfate in microorganisms and its applications for sustainable metal extraction. Rev. Environ. Sci. Biotechnol. 2022, 21, 993–1015. [Google Scholar] [CrossRef]
- de Zwart, J.; Neisse, P.J.G.K. Isolation and characterization of Methylophagasulfidovorans,sp.nov.;an obligately methylotrophic, aerobic, dimethyl sulfide oxidizing bacterium from a microbial mat. FEMS Microbiol. Ecol. 1996, 20, 261–270. [Google Scholar] [CrossRef] [Green Version]
- Boden, R.; Hutt, L. Chemolithoheterotrophy: Means to Higher Growth Yields from This Widespread Metabolic Trait. In Handbook of Hydrocarbon and Lipid Microbiology; Rojo, F., Ed.; Springer: Cham, Switzerland, 2018; pp. 1–25. [Google Scholar]
- de Zwart, J.; Kuenen, J. Aerobic conversion of dimethyl sulfide and hydrogen sulfide by Methylophaga sulfidovorans: Implications for modeling DMS conversion in a microbial mat. FEMS Microbiol. Ecol. 1997, 22, 155–165. [Google Scholar] [CrossRef]
- Thomashausen, S.; Maennling, N.; Mebratu-Tsegaye, T. A comparative overview of legal frameworks governing water use and waste water discharge in the mining sector. Resour. Policy 2018, 55, 143–151. [Google Scholar] [CrossRef]
- Cisternas, L.; Galvez, E. The use of seawater in mining. Miner. Process. Extr. Metall. Rev. 2018, 39, 18–33. [Google Scholar] [CrossRef]
- Tost, M.; Bayer, B.; Hitch, M.; Lutter, S.; Moser, P.; Feiel, S. Metal Mining’s Environmental Pressures: A Review and Updated Estimates on CO2 Emissions, Water Use, and Land Requirements. Sustainability 2018, 10, 2881. [Google Scholar] [CrossRef] [Green Version]
- Halfyard, J.; Hawboldt, K. Separation of elemental sulfur from hydrometallurgical residue: A review. Hydrometallurgy 2011, 109, 80–89. [Google Scholar] [CrossRef]
- Fey, P.; Kowal, A.S.; Gaudet, P.; Pilcher, K.E.; Chisholm, R.L. Protocols for growing Dictyostelium discoideum. Nat. Protoc. 2007, 2, 1307–1316. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Lancaster, J.R., Jr. Chemical foundations of hydrogen sulfide biology. Nitric Oxide 2013, 35, 21–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hartle, M.; Pluth, M. A practical guide to working with H2S at the. Chem. Soc. Rev. 2016, 45, 6108. [Google Scholar] [CrossRef] [Green Version]
- Giri, B.; Pandey, R. Biological treatment of gaseous emissions containing dimethyl sulphide generated from pulp and paper industry. Bioresour. Technol. 2013, 142, 420–427. [Google Scholar] [CrossRef]
- Liss, P.; Malin, G.; Turner, S.; Holligan, P. Dimethyl sulphide and Phaeocystis: A review. J. Mar. Syst. 1994, 5, 41–53. [Google Scholar] [CrossRef]
- Lee, S.; Sadri, F.; Ghahreman, A. Enhanced Gold Recovery from Alkaline Pressure Oxidized Refractory Gold Ore after its Mechanical Activation Followed by Thiosulfate Leaching. J. Sustain. Metall. 2022, 8, 186–196. [Google Scholar] [CrossRef]
- Ha, V.H.; Lee, J.-C.; Jeong, J.; Hai, H.T.; Jha, M.K. Thiosulfate leaching of gold from waste mobile phones. J. Hazard. Mater. 2010, 178, 1115–1119. [Google Scholar] [CrossRef]
- Apodaca, L. Mineral Commodity Summaries: Sulfur; US Geological Survey: Reston, VA, USA, 2022.
- Giri, B.S.; Kim, K.H.; Pandey, R.A.; Cho, J.; Song, H.; Kim, Y.S. Review of biotreatment techniques for volatile sulfur compounds with an emphasis on dimethyl sulfide. Process Biochem. 2014, 49, 1543–1554. [Google Scholar] [CrossRef]
- Smith, W.; Birnbaum, J.; Wolden, C. Production and purification of anhydrous sodium sulfide. J. Sulfur. Chem. 2021, 42, 426–442. [Google Scholar] [CrossRef]
- Esdaile, L.; Chalker, J. The Mercury Problem in Artisanal and Small-Scale Gold Mining. Chemistry 2018, 24, 6905–6916. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Hong, Y.; Lin, Z.; Zhu, C.; Dai, J.; Chen, G.; Jiang, F. A novel biological sulfur reduction process for mercury-contaminated wastewater treatment. Water Res. 2019, 160, 288–295. [Google Scholar] [CrossRef] [PubMed]
- Paques. The Pueblo Viejo Gold Mine. THIOTEQTM for Copper Recovery (Brochure). 2020. Available online: https://en.paques.nl/mediadepot/21891d2add47/WEB5800000206CaseleafletThioteqENG.pdf (accessed on 13 January 2022).
