Spatio-Temporal Assessment of Biomass Self-Sufficiency in the European Union
Abstract
:1. Introduction
2. Methodology
2.1. The Measure of Self-Sufficiency in Biomass
2.2. Research Scope and Data Sources
2.3. Econometric Model of Determinants of Biomass Self-Sufficiency
3. Results
3.1. The Profile of the EU’s Biomass Extraction–Consumption Balance
3.2. The Profile of Biomass Self-Sufficiency across the EU Countries
3.3. The Effect of Determinants on Biomass Self-Sufficiency
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- United Nations. World Population Prospects 2019: Highlights; Department of Economic and Social Affairs, Population Division (ST/ESA/SER.A/423): New York, NY, USA, 2019; p. 143. [Google Scholar]
- Saunders, J.T.; Adenauer, M.; Brooks, J. Analysis of long-term challenges for agricultural markets. OECD Food Agric. Fish. Pap. 2019, 131, 42. [Google Scholar] [CrossRef]
- Van Meijl, H.; Havlik, P.; Lotze-Campen, H.; Stehfest, E.; Witzke, H.; Perez Dominguez, I.; Bodirsky, B.; van Dijk, M.; Doelman, J.; Fellmann, T.; et al. Challenges of Global Agriculture in a Climate Change Context by 2050 (AgCLIM50); Publications Office of the European Union: Luxembourg, 2017; p. 70. [Google Scholar] [CrossRef]
- McCormick, K.; Kautto, N. The bioeconomy in Europe: An overview. Sustainability 2013, 5, 2589–2608. [Google Scholar] [CrossRef] [Green Version]
- VERAM. Vision for Raw Materials in Europe and for Europe Part II. Report on Raw Material Research and Innovation Vision for 2050 European Union’s, Project Funded from the European Union’s Horizon 2020 Research and Innovation Programme Under Grant Agreement No 690388 H2020, Ref. Ares(2018)4131269-06/08/2018.2018. 2018. Available online: http://veram2050.eu/wp-content/uploads/2018/10/D4.2-Report-on-raw-material-research-and-innovation-vision-for-2050.pdf (accessed on 15 October 2021).
- European Commission. A Sustainable Bioeconomy for Europe: Strengthening the Connection Between Economy, Society and the Environment (COM(2018) 673); Publications Office of the European Union: Brussels, Belgium, 2018; p. 14. [Google Scholar]
- Cristóbal, J.; Matos, C.T.; Aurambout, J.P.; Manfredi, S.; Kavalov, B. Environmental sustainability assessment of bioeconomy value chains. Biomass Bioenergy 2016, 89, 159–171. [Google Scholar] [CrossRef]
- Scarlat, N.; Dallemand, J.F.; Monforti-Ferrario, F.; Nita, V. The role of biomass and bioenergy in a future bioeconomy: Policies and facts. Environ. Dev. 2015, 15, 3–34. [Google Scholar] [CrossRef]
- European Commission. Innovating for Sustainable Growth: A Bioeconomy for Europe. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions; European Commission: Brussels, Belgium, 2012; p. 9. [Google Scholar]
- European Commision. A Vision for the European Industry Until 2030: Final Report of the Industry 2030 High Level Industrial Roundtable; Publications Office of the European Union: Luxembourg, 2019; p. 48. [Google Scholar]
- European Commission. Closing the Loop—An EU Action Plan for the Circular Economy; European Commission: Brussels, Belgium, 2015; p. 21. [Google Scholar]
- European Commission. Accelerating Clean Energy Innovation; European Commission: Brussels, Belgium, 2016. [Google Scholar]
- Joint Research Centre. Bioeconomy Report 2016; JRC Scientific and Policy Report; Joint Research Centre: Brussels, Belgium, 2017; p. 124. [Google Scholar]
- Material Economics. EU Biomass Use in a Net-Zero Economy—A Course Correction for EU Biomass; Material Economics Sverige AB: Stockholm, Sweeden, 2021. [Google Scholar]
- OECD. Global Material Resources Outlook to 2060: Economic Drivers and Environmental Consequences; OECD Publishing: Paris, France, 2018; p. 214. [Google Scholar]
