Socio-Ecological Futures: Embedded Solutions for Stakeholder-Driven Alternative Futures
Abstract
:1. Introduction
1.1. Current Status of Food, Energy, and Water Systems (FEWS) Research
1.2. Current Status of Scenario Planning, Alternative Futures, and Geodesign
1.3. The Gaps in Current Alternative Futures and Geodesign Projects
1.3.1. Longitudinal Assessment of Effectiveness
1.3.2. Applicability for Futures Development and Scenarios
1.4. Addressing Solutions for Change
InFEWS Resilience Framework
2. Methods
2.1. Study Area: Magic Valley Idaho
2.2. Stakeholder Advisory Group Definition and Membership
- Participation in working meetings to be held once per year, typically in the fall (2017–2020), where members directly interacted with the research team;
- Participation (in person or by teleconference) in the “all-hands” meeting once per year, typically in the spring (2017–2020);
- Participation in quarterly reviews of progress reports from the research team and provision of suggestions for ways in which the research team could better address the needs of the SAG but also to provide bespoke revisions to scenario development.
2.3. Phase 1: Issues and Decisions
2.4. Phase 2: Actors and Uncertainties
2.5. Phase 3: Scenario Narratives
2.6. Phase 4: Geospatial Scenarios, Revisions, and Solutions
2.6.1. Climate Model
2.6.2. Water Balance Model
2.6.3. Land Use and Land Cover Models
2.6.4. Indicators Selection
- Total human population (number of people);
- Dairy cow count (number of cattle);
- Total agricultural (area in acres);
- Agriculture supporting dairies (area in acres);
- Total non-dairy-based agriculture (area in acres);
- Total urban area (area in acres);
- Fallow/grazing land (area in acres).
2.6.5. Solutions
3. Results
3.1. Phases 1, 2, and 3
- Will there be sufficient water supply for demand?
- Will water regulations change?
- Will allocation of resources impact growth?
- Will the highest and best use (HBU) be the driver for change?
- Will agriculture be used as a national security tool?
3.2. Phase 4
3.2.1. Climate Scenarios Utilized
3.2.2. Water Balance Model Scenarios
3.2.3. Land Use and Land Cover Change
3.3. Solutions
3.4. Cross-Scenario Comparison
4. Discussion
4.1. Expanding Geodesign Frameworks from Stakeholder-Informed to Stakeholder-Directed
4.2. Transparency through Feedback
4.3. Transferability for Resilience
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Ostrom, E. A General Framework for Analyzing Sustainability of Social-Ecological Systems. Science 2009, 325, 419–422. [Google Scholar] [CrossRef] [PubMed]
- Steinitz, C. A Framework for Geodesign: Changing Geography by Design, 1st ed.; ESRI: Redlands, CA, USA, 2012. [Google Scholar]
- Leslie, H.M.; Basurto, X.; Nenadovic, M.; Sievanen, L.; Cavanaugh, K.C.; Cota-Nieto, J.J.; Erisman, B.E.; Finkbeiner, E.; Hinojosa-Arango, G.; Moreno-Báez, M.; et al. Operationalizing the social-ecological systems framework to assess sustainability. Proc. Natl. Acad. Sci. USA 2015, 112, 5979–5984. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferguson, L.; Chan, S.; Santelmann, M.; Tilt, B. Exploring participant motivations and expectations in a researcher-stakeholder engagement process: Willamette Water 2100. Landsc. Urban Plan. 2017, 157, 447–456. [Google Scholar] [CrossRef]
- Hulse, D.; Branscomb, A.; Enright, C.; Bolte, J. Anticipating floodplain trajectories: A comparison of two alternative futures approaches. Landsc. Ecol. 2009, 24, 1067–1090. [Google Scholar] [CrossRef]
- Halbert, C.L. How adaptive is adaptive management? Implementing adaptive management in Washington State and British Columbia. Rev. Fish. Sci. 1993, 1, 261–283. [Google Scholar] [CrossRef]