DSMZ 951 | Instant Ocean | ||||
---|---|---|---|---|---|
Component | Concentration | Unit | Component | Concentration | Unit |
NaCl | 15 | g/L | Cl− | 17.07 | g/L |
(NH4)2SO4 | 0.5 | g/L | Na+ | 9.45 | g/L |
MgSO4·7H2O | 1.0 | g/L | SO42− | 2.37 | g/L |
Na2CO3 | 2.0 | g/L | Mg2+ | 1.16 | g/L |
CaCl·6H2O | 330 | mg/L | Ca2+ | 360 | mg/L |
KCl | 200 | mg/L | K+ | 370 | mg/L |
KH2PO4 | 20 | mg/L | HCO3− | 180 | mg/L |
FeSO4·7H2O | 1 | mg/L | B3+ | 0.54 | mg/L |
Sr2+ | 0.036 | mg/L |
Substrate | Concentration | Unit |
---|---|---|
Na2S·9H2O | 1.91–9.55 | g/L |
(CH3)2S | 10–72 | mg/L |
S0 | 1–5 | g/L |
Parameter | Ore Leach | Au Powder Leach |
---|---|---|
Cu2+ conc. (mg/L) | 50 | 50 |
Temp. (°C) | 50 | 50 |
Pulp density (%) | 10 | 1 mg per 100 mL |
Mixing speed (RPM) | 500 | 350 |
Air flow (L/min) | 0.1 | 0 |
Initial pH | 9.5 | 9.5 |
Duration (h) | 24 | 8 |
Analyte: | Au | Cu | Fe | Zn | Mn | Pb | As | C | S |
---|---|---|---|---|---|---|---|---|---|
Unit: | mg/kg | mg/kg | % | mg/kg | mg/kg | mg/kg | mg/kg | % | % |
Concentration | 4.02 | 70 | 6.82 | 57 | 1100 | 13 | 26 | 3.21 | 0.32 |
Sulfur Substrate | Na2S | S0 | DMS | Na2S2O3.5H2O |
---|---|---|---|---|
Initial Cu (mg/L) | 50 | 50 | 50 | 50 |
Final Cu (mg/L) | 8.5 | 8.2 | 1.6 | 11.2 |
Attribute | Sodium Sulfide | Elemental Sulfur | Dimethyl Sulfide |
---|---|---|---|
Conversion to Bio-TS | High | Low | Moderate |
Toxicity (LD50 Oral) | 1122 | >2000 | >2000 |
Safety | Skin and eye irritant | Skin irritant | Flammable |
2022 Cost (USD/t) | 500 | 198 | 10,000 |
Volatility | Off gas as H2S (Moderate) | Inert (Low) | High vapor pressure (High) |
Availability | High | High | Low |
Source | Chemical, mining, metallurgy industry | Petrochemical, mining, coal industry | Petrochemical industry |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
McNeice, J.; Mahandra, H.; Ghahreman, A. Biogenic Production of Thiosulfate from Organic and Inorganic Sulfur Substrates for Application to Gold Leaching. Sustainability 2022, 14, 16666. https://doi.org/10.3390/su142416666
McNeice J, Mahandra H, Ghahreman A. Biogenic Production of Thiosulfate from Organic and Inorganic Sulfur Substrates for Application to Gold Leaching. Sustainability. 2022; 14(24):16666. https://doi.org/10.3390/su142416666
Chicago/Turabian StyleMcNeice, James, Harshit Mahandra, and Ahmad Ghahreman. 2022. "Biogenic Production of Thiosulfate from Organic and Inorganic Sulfur Substrates for Application to Gold Leaching" Sustainability 14, no. 24: 16666. https://doi.org/10.3390/su142416666
APA StyleMcNeice, J., Mahandra, H., & Ghahreman, A. (2022). Biogenic Production of Thiosulfate from Organic and Inorganic Sulfur Substrates for Application to Gold Leaching. Sustainability, 14(24), 16666. https://doi.org/10.3390/su142416666