- UNEP. The Use of Natural Resources in the Economy: A Global Manual on Economy Wide Material Flow Accounting; UNEP: Nairobi, Kenya, 2021; p. 143. [Google Scholar]
- Carus, M.; Dammer, L. Food or non-food: Which agricultural feedstocks are best for industrial uses? Ind. Biotechnol. 2013, 9, 171–176. [Google Scholar] [CrossRef]
- Ramos, J.L.; García-Lorente, F.; Valdivia, M.; Duque, E. Green biofuels and bioproducts: Bases for sustainability analysis. Microb. Biotechnol. 2017, 10, 1111–1113. [Google Scholar] [CrossRef] [Green Version]
- Budzianowski, W.M. High-value low-volume bioproducts coupled to bioenergies with potential to enhance business development of sustainable biorefineries. Renew. Sustain. Energy Rev. 2017, 70, 793–804. [Google Scholar] [CrossRef]
- Schoenung, S.; Efroymson, R.A. Algae Production from Wastewater Resources: An Engineering and Cost Analysis; Oak Ridge National Lab (ORNL): Oak Ridge, TN, USA, 2018; p. 11. [Google Scholar]
- Moorkens, E.; Meuwissen, N.; Huys, I.; Declerck, P.; Vulto, A.G.; Simoens, S. The market of biopharmaceutical medicines: A snapshot of a diverse industrial landscape. Front. Pharmacol. 2017, 8, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santos, N.V.D.; de Carvalho Santos-Ebinuma, V.; Pessoa, A., Jr.; Pereira, J.F.B. Liquid–liquid extraction of biopharmaceuticals from fermented broth: Trends and future prospects. J. Chem. Technol. Biotechnol. 2017, 93, 1845–1863. [Google Scholar] [CrossRef]
- Smith, G.O. Theory and Practice of National Self-Sufficiency in Raw Materials. Proc. Acad. Political Sci. City N. Y. 1926, 12, 116–122. [Google Scholar] [CrossRef]
- Kettunen, L. Self-sufficiency of agriculture in Finland in 1970–1983. Agric. Food Sci. 1986, 58, 143–150. [Google Scholar] [CrossRef]
- Clapp, J. Food self-sufficiency: Making sense of it, and when it makes sense. Food Policy 2017, 66, 88–96. [Google Scholar] [CrossRef] [Green Version]
- Spero, J.E. Energy self-sufficiency and national security. Proc. Acad. Political Sci. 1973, 31, 123–136. [Google Scholar] [CrossRef]
- Welfle, A.; Gilbert, P.; Thornley, P. Increasing biomass resource availability through supply chain analysis. Biomass Bioenergy 2014, 70, 249–266. [Google Scholar] [CrossRef]
- Saghir, M.; Zafar, S.; Tahir, A.; Quadi, M.; Siddique, B.; Homung, A. Unlocking the Potential of Biomass Energy in Pakistan. Front. Energy Res. 2019, 7, 1–18. [Google Scholar] [CrossRef]
- Benti, N.E.; Gurmesa, G.S.; Argaw, T.; Aneseyee, A.B.; Gunta, S.; Kassahun, G.B.; Aga, G.S.; Asfaw, A.A. The current status, challenges and prospects of using biomass energy in Ethiopia. Biotechnol. Biofuels 2021, 14, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Fragkou, M.C.; Vincent, T.; Gabarelli, X. An ecosystemic approach for assessing the urban water self-sufficiency potential: Lessons from the Mediterranean. Urban Water J. 2015, 13, 663–675. [Google Scholar] [CrossRef]
- Sarabi, S.G.; Rahnama, M.R. From self-sufficient provision of water and energy to regenerative urban development and sustainability: Exploring the potentials in Mashhad City, Iran. J. Environ. Plan. Manag. 2021, 64, 2459–2480. [Google Scholar] [CrossRef]
- Østergård, H.; Markussen, M.V. Energy Self-sufficiency from an Emergy Perspective Exemplified by a Model System of a Danish Farm Cooperative. In Proceedings of the 6th Biennial Emergy Research Conference, The Center for Environmental Policy, Gainesville, FL, USA, 14–16 January 2010; Brown, M.T., Sweeney, S., Eds.; University of Florida: Gainesville, FL, USA, 2010; pp. 311–322. [Google Scholar]
- Martin, G.; Magne, M.A. Agricultural diversity to increase adaptive capacity and reduce vulnerability of livestock systems against weather variability—A farm-scale simulation study. Agric. Ecosyst. Environ. 2015, 199, 301–311. [Google Scholar] [CrossRef]