- Folke, C.; Hahn, T.; Olsson, P.; Norberg, J. Adaptive Governance of social-ecological systems. Annu. Rev. Environ. Resour. 2005, 30, 441–473. [Google Scholar] [CrossRef] [Green Version]
- Hulse, D.W.; Branscomb, A.; Payne, S.G. Envisioning alternatives: Using citizen guidance to map future land and water use. Ecol. Appl. 2004, 14, 325–341. [Google Scholar] [CrossRef]
- Carpenter, S.R.; Bennett, E.M.; Peterson, G.D. Scenarios for Ecosystem Services: An Overview. Ecol. Soc. 2006, 11, art29. [Google Scholar] [CrossRef]
- Trammell, E.J.; Thomas, J.S.; Mouat, D.; Korbulic, Q.; Bassett, S. Developing alternative land-use scenarios to facilitate natural resource management across jurisdictional boundaries. J. Environ. Plan. Manag. 2018, 61, 64–85. [Google Scholar] [CrossRef]
- Iwaniec, D.M.; Cook, E.M.; Davidson, M.J.; Berbés-Blázquez, M.; Georgescu, M.; Krayenhoff, E.S.; Middel, A.; Sampson, D.A.; Grimm, N.B. The co-production of sustainable future scenarios. Landsc. Urban Plan. 2020, 197, 103744. [Google Scholar] [CrossRef]
- Mahmoud, M.; Liu, Y.; Hartmann, H.; Stewart, S.; Wagener, T.; Semmens, D.; Stewart, R.; Gupta, H.; Dominguez, D.; Dominguez, F.; et al. A formal framework for scenario development in support of environmental decision-making. Environ. Model. Softw. 2009, 24, 798–808. [Google Scholar] [CrossRef]
- Arnstein, S.R. A Ladder of Citizen Participation. J. Am. Inst. Plan. 1969, 35, 216–224. [Google Scholar] [CrossRef] [Green Version]
- Santelmann, M.V.; White, D.; Freemark, K.; Nassauer, J.I.; Eilers, J.M.; Vache, K.B.; Danielson, B.J.; Corry, R.C.; Clark, M.E.; Polasky, S.; et al. Assessing alternative futures for agriculture in Iowa, USA. Landsc. Ecol. 2004, 19, 357–374. [Google Scholar] [CrossRef]
- Sheppard, S.R.; Shaw, A.; Flanders, D.; Burch, S.; Wiek, A.; Carmichael, J.; Robinson, J.; Cohen, S. Future visioning of local climate change: A framework for community engagement and planning with scenarios and visualisation. Futures 2011, 43, 400–412. [Google Scholar] [CrossRef]
- Phillipson, J.; Lowe, P.; Proctor, A.; Ruto, E. Stakeholder engagement and knowledge exchange in environmental research. J. Environ. Manag. 2012, 95, 56–65. [Google Scholar] [CrossRef]
- Avraamidou, S.; Beykal, B.; Pistikopoulos, I.P.; Pistikopoulos, E.N. A hierarchical Food-Energy-Water Nexus (FEW-N) decision-making approach for Land Use Optimization. In Computer Aided Chemical Engineering; Elsevier: Amsterdam, The Netherlands, 2018; Volume 44, pp. 1885–1890. [Google Scholar] [CrossRef]
- Wichelns, D. The water-energy-food nexus: Is the increasing attention warranted, from either a research or policy perspective? Environ. Sci. Policy 2017, 69, 113–123. [Google Scholar] [CrossRef]
- Boas, I.; Biermann, F.; Kanie, N. Cross-sectoral strategies in global sustainability governance: Towards a nexus approach. Int. Environ. Agreem. Politics Law Econ. 2016, 16, 449–464. [Google Scholar] [CrossRef] [Green Version]
- Green, J.M.; Cranston, G.R.; Sutherland, W.J.; Tranter, H.R.; Bell, S.J.; Benton, T.G.; Blixt, E.; Bowe, C.; Broadley, S.; Brown, A.; et al. Research priorities for managing the impacts and dependencies of business upon food, energy, water and the environment. Sustain. Sci. 2017, 12, 319–331. [Google Scholar] [CrossRef] [Green Version]
- Baba, K.; Masuhara, N.; Kimura, M. Scenario-based approach to Local Water-energy-food Nexus Issues with Experts and Stakeholders. In The Water-Energy-Food Nexus; Endo, A., Oh, T., Eds.; Springer: Singapore, 2018; pp. 321–333. [Google Scholar] [CrossRef]
- Schwartz, S.E.; Andreae, M.O. Uncertainty in Climate Change Caused by Aerosols. Science 1996, 272, 1121. [Google Scholar] [CrossRef] [Green Version]
