A Comparison of Biosolids Production and System Efficiency between Activated Sludge, Moving Bed Biofilm Reactor, and Sequencing Batch Moving Bed Biofilm Reactor in the Dairy Wastewater Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Setup
2.3. Analytical Methods
3. Results and Discussion
3.1. Organic Matter, Total Carbon, and Total Nitrogen Removal
3.2. Mixed-Liquor Suspended Solids
3.3. Carrier Biomass Assessment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Directorate General for Agriculture and Rural Development. EU Agricultural Outlook for Markets and Income 2021–2031; Publications Office of the European Union: Luxemburg, 2021; Available online: https://data.europa.eu/doi/10.2762/753688 (accessed on 12 January 2022).
- Ahmad, T.; Aadil, R.M.; Ahmed, H.; ur Rahman, U.; Soares, B.C.V.; Souza, S.L.Q.; Pimentel, T.C.; Scudino, H.; Guimarães, J.T.; Esmerino, E.A.; et al. Treatment and utilization of dairy industrial waste: A review. Trends Food Sci. Technol. 2019, 88, 361–372. [Google Scholar] [CrossRef]
- Catenacci, A.; Bellucci, M.; Yuan, T.; Malpei, F. Dairy wastewater treatment using composite membranes. In Current Trends and Future Developments on (Bio-) Membranes; Elsevier: Amsterdam, The Netherlands, 2020; pp. 261–288. ISBN 978-0-12-816823-3. [Google Scholar]
- Kolev Slavov, A. Dairy wastewaters—General characteristics and treatment possibilities—A review. Food Technol. Biotechnol. 2017, 55, 14–28. [Google Scholar] [CrossRef]
- Noukeu, N.A.; Gouado, I.; Priso, R.J.; Ndongo, D.; Taffouo, V.D.; Dibong, S.D.; Ekodeck, G.E. Characterization of effluent from food processing industries and stillage treatment trial with eichhornia crassipes (Mart.) and panicum maximum (Jacq.). Water Resour. Ind. 2016, 16, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Jaganmai, G.; Jinka, R. Production of lipases from dairy industry wastes and its applications. Int. J. Curr. Microbiol. App. Sci. 2017, 5, 67–73. [Google Scholar]
- Chaubey, M. Wastewater Treatment Technologies: Design Considerations; John Wiley & Sons: Hoboken, NY, USA, 2021; ISBN 978-1-119-76525-7. [Google Scholar]
- European Commission. Joint Research Centre. Best Available Techniques (BAT) Reference Document for the Food, Drink and Milk Industries: Industrial Emissions Directive 2010/75/EU; (Integrated Pollution Prevention and Control); Publications Office: Luxemburg, 2019. [Google Scholar]
- Kushwaha, J.P.; Srivastava, V.C.; Mall, I.D. An overview of various technologies for the treatment of dairy wastewaters. Crit. Rev. Food Sci. Nutr. 2011, 51, 442–452. [Google Scholar] [CrossRef] [PubMed]
- Bella, K.; Rao, P.V. Anaerobic digestion of dairy wastewater: Effect of different parameters and co-digestion options—A review. Biomass. Conv. Bioref. 2021. [Google Scholar] [CrossRef]
- Matsumoto, E.M.; Osako, M.S.; Pinho, S.C.; Tommaso, G.; Gomes, T.M.; Ribeiro, R. Treatment of wastewater from dairy plants using anaerobic sequencing batch reactor (ASBR) following by aerobic sequencing batch reactor (SBR) aiming the removal of organic matter and nitrification. Water Pract. Technol. 2012, 7, wpt2012048. [Google Scholar] [CrossRef]