- Lebacq, T.; Baret, P.V.; Stilmant, D. Role of input self-sufficiency in the economic and environmental sustainability of specialised dairy farms. Animal 2015, 9, 544–552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soteriades, A.D.; Stott, A.W.; Moreau, S.; Charroin, T.; Blanchard, M.; Liu, J.; Faverdin, P. The relationship of dairy farm eco-efficiency with intensification and self-sufficiency. Evidence from the French dairy sector using life cycle analysis, data envelopment analysis and partial least squares structural equation modelling. PLoS ONE 2016, 11, 21. [Google Scholar] [CrossRef] [PubMed]
- Gaudino, S.; Reidsma, P.; Kanellopoulos, A.; Sacco, D.; van Ittersum, M.K. Integrated assessment of the EU’s Greening reform and feed self-sufficiency scenarios on dairy farms in Piemonte, Italy. Agriculture 2018, 8, 137. [Google Scholar] [CrossRef] [Green Version]
- Jouan, J.; Ridier, A.; Carof, M. Legume production and use in feed: Analysis of levers to improve protein self-sufficiency from foresight scenarios. J. Clean. Prod. 2020, 274, 123085. [Google Scholar] [CrossRef]
- Masi, M.; Vecchio, Y.; Pauselli, G.; di Pasquale, J.; Adinolfi, F. A typological classification for assessing farm sustainability in the Italian bovine dairy sector. Sustainability 2021, 13, 7097. [Google Scholar] [CrossRef]
- Kimming, M.; Sundberg, C.; Nordberg, Å.; Baky, A.; Bernesson, S.; Norén, O.; Hansson, P.A. Life cycle assessment of energy self-sufficiency systems based on agricultural residues for organic arable farms. Bioresour. Technol. 2011, 102, 1425–1432. [Google Scholar] [CrossRef]
- Vijay, V.; Subbarao, P.M.; Chandra, R. An evaluation on energy self–sufficiency model of a rural cluster through utilization of biomass residue resources: A case study in India. Energy Clim. Change 2021, 2, 100036. [Google Scholar] [CrossRef]
- Algieri, A.; Andiloro, S.; Tamburino, V.; Zema, D.A. The potential of agricultural residues for energy production in Calabria (Southern Italy). Renew. Sustain. Energy Rev. 2019, 104, 1–14. [Google Scholar] [CrossRef]
- Terrapon-Pfaff, J.C. Linking energy-and land-use systems: Energy potentials and environmental risks of using agricultural residues in Tanzania. Sustainability 2012, 4, 278–293. [Google Scholar] [CrossRef] [Green Version]
- Harchaoui, S.; Chatzimpiros, P. Can agriculture balance its energy consumption and continue to produce food? A framework for assessing energy neutrality applied to French agriculture. Sustainability 2018, 10, 4624. [Google Scholar] [CrossRef] [Green Version]
- FAO. FAO Statistical Pocketbook 2012—World Food and Agriculture. Available online: http://www.fao.org/docrep/015/i2490e/i2490e00.htm (accessed on 5 September 2019).
- Luan, Y.; Cui, X.; Ferrat, M. Historical trends of food self-sufficiency in Africa. Food Secur. 2013, 5, 393–405. [Google Scholar] [CrossRef] [Green Version]
- EUROSTAT. Economy-Wide Material Flow Accounts, Handbook 2018 Edition; Publications Office of the European Union: Luxembourg, 2018; p. 142. [Google Scholar]
- Krausmann, F.; Erb, K.H.; Gingrich, S.; Lauk, C.; Haberl, H. Global Patterns of Socioeconomic Biomass Flows in the Year 2000: A Comprehensive Assessment of Supply, Consumption and Constraints. Ecol. Econ. 2008, 65, 471–487. [Google Scholar] [CrossRef]
- Mayer, A.; Kaufmann, L.; Kalt, G.; Matej, S.; Theurl, M.C.; Morais, T.G.; Leip, A.; Erb, K.H. Applying the Human Appropriation of Net Primary Production framework to map provisioning ecosystem services and their relation to ecosystem functioning across the European Union. Ecosyst. Serv. 2021, 51, 101344. [Google Scholar] [CrossRef]
- OECD. Environment Database—Material Resources: Concepts and Classifications. Available online: https://stats.oecd.org/# (accessed on 16 August 2019).