- Bradfield, R.; Wright, G.; Burt, G.; Cairns, G.; Van Der Heijden, K. The Origins and Evolution of Scenario Techniques in Long Range Business Planning. Futures 2005, 37, 795–812. [Google Scholar] [CrossRef]
- Iverson Nassauer, J.; Corry, R.C. Using normative scenarios in landscape ecology. Landsc. Ecol. 2004, 19, 343–356. [Google Scholar] [CrossRef] [Green Version]
- Baker, J.P.; Hulse, D.W.; Gregory, S.V.; White, D.; Van Sickle, J.; Berger, P.A.; Dole, D.; Schumaker, N.H. Alternative Futures for the Willamette River Basin, Oregon. Ecol. Appl. 2004, 14, 313–324. Available online: https://www.jstor.org/stable/4493541 (accessed on 12 April 2019). [CrossRef] [Green Version]
- Steinitz, C.; Anderson, R.; Arias, H.; Bassett, S.; Flaxman, M.; Goode, T.; Maddock, T., III; Mouat, D.; Peiser, R.; Shearer, A. Alternative Futures for Landscapes in the Upper San Pedro River Basin of Arizona and Sonora. In Bird Conservation Implementation and Integration in the Americas, Proceedings of the Third International Partners in Flight Conference, Asilomar, CA, USA, 20–24 March 2002; John, R.C., Rich, T.D., Eds.; Gen. Tech. Rep. PSW-GTR-191; Department of Agriculture, Forest Service, Pacific Southwest Research Station: Albany, CA, USA, 2005; Volume 1, pp. 93–100, 191. Available online: http://www.fs.usda.gov/treesearch/pubs/31642 (accessed on 12 April 2019).
- Jahanishakib, F.; Mirkarimi, S.H.; Salmanmahiny, A.; Poodat, F. Land Use Change Modeling through Scenario-Based Cellular Automata Markov: Improving Spatial Forecasting. Environ. Monit. Assess. 2018, 190, 332. [Google Scholar] [CrossRef] [PubMed]
- Shearer, A.W. Land Use Scenarios: Environmental Consequences of Development; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar] [CrossRef]
- Iwaniec, D.M. Integrating existing climate adaptation planning into future visions: A strategic scenario for the central Arizona–Phoenix region. Landsc. Urban Plan. 2020, 8, 103820. [Google Scholar] [CrossRef]
- Nassauer, J.I. Care and Stewardship: From Home to Planet. Landsc. Urban Plan. 2011, 100, 321–323. [Google Scholar] [CrossRef]
- Santelmann, M.; Hulse, D.; Wright, M.; Enright, C.; Branscomb, A.; Tchintcharauli-Harrison, M.; Bolson, J. Designing and modeling innovation across scales for urban water systems. Urban Ecosyst. 2019, 22, 1149–1164. [Google Scholar] [CrossRef] [Green Version]
- Shiftan, Y.; Kaplan, S.; Hakkert, S. Scenario Building as a Tool for Planning a Sustainable Transportation System. Transp. Res. Part D Transp. Environ. 2003, 8, 323–342. [Google Scholar] [CrossRef]
- Trammell, J.; Krupa, M.; Williams, P.; Kliskey, A. Using comprehensive scenarios to identify social-ecological threats to salmon in the Kenai River Watershed, Alaska. Sustainability 2021, 13, 5490. [Google Scholar] [CrossRef]
- Kliskey, A.; Williams, P.; Trammell, J.; Cronan, D.; Griffith, D.; Alessa, L.; de Haro-Marto, M.; Villamor, G. Oxarango-Ingram. Building trust, building futures: Knowledge co-production as relationship, design, and process in transdisciplinary science. Curr. Res. Environ. Sustain. 2022, 4. submitted. [Google Scholar]
- Huang, L.; Xiang, W.; Wu, J.; Traxler, C.; Huang, J. Integrating GeoDesign with Landscape Sustainability Science. Sustainability 2019, 11, 833. [Google Scholar] [CrossRef] [Green Version]
- Villamor, G.; Griffith, D.; Kliskey, A.; Alessa, L. Contrasting stakeholder and scientist conceptual models of food-energy-water systems: A case-study in Magic Valley, Southern Idaho. Socio-Environ. Syst. Model. 2020, 2, 16312. [Google Scholar] [CrossRef]