- Rajagopal, R.; Torrijos, M.; Kumar, P.; Mehrotra, I. Substrate removal kinetics in high-rate upflow anaerobic filters packed with low-density polyethylene media treating high-strength agro-food wastewaters. J. Environ. Manag. 2013, 116, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Dębowski, M.; Zieliński, M.; Krzemieniewski, M.; Brudniak, A. Effect of magneto-active filling on the effectiveness of methane fermentation of dairy wastewaters. Int. J. Green Energy 2014. [Google Scholar] [CrossRef]
- Jürgensen, L.; Ehimen, E.A.; Born, J.; Holm-Nielsen, J.B. A combination anaerobic digestion scheme for biogas production from dairy effluent—CSTR and ABR, and biogas upgrading. Biomass Bioenergy 2018, 111, 241–247. [Google Scholar] [CrossRef]
- Goli, A.; Shamiri, A.; Khosroyar, S.; Talaiekhozani, A.; Sanaye, R.; Azizi, K. A Review on different aerobic and anaerobic treatment methods in dairy industry wastewater. J. Environ. Treat. Tech. 2019, 7, 113–141. [Google Scholar]
- Dąbrowski, W.; Żyłka, R.; Malinowski, P. Evaluation of energy consumption during aerobic sewage sludge treatment in dairy wastewater treatment plant. Environ. Res. 2017, 153, 135–139. [Google Scholar] [CrossRef] [PubMed]
- Daverey, A.; Pandey, D.; Verma, P.; Verma, S.; Shah, V.; Dutta, K.; Arunachalam, K. Recent advances in energy efficient biological treatment of municipal wastewater. Bioresour. Technol. Rep. 2019, 7, 100252. [Google Scholar] [CrossRef]
- Shahot, K.; Idris, A.; Omar, R.; Mohamed Yusoff, H. Review on biofilm processes for wastewater treatment. Life Sci. J. 2014, 11, 1–13. [Google Scholar]
- Wang, S.; Parajuli, S.; Sivalingam, V.; Bakke, R. Biofilm in moving bed biofilm process for wastewater treatment. In Bacterial Biofilms; Dincer, S., Sümengen Özdenefe, M., Arkut, A., Eds.; IntechOpen: London, UK, 2020; ISBN 978-1-78985-899-0. [Google Scholar]
- Bhattacharya, R.; Mazumder, D. Simultaneous nitrification and denitrification in moving bed bioreactor and other biological systems. Bioprocess. Biosyst. Eng. 2021, 44, 635–652. [Google Scholar] [CrossRef]
- Ødegaard, H. A Road-map for energy-neutral wastewater treatment plants of the future based on compact technologies (Including MBBR). Front. Environ. Sci. Eng. 2016, 10, 2. [Google Scholar] [CrossRef]
- McQuarrie, J.P.; Boltz, J.P. Moving bed biofilm reactor technology: Process applications, design, and performance. Water Environ. Res 2011, 83, 560–575. [Google Scholar] [CrossRef] [PubMed]
- Biological wastewater treatment. In Environmental Engineering, 3rd ed.; Grady, C.P.L.; Daigger, G.T. (Eds.) IWA Publishing: London, UK, 2011; ISBN 978-1-84339-342-9. [Google Scholar]
- Van Haandel, A.C.; van der Lubbe, J.G.M. Handbook of Biological Wastewater Treatment: Design and Optimisation of Activated Sludge Systems, 2nd ed.; IWA Publishing: London, UK, 2012; ISBN 978-1-78040-000-6. [Google Scholar]
- Ødegaard, H. Innovations in wastewater treatment: The moving bed biofilm process. Water Sci. Technol. 2006, 53, 17–33. [Google Scholar] [CrossRef] [PubMed]
- Dezotti, M.; Lippel, G.; Bassin, J.P. Advanced Biological Processes for Wastewater Treatment; Springer International Publishing: Cham, Switzerland, 2018; ISBN 978-3-319-58834-6. [Google Scholar]
- Santos, A.D.; Martins, R.C.; Quinta-Ferreira, R.M.; Castro, L.M. Moving bed biofilm reactor (MBBR) for dairy wastewater treatment. Energy Rep. 2020, 6, 340–344. [Google Scholar] [CrossRef]
- Ødegaard, H.; Rusten, B.; Westrum, T. A new moving bed biofilm reactor—Applications and results. Water Sci. Technol. 1994, 29, 157–165. [Google Scholar] [CrossRef]