- Leitão, N. GMM Estimator: An Application to Intraindustry Trade. J. Appl. Math. 2012, 2012, 1–12. [Google Scholar] [CrossRef]
- Das, D.K. Determinants of current account imbalance in the global economy: A dynamic panel analysis. J. Econ. Struct. 2016, 5, 2–24. [Google Scholar] [CrossRef] [Green Version]
- Matuzeviciute, K.; Butkus, M.; Karaliute, A. Do Technological Innovations Affect Unemployment? Some Empirical Evidence from European Countries. Economies 2017, 48, 48. [Google Scholar] [CrossRef] [Green Version]
- Brañas-Garza, P.; Bucheli, M.; García-Muñoz, T. Dynamic Panel Data: A Useful Technique in Experiments. 2011. Available online: http://www.ugr.es/~teoriahe/RePEc/gra/wpaper/thepapers10_22.pdf (accessed on 19 November 2021).
- Vitunskiene, V.; Ramanauske, N. Spatial Concentration of Biomass Production Sector in the European Union. Current Analysis on Economics & Finance. 2019. Available online: https://mesford.ca/wp-content/uploads/2019/04/Spatial-Concentration-of-Biomass-Production-Sector-in-the-European-Union.pdf (accessed on 16 August 2019).
- Candel, J.J.L.; Breeman, G.E.; Stiller, S.J.; Termeer, C.J.A.M. Disentangling the consensus frame of food security: The case of the EU Common Agricultural Policy reform debate. Food Policy 2013, 44, 47–58. [Google Scholar] [CrossRef]
- Galli, A.; Halle, M.; Grunewald, N. Physical limits to resource access and utilisation and their economic implications in Mediterranean economies. Environ. Sci. Policy 2015, 51, 125–136. [Google Scholar] [CrossRef] [Green Version]
- Ratner, B. The Correlation Coefficient: Its Values Range Between +1/−1, Or Do They? J. Target. Meas. Anal. Mark. 2009, 18, 139–142. [Google Scholar] [CrossRef] [Green Version]
- Andersen, S.P.; Allen, B.; Domingo, G.C. Biomass in the EU Green Deal: Towards Consensus on the Use of Biomass for EU Bioenergy, (Policy Report); Institute for European Environmental Policy (IEEP): Brussels, Belgium, 2021; p. 69. [Google Scholar]
- Ji, X.; Liu, Y.; Meng, J.; Wu, X. Global supply chain of biomass use and the shift of environmental welfare from primary exploiters to final consumers. Appl. Energy 2020, 276, 115484. [Google Scholar] [CrossRef]
- Kalt, G.; Kaufmann, L.; Kastner, T.; Krausmann, F. Tracing Austria’s biomass consumption to source countries: A product-level comparison between bioenergy, food and material. Ecol. Econ. 2021, 188, 107129. [Google Scholar] [CrossRef]
- Welfle, A. Balancing growing global bioenergy resource demands-Brazil′s biomass potential and the availability of resource for trade. Biomass Bioenergy 2017, 105, 83–95. [Google Scholar] [CrossRef]
- Gough, C.; Garcia-Freites, S.; Jones, C.; Mander, S.; Moore, B.; Pereira, C.; Röder, M.; Vaughan, N.; Welfle, A. Challenges to the use of BECCS as a keystone technology in pursuit of 1.5 °C. Glob. Sustain. 2018, 1, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Ying, H.P.; Phun Chien, C.B.; Yee Van, F. Operational management implemented in biofuel upstream supply chain and downstream international trading: Current issues in southeast Asia. Energies 2020, 13, 1799. [Google Scholar] [CrossRef] [Green Version]
- Henning, C.; Witzke, P. Economic and Environmental Impacts of the Green Deal on the Agricultural Economy: A Simulation Study of the Impact of the F2F-Strategy on Production, Trade, Welfare and the Environment Based on the CAPRI-Model. 2021. Available online: https://grain-club.de/fileadmin/user_upload/Dokumente/Farm_to_fork_Studie_Executive_Summary_EN.pdf (accessed on 15 December 2021).