- Kliskey, A.; Williams, P.; Dale, V.H.; Schelly, C.; Marshall, A.; Griffith, D.; Eaton, W.; Floress, K.; Gagnon, V.; Oxarango-Ingram, J. Thinking big and thinking small: A conceptual framework for best practices in community and stakeholder engagement in food, energy, and water systems. Sustainability 2021, 13, 2160. [Google Scholar] [CrossRef]
- Bennett, E.M.; Solan, M.; Biggs, R.; McPhearson, T.; Norström, A.V.; Olsson, P.; Pereira, L.; Peterson, G.D.; Raudsepp-Hearne, C.; Biermann, F.; et al. Bright Spots: Seeds of a Good Anthropocene. Front. Ecol. Environ. 2016, 14, 441–448. [Google Scholar] [CrossRef] [Green Version]
- Thompson, J.R.; Plisinski, J.S.; Lambert, K.F.; Duveneck, M.J.; Morreale, L.; McBride, M.; MacLean, M.G.; Weiss, M.; Lee, L. Spatial Simulation of Codesigned Land Cover Change Scenarios in New England: Alternative Futures and Their Consequences for Conservation Priorities. Earth’s Future 2020, 8, e2019EF001348. [Google Scholar] [CrossRef]
- Hulse, D.; Branscomb, A.; Enright, C.; Johnson, B.; Evers, C.; Bolte, J.; Ager, A. Anticipating Surprise: Using Agent-Based Alternative Futures Simulation Modeling to Identify and Map Surprising Fires in the Willamette Valley, Oregon USA. Landsc. Urban Plan. Geod.—Chang. World Chang. Des. 2016, 156, 26–43. [Google Scholar] [CrossRef]
- Guan, X.; Mascaro, G.; Sampson, D.; Maciejewski, R. A Metropolitan Scale Water Management Analysis of the Food-Energy-Water Nexus. Sci. Total Environ. 2020, 701, 134478. [Google Scholar] [CrossRef]
- US Census Bureau. US Census 2020. 2020. Available online: https://data.census.gov/cedsci/ (accessed on 12 April 2019).
- Smutny, G.; Takahashi, L. Economic Change and Environmental Conflict in the Western Mountain States of the USA. Environ. Plan. A Econ. Space 1999, 31, 979–995. [Google Scholar] [CrossRef]
- Mills, A.K.; Bolte, J.P.; Ruggiero, P.; Serafin, K.A.; Lipiec, E.; Corcoran, P.; Stevenson, J.; Zanocco, C.; Lach, D. Exploring the impacts of climate and policy changes on coastal community resilience: Simulating alternative future scenarios. Environ. Model. Softw. 2018, 109, 80–92. [Google Scholar] [CrossRef] [Green Version]
- Kepner, W.G.; Ramsey, M.M.; Brown, E.S.; Jarchow, M.E.; Dickinson, K.J.; Mark, A.F. Hydrologic Futures: Using Scenario Analysis to Evaluate Impacts of Forecasted Land Use Change on Hydrologic Services. Ecosphere 2012, 3, art69. [Google Scholar] [CrossRef]
- Liu, Y.; Mahmoud, M.; Hartmann, H.; Stewart, S.; Wagener, T.; Semmens, D.; Stewart, R.; Gupta, H.; Dominguez, D.; Hulse, D.; et al. Formal Scenario Development For Environmental Impact Assessment Studies. In U.S. Environmental Protection Agency Papers; Digital Commons at University of Nebraska, USA. 1 January 2008; Available online: https://digitalcommons.unl.edu/usepapapers/77 (accessed on 12 April 2019).
- Hulse, D.; Gregory, S. Integrating Resilience into Floodplain Restoration. Urban Ecosyst. 2004, 7, 295–314. [Google Scholar] [CrossRef]
- Zuidema, S.; Grogan, D.; Prusevich, A.; Lammers, R.; Gilmore, S.; Williams, P. Interplay of changing irrigation technologies and water reuse: Example from the upper Snake River basin, Idaho, USA. Hydrol. Earth Syst. Sci. 2020, 24, 5231–5249. [Google Scholar] [CrossRef]
- Abatzoglou, J.T. Development of Gridded Surface Meteorological Data for Ecological Applications and Modelling. Int. J. Climatol. 2013, 33, 121–131. [Google Scholar] [CrossRef]
- Abatzoglou, J.T.; Rupp, D.E. Evaluating Climate Model Simulations of Drought for the Northwestern United States. Int. J. Climatol. 2017, 37, 910–920. [Google Scholar] [CrossRef]
- IPCC. AR5 Climate Change 2014: Mitigation of Climate Change—IPCC. 2014. Available online: https://www.ipcc.ch/report/ar5/wg3/ (accessed on 12 April 2019).