- Mahto, K.U.; Das, S. Bacterial biofilm and extracellular polymeric substances in the moving bed biofilm reactor for wastewater treatment: A review. Bioresour. Technol. 2022, 345, 126476. [Google Scholar] [CrossRef] [PubMed]
- Tombola, R.; Buttiglieri, G.; Auset, M.; Gonzalez-Olmos, R. Recycled corrugated wire hose cover as biological carriers for greywater treatment in a sequential batch biofilm reactor. J. Environ. Manag. 2019, 240, 475–484. [Google Scholar] [CrossRef] [PubMed]
- Gerardi, M.H. Troubleshooting the Sequencing Batch Reactor: Gerardi/Troubleshooting the Sequencing Batch; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2010; ISBN 978-0-470-64963-3. [Google Scholar]
- Cartaescobar, F.; Peredamarin, J.; Alvarezmateos, P.; Romeroguzman, F.; Duranbarrantes, M.; Barrigamateos, F. Aerobic purification of dairy wastewater in continuous regimepart I: Analysis of the biodegradation process in two reactor configurations. Biochem. Eng. J. 2004, 21, 183–191. [Google Scholar] [CrossRef]
- Andreottola, G.; Foladori, P.; Ragazzi, M.; Villa, R. Dairy wastewater treatment in a moving bed biofilm reactor. Water Sci. Technol. 2002, 45, 321–328. [Google Scholar] [CrossRef]
- Rusten, B.; Ødegaard, H.; Lundar, A. Treatment of dairy wastewater in a novel moving bed biofilm reactor. Water Sci. Technol. 1992, 26, 703–711. [Google Scholar] [CrossRef]
- Tsitouras, A.; Al-Ghussain, N.; Delatolla, R. Two moving bed biofilm reactors in series for carbon, nitrogen, and phosphorous removal from high organic wastewaters. J. Water Process. Eng. 2021, 41, 102088. [Google Scholar] [CrossRef]
- Yuan, Q.; Wang, H.; Hang, Q.; Deng, Y.; Liu, K.; Li, C.; Zheng, S. Comparison of the MBBR Denitrification carriers for advanced nitrogen removal of wastewater treatment plant effluent. Env. Sci. Pollut. Res. 2015, 22, 13970–13979. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Rong, H.; Cao, Y.; Zhang, C. Factors affecting simultaneous nitrification and denitrification (SND) in a moving bed sequencing batch reactor (MBSBR) system as revealed by microbial community structures. Bioprocess. Biosyst. Eng. 2020, 43, 1833–1846. [Google Scholar] [CrossRef]
- Leonard, P.; Tarpey, E.; Finnegan, W.; Zhan, X. Efficient treatment of dairy processing wastewater in a laboratory scale intermittently aerated sequencing batch reactor (IASBR). J. Dairy Res. 2018, 85, 379–383. [Google Scholar] [CrossRef]
- Ozturk, A.; Aygun, A.; Nas, B. Application of sequencing batch biofilm reactor (SBBR) in dairy wastewater treatment. Korean J. Chem. Eng. 2019, 36, 248–254. [Google Scholar] [CrossRef]
- Leonard, P.; Clifford, E.; Finnegan, W.; Siggins, A.; Zhan, X. Deployment and optimisation of a pilot-scale IASBR system for treatment of dairy processing wastewater. Energies 2021, 14, 7365. [Google Scholar] [CrossRef]
- Khalaf, A.H.; Ibrahim, W.A.; Fayed, M.; Eloffy, M.G. Comparison between the performance of activated sludge and sequence batch reactor systems for dairy wastewater treatment under different operating conditions. Alex. Eng. J. 2021, 60, 1433–1445. [Google Scholar] [CrossRef]
- De Oliveira, D.V.M. Evaluation of a MBBR (moving bed biofilm reactor) pilot plant for treatment of pulp and paper mill wastewater. IJEMA 2014, 2, 220. [Google Scholar] [CrossRef]