- Bremmer, J.; Gonzalez-Martinez, A.; Jongeneel, R.; Huiting, H.; Stokkers, R. Impact Assessment Study on EC 2030 Green Deal Targets for Sustainable Food Production. 2021. Available online: https://edepot.wur.nl/555349 (accessed on 15 December 2021).
- Beckman, J.; Ivanic, M.; Jelliffe, J.L.; Baquedano, F.G.; Scott, S.G. Economic and Food Security Impacts of Agricultural Input Reduction Underthe European Union Green Deal’s Farm to Fork and Biodiversity Strategies; Agricultural Economic Reports; United States Department of Agriculture (USDA), Economic Research Service: Washington, DC, USA, 2020; p. 59. [Google Scholar] [CrossRef]
- Barreiro-Hurle, J.; Bogonos, M.; Himics, M.; Hristov, J.; Pérez-Domínguez, I.; Sahoo, A.; Salputra, G.; Weiss, F.; Baldoni, E.; Elleby, C. Modelling Environmental and Climate Ambition in the Agricultural Sector with the CAPRI Model; JRC121368; Publications Office of the European Union: Luxembourg, 2021. [Google Scholar] [CrossRef]
- Ladanai, S.; Vinterbäck, J. Global Potential of Sustainable Biomass for Energy; SLU Report 013; Department of Energy and Technology: Stockholm, Sweden, 2009; ISSN 1654-9406. [Google Scholar]
- Field, C.B.; Campbell, H.E.; Lobell, D.B. Biomass energy: The scale of the potential resource. Trends Ecol. Evol. 2008, 23, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Vera, I.; Hilst, F.V.D.; Hoefnagels, R. Regional Specific Impacts of Biomass Feed-Stock Sustainability: D4.3 Report on Biomass Potentials and LUC—Related Environmental Impact; Utrecht University: Utrecht, The Netherlands, 2020; p. 70. [Google Scholar]
- Popp, J.; Lakner, Z.; Harangi-Rákos, M.; Fári, M. The effect of bioenergy expansion: Food, energy and environment. Renew. Sutainable Energy Rev. 2014, 32, 559–578. [Google Scholar] [CrossRef] [Green Version]
- WBA. Global Biomass Potential Towards 2035. 2016. Available online: http://www.worldbioenergy.org/uploads/Factsheet_Biomass%20potential.pdf (accessed on 15 December 2021).
Variables | Expected Correlation a | Variable Description | |
---|---|---|---|
Explained variable | Biomass self-sufficiency ratio (B_SSR) | - | %Ratio between domestic extraction and domestic consumption. |
Core explanatory variable | Agricultural and forest land share, % (land) | +ive | %Ratio between the sum of both agricultural and forest land areas and the total land area (excluding area under inland waters and coastal waters). |
Control variables | Biomass domestic extraction per ha (biomas_extr) | −ive/+ive | Ratio between biomass domestic extraction and the sum of both agricultural and forest land areas. |
Share of bioenergy in renewable energy, % (bioen_renw) | +ive | %Ratio between bioenergy and primary production of total renewables. | |
Share of bioenergy in total primary energy production, % (bioen_prim) | +ive | %Ratio between bioenergy and total primary production. | |