- Kliskey, A.; Abatzoglou, J.; Alessa, L.; Kolden, C.; Hoekema, D.; Moore, B.; Gilmore, S.; Austin, G. Planning for Idaho’s waterscapes: A review of historical drivers and outlook for the next 50 years. Environ. Sci. Policy 2019, 94, 191–201. [Google Scholar] [CrossRef]
- Sleeter, R.; Gould, M.D. Geographic Information System Software to Remodel Population Data Using Dasymetric Mapping Methods; USGS Numbered Series; Techniques and Methods, Geological Survey: Denver, CO, USA, 2007. Available online: http://pubs.er.usgs.gov/publication/tm11C2 (accessed on 12 April 2019).
- Leytem, A.B.; Williams, P.; Zuidema, S.; Martinez, A.; Chong, Y.L.; Vincent, A.; Vincent, A.; Cronan, D.; Kliskey, A.; Wulfhorst, J.D.; et al. Cycling Phosphorus and Nitrogen through Cropping Systems in an Intensive Dairy Production Region. Agronomy 2021, 11, 1005. [Google Scholar] [CrossRef]
- USDA Cropscape. Cropland Data Layes. 2020. Available online: https://cropcros.azurewebsites.net/ (accessed on 12 April 2019).
- Bolte, J.P.; Hulse, D.W.; Gregory, S.V.; Smith, C. Modeling Biocomplexity—Actors, Landscapes and Alternative Futures. Environ. Model. Softw. Implic. Complex. Integr. Resour. 2007, 22, 570–579. [Google Scholar] [CrossRef] [Green Version]
- Cronan, D.; Trammell, E.J.; Kliskey, A. Images to Evoke Decision-Making: Building Compelling Representations for Stakeholder-Driven Futures. Sustainability 2022, 14, 2980. [Google Scholar] [CrossRef]
- ESRI. Geoplanner. 2019. Available online: https://doc.arcgis.com/en/geoplanner/latest/documentation/what-is-a-geodesign-project.htm (accessed on 12 April 2019).
- Rupp, D.E.; Abatzoglou, J.T.; Hegewisch, K.C.; Mote, P.W. Evaluation of CMIP5 20th Century Climate Simulations for the Pacific Northwest USA. J. Geophys. Res.-Atmos. 2013, 118, 10884–10906. [Google Scholar] [CrossRef]
ACTORS | UNCERTAINTY: Will There Be Sufficient Water Supply for Demand? | |
---|---|---|
Increase or decrease in Uncertainty | Scaled impact on Actor’s Agency (−5 is significant inhibitor, +5 is a significant facility) | |
Irrigated Agriculture | Increase in water supply | +4 |
Decrease in water supply | −4 | |
Idaho State Legislature | Increase in water supply | +1 |
Decrease in water supply | −5 | |
Municipalities and Local Governments | Increase in water supply | +4 |
Decrease in water supply | −3 | |
Economic Development Entities | Increase in water supply | +5 |
Decrease in water supply | −5 | |
CAFOs | Increase in water supply | +3 |
Decrease in water supply | −4 |
Scenario | Key Points of Narrative |
---|---|
1. Business as Usual | Water supply remains consistent but demand increases; food prices and demand are high thus agriculture is given an economic advantage over other land uses; water quality regulations increase; residential land uses increase at a moderate rate. |
2. The Courts Call | Shorter water years; tribes renegotiate leases; limited water supply rendering crops unsustainable; regional population grows slightly; increased temperatures; reduced water supply. |
3. Locavore | Wetter conditions; more residential development; in-migration increases population substantially; high costs of fuel drive need for local agriculture; clean water and food production defined as “highest and best use”. |
4. Population Boom | Water supply is stable without drought; substantial population growth drives an increase in residential demand and water use; water quality regulations increase to support the increase. |
5. Megadrought | Increased drought; increase in residential water demand; a large proportion of irrigated agriculture is decommissioned; regulations are tightened. |
6. Happy Valley | Low drought conditions; food production increase; increase in aquifer recharge; sustainable urban development achieved. |
Scenarios, Models Used and RCP Values | |
---|---|
Scenario | Model and RCP Value |