- Standard Methods for the Examination of Water and Wastewater, 23rd ed.; Baird, R.; Eaton, A.; Rice, E. (Eds.) American Public Health Association, American Water Works Association and the Water Environment Federation: Denver, CO, USA, 2017; ISBN 13 978-1625762405. [Google Scholar]
- Phanwilai, S.; Kangwannarakul, N.; Noophan, P.; Kasahara, T.; Terada, A.; Munakata-Marr, J.; Figueroa, L.A. Nitrogen removal efficiencies and microbial communities in full-scale IFAS and MBBR municipal wastewater treatment plants at high COD:N ratio. Front. Environ. Sci. Eng. 2020, 14, 115. [Google Scholar] [CrossRef]
- Tian, X.; Guo, S.; Xu, K.; Zhao, C.; Wang, X.; Bian, D. Effect of mixed liquor suspended solids (MLSS) on simultaneous nitrification and denitrification in a sequencing batch reactor. IOP Conf. Ser.: Earth Environ. Sci. 2018, 186, 012041. [Google Scholar] [CrossRef] [Green Version]
- Wu, L.; Wei, W.; Xu, J.; Chen, X.; Liu, Y.; Peng, L.; Wang, D.; Ni, B.-J. Denitrifying Biofilm processes for wastewater treatment: Developments and perspectives. Environ. Sci. Water Res. Technol. 2021, 7, 40–67. [Google Scholar] [CrossRef]
- Shao, Y.; Shi, Y.; Mohammed, A.; Liu, Y. Wastewater ammonia removal using an integrated fixed-film activated sludge-sequencing batch biofilm reactor (IFAS-SBR): Comparison of suspended flocs and attached biofilm. Int. Biodeterior. Biodegrad. 2017, 116, 38–47. [Google Scholar] [CrossRef]
- Kulikowska, D.; Klimiuk, E.; Drzewicki, A. BOD5 and COD Removal and sludge production in SBR working with or without anoxic phase. Bioresour. Technol. 2007, 98, 1426–1432. [Google Scholar] [CrossRef] [PubMed]
- Bazari, H. Biological treatment of dairy wastewater by sequencing batch reactor. Iran. J. Environ. Health Sci. Eng. 2004, 1, 65–69. [Google Scholar]
- Decreto-Lei n.o 236/98|DRE. Available online: https://dre.pt/ (accessed on 26 January 2022). (In Portuguese).
- Sid, S.; Volant, A.; Lesage, G.; Heran, M. Cost Minimization in a full-scale conventional wastewater treatment plant: Associated costs of biological energy consumption versus sludge production. Water Sci. Technol. 2017, 76, 2473–2481. [Google Scholar] [CrossRef] [Green Version]
- Bassin, J.P.; Dias, I.N.; Cao, S.M.S.; Senra, E.; Laranjeira, Y.; Dezotti, M. Effect of increasing organic loading rates on the performance of moving-bed biofilm reactors filled with different support media: Assessing the activity of suspended and attached biomass fractions. Process Saf. Environ. Prot. 2016, 100, 131–141. [Google Scholar] [CrossRef]
- Fonseca, D.L.; Bassin, J.P. Investigating the most appropriate methods for attached solids determination in moving-bed biofilm reactors. Bioprocess. Biosyst. Eng. 2019, 42, 1867–1878. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.-C.; Wen, X.-H.; Qian, Y. Influence of carrier concentration on the performance and microbial characteristics of a suspended carrier biofilm reactor. Process. Biochem. 2005, 40, 2992–3001. [Google Scholar] [CrossRef]
- Wang, X.J.; Xia, S.Q.; Chen, L.; Zhao, J.F.; Renault, N.J.; Chovelon, J.M. Nutrients removal from municipal wastewater by chemical precipitation in a moving bed biofilm reactor. Process. Biochem. 2006, 41, 824–828. [Google Scholar] [CrossRef]
- Aygun, A.; Nas, B.; Berktay, A. Influence of high organic loading rates on COD removal and sludge production in moving bed biofilm reactor. Environ. Eng. Sci. 2008, 25, 1311–1316. [Google Scholar] [CrossRef]