Energy imports dependency, % (en_imp) | −ive | %Ratio between net import and gross available energy. | |
Biomass materials intensity, kg per GDP (PPS b) (biomas_int) | +ive | Ratio between biomass direct inputs and GDP. | |
Resource productivity, GDP PPS per tonne (res_prod) | −ive/+ive | Ratio between GDP and domestic material consumption. | |
Population density, persons per km2 (pop_dens) | −ive | Ratio between the number of population and the land area. | |
Employment in total knowledge-intensive activities, % (empl_kia) | −ive | %Ratio between employment in total knowledge-intensive activities and total employment. |
Variable | Observations | Mean | St. Dev. | Min | Max |
---|---|---|---|---|---|
B_SSR | 532 | 103.03 | 41.69 | 6.86 | 417.19 |
land | 532 | 76.82 | 14.47 | 29.22 | 94.14 |
biomas_extr | 532 | 5.80 | 4.19 | 1.43 | 21.00 |
bioen_renw | 530 | 67.14 | 21.84 | 0.00 | 99.92 |
bioen_prim | 532 | 22.85 | 20.59 | 0.00 | 92.27 |
en_imp | 532 | 55.55 | 27.83 | −50.60 | 104.14 |
biomas_int | 532 | 0.26 | 0.14 | 0.06 | 0.97 |
res_prod | 532 | 1.53 | 0.75 | 0.43 | 4.18 |
pop_dens | 532 | 171.28 | 245.88 | 17.00 | 1548.30 |
empl_kia | 308 | 35.36 | 6.62 | 19.20 | 60.40 |
Average 2016–2018 (SSR) | 2000–2009 | 2010–2018 | ±%p SSR2SP Less SSR1SP | ±%p CTV2SP Less CTV1SP | |||||
---|---|---|---|---|---|---|---|---|---|
Average (SSR1SP) | Standard Deviation | Coefficient of Temporal Variation (CTV1SP) | Average (SSR2SP) | Standard Deviation | Coefficient of Temporal Variation (CTV2SP) | ||||
EU(28) | 97.9 | 96.1 | 0.77 | 0.8 | 98.2 | 0.56 | 0.6 | 2.1 | −0.2 |
LV Latvia | 225.2 | 214.0 | 25.67 | 12.0 | 279.7 | 70.74 | 25.3 | 65.8 | 13.3 |
EE Estonia | 183.9 | 150.8 | 20.31 | 13.5 | 173.7 | 9.81 | 5.7 | 22.9 | −7.8 |
CZ Czechia | 157.0 | 131.1 | 13.63 | 10.4 | 159.1 | 7.79 | 4.9 | 28.0 | −5.5 |
SI Slovenia | 147.5 | 106.0 | 20.56 | 19.4 | 142.9 | 7.05 | 4.9 | 36.8 | −14.5 |
BG Bulgaria | 135.9 | 109.7 | 6.43 | 5.9 | 135.6 | 6.72 | 5.0 | 25.8 | −0.9 |
FI Finland | 126.2 | 114.9 | 6.40 | 5.6 | 124.0 | 3.27 | 2.6 | 9.0 | −2.9 |
HU Hungary | 123.7 | 115.0 | 6.94 | 6.0 | 125.8 | 6.19 | 4.9 | 10.8 | −1.1 |
HR Croatia | 123.5 | 109.9 | 5.18 | 4.7 | 122.3 | 6.08 | 5.0 | 12.5 | 0.3 |
LT Lithuania | 121.2 | 109.5 | 2.37 | 2.2 | 120.0 | 4.63 | 3.9 | 10.5 | 1.7 |
SK Slovakia | 117.1 | 109.3 | 3.81 | 3.5 | 114.3 | 6.34 | 5.5 | 5.0 | 2.1 |
RO Romania | 111.5 | 100.1 | 2.32 | 2.3 | 112.2 | 3.40 | 3.0 | 12.1 | 0.7 |
FR France | 110.9 | 109.5 | 3.05 | 2.8 | 111.4 | 1.16 | 1.0 | 1.9 | −1.8 |
SE Sweden | 110.7 | 112.5 | 4.11 | 3.7 | 110.5 | 3.19 | 2.9 | −2.0 | −0.8 |
PL Poland | 99.9 | 97.8 | 1.23 | 1.3 | 99.2 | 2.30 | 2.3 | 1.4 | 1.1 |
ES Spain | 96.6 | 88.1 | 2.41 | 2.7 | 96.2 | 1.28 | 1.3 | 8.1 | −1.4 |
DE Germany | 94.2 | 101.1 | 1.87 | 1.9 | 95.3 | 1.16 | 1.2 | −5.8 | −0.6 |
AT Austria | 91.8 | 98.3 | 2.54 | 2.6 | 93.1 | 1.90 | 2.0 | −5.2 | −0.5 |
DK Denmark | 88.9 | 89.5 | 2.92 | 3.3 | 91.7 | 3.08 | 3.4 | 2.3 | 0.1 |
IE Ireland | 88.2 | 93.7 | 0.96 | 1.0 | 90.8 | 2.71 | 3.0 | −2.9 | 2.0 |
EL Greece | 86.8 | 86.8 | 3.66 | 4.2 | 88.7 | 2.12 | 2.4 | 2.0 | −1.8 |
NL Netherlands | 84.6 | 83.1 | 3.82 | 4.6 | 81.8 | 2.91 | 3.6 | −1.4 | −1.0 |
UK United Kingdom | 79.1 | 80.9 | 1.46 | 1.8 | 79.9 | 1.60 | 2.0 | −0.9 | 0.2 |
PT Portugal | 78.5 | 83.8 | 3.54 | 4.2 | 81.6 | 2.98 | 3.6 | −2.2 | −0.6 |
IT Italy | 77.9 | 82.8 | 2.04 | 2.5 | 80.5 | 3.27 | 4.1 | −2.3 | 1.6 |
BE Belgium | 70.0 | 71.9 | 3.13 | 4.3 | 69.9 | 2.46 | 3.5 | −2.0 | −0.8 |
LU Luxembourg | 69.4 | 62.9 | 5.62 | 8.9 | 70.6 | 7.19 | 10.2 | 7.7 | 1.2 |
CY Cyprus | 32.8 | 40.4 | 16.15 | 40.0 | 37.7 | 5.43 | 14.4 | −2.6 | −25.6 |
MT Malta | 15.0 | 21.1 | 3.51 | 16.7 | 19.0 | 3.52 | 18.5 | −2.0 | 1.8 |
Stand. deviation | 41.9 | 34.0 | - | - | 47.0 | - | - | - | - |
Coefficient of spatial variation (CSV) | 39.8 | 34.3 | - | - | 43.7 | - | - | - | 9.4 |
I | II | III | IV | |
---|---|---|---|---|
l_B_SSR(-1) | 0.5724 *** (0.0000) | 0.5239 *** (0.0000) | 0.5011 *** (0.0000) | 0.5110 *** (0.0000) |
const | 1.9929 ** (0.0113) | 1.8644 *** (0.0004) | 2.5105 *** (0.0000) | 1.7343 *** (0.0027) |
l_land | 0.2360 *** (0.0000) | 0.2999 *** (0.0000) | 0.2453 *** (0.0000) | 0.3083 *** (0.0000) |
l_biomas_extr | −0.0523 *** (0.0050) | −0.0416 *** (0.0000) | ||
l_bioen_renw | 0.1365 *** (0.0009) | 0.0577 ** (0.0180) | 0.1954 *** (0.0000) | 0.0826 *** (0.0002) |
l_bioen_prim | 0.0357 *** (0.0080) | 0.0186 (0.2123) | −0.0127 (0.3090) | 0.0050 (0.7510) |
l_en_imp | −0.2717 *** (0.0009) | −0.2033 *** (0.0022) | −0.1329 ** (0.0353) | −0.1408 ** (0.0000) |
l_biomas_int | 0.1166 *** (0.0000) | 0.0720 *** (0.0012) | ||
l_res_prod | 0.0169 (0.5860) | 0.1186 *** (0.0000) | ||
l_pop_dens | −0.1288 *** (0.0000) | −0.0595 *** (0.0000) | ||
l_empl_kia | −0.0800 (0.4050) | −0.0016 (0.9815) | −0.2380 *** (0.0003) | −0.0249 (0.7221) |
AR(2) test | 0.0233 (0.9814) | −0.0643 (0.9488) | 0.3468 (0.7287) | 0.2999 (0.7643) |
Sargan test | 20.5052 (1.0000) | 19.1705 (1.0000) | 21.0238 (1.0000) | 19.9745 (1.0000) |
Number of countries | 27 a | 27 a | 27 a | 27 a |
Number of observations | 270 | 269 | 273 | 272 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vitunskienė, V.; Aleksandravičienė, A.; Ramanauskė, N. Spatio-Temporal Assessment of Biomass Self-Sufficiency in the European Union. Sustainability 2022, 14, 1897. https://doi.org/10.3390/su14031897
Vitunskienė V, Aleksandravičienė A, Ramanauskė N. Spatio-Temporal Assessment of Biomass Self-Sufficiency in the European Union. Sustainability. 2022; 14(3):1897. https://doi.org/10.3390/su14031897
Chicago/Turabian StyleVitunskienė, Vlada, Akvilė Aleksandravičienė, and Neringa Ramanauskė. 2022. "Spatio-Temporal Assessment of Biomass Self-Sufficiency in the European Union" Sustainability 14, no. 3: 1897. https://doi.org/10.3390/su14031897