OLR (gCOD L−1d−1) | Time (Days) | BOD (mgO2 L−1) | TC (gCL−1d−1) | TN (gNL−1d−1) |
---|---|---|---|---|
1.22 | 17 | 247 | 0.45 | 0.10 |
2.87 | 14 | 495 | 1.17 | 0.23 |
5.44 | 11 | 989 | 2.19 | 0.53 |
OLR (gCOD L−1d−1) | System | Average COD (m gCOD L−1) | Average TC (mgC L−1) | Average TN (mgN L−1) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Influent | Treated | % | Influent | Treated | % | Influent | Treated | % | ||
1.22 | AS | 594.2 ± 42.7 | 43.9 ± 23.1 | 92.7 ± 3.5 | 217.7 ± 34.5 | 28.1 ± 10.7 | 87.6 ± 3.4 | 49.1 ± 3.5 | 14.2 ± 6.6 | 75.1 ± 9.5 |
MBBR | 38.0 ± 13.7 | 93.6 ± 2.5 | 17.3 ± 3.7 | 92.0 ± 1.8 | 12.5 ± 2.5 | 75.7 ± 4.1 | ||||
SBBR | 28.1 ±9.6 | 95.3 ± 1.6 | 9.2 ± 2.9 | 95.8 ± 0.9 | 5.4 ± 1.8 | 88.5 ± 5.0 | ||||
2.87 | AS | 1396 ± 119.8 | 79.4 ± 18.9 | 94.3 ± 1.5 | 569.2 ± 47.5 | 50.5 ± 11.2 | 91.1 ± 2.1 | 113.8 ± 14.0 | 30.2 ± 8.2 | 73.1 ± 8.1 |
MBBR | 53.7 ± 15.1 | 96.2 ± 1.1 | 23.6 ± 4.5 | 95.7 ± 0.2 | 16.3 ± 4.9 | 85.6± 3.6 | ||||
SBBR | 49.9 ±9.52 | 96.4 ± 0.6 | 27.8 ± 2.8 | 96.3 ± 1.9 | 11.9 ± 6.4 | 89.3 ± 6.7 | ||||
5.44 | AS | 2646 ± 238.6 | 178 ± 60 | 93.3 ± 2.1 | 1064 ± 27.8 | 63.2 ± 7.5 | 94.0 ± 0.9 | 259.7 ± 27.8 | 30.1 ± 7.8 | 88.1 ± 3.8 |
MBBR | 117 ± 26 | 95.6 ± 0.9 | 54.1 ± 9.2 | 94.9 ± 0.6 | 20.6 ± 6.4 | 92.1 ± 2.1 | ||||
SBBR | 126 ±14.6 | 95.2 ± 0.7 | 50.0 ± 6.2 | 95.1 ± 0.7 | 20.5 ± 7.5 | 91.8 ± 3.6 |
OLR (gCOD L−1d−1) | Average TSS % Difference Inside the Reactor | Average VSS % Difference Inside the Reactor | ||||
---|---|---|---|---|---|---|
AS vs. MBBR | AS vs. SBMBBR | SBMBBR vs. MBBR | AS vs. MBBR | AS vs. SBMBBR | SBMBBR vs. MBBR | |
1.22 | −63.6 | −15.3 | −57.1 | −64.4 | −15.6 | −57.8 |
2.87 | −88.9 | −59.2 | −72.8 | −89.5 | −58.8 | −74.6 |
5.44 | −76.5 | −6.80 | −74.8 | −71.2 | −3.07 | −70.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boavida-Dias, R.; Silva, J.R.; Santos, A.D.; Martins, R.C.; Castro, L.M.; Quinta-Ferreira, R.M. A Comparison of Biosolids Production and System Efficiency between Activated Sludge, Moving Bed Biofilm Reactor, and Sequencing Batch Moving Bed Biofilm Reactor in the Dairy Wastewater Treatment. Sustainability 2022, 14, 2702. https://doi.org/10.3390/su14052702
Boavida-Dias R, Silva JR, Santos AD, Martins RC, Castro LM, Quinta-Ferreira RM. A Comparison of Biosolids Production and System Efficiency between Activated Sludge, Moving Bed Biofilm Reactor, and Sequencing Batch Moving Bed Biofilm Reactor in the Dairy Wastewater Treatment. Sustainability. 2022; 14(5):2702. https://doi.org/10.3390/su14052702
Chicago/Turabian StyleBoavida-Dias, Rui, João R. Silva, Andreia D. Santos, Rui C. Martins, Luis M. Castro, and Rosa M. Quinta-Ferreira. 2022. "A Comparison of Biosolids Production and System Efficiency between Activated Sludge, Moving Bed Biofilm Reactor, and Sequencing Batch Moving Bed Biofilm Reactor in the Dairy Wastewater Treatment" Sustainability 14, no. 5: 2702. https://doi.org/10.3390/su14052702
APA StyleBoavida-Dias, R., Silva, J. R., Santos, A. D., Martins, R. C., Castro, L. M., & Quinta-Ferreira, R. M. (2022). A Comparison of Biosolids Production and System Efficiency between Activated Sludge, Moving Bed Biofilm Reactor, and Sequencing Batch Moving Bed Biofilm Reactor in the Dairy Wastewater Treatment. Sustainability, 14(5), 2702. https://doi.org/10.3390/su14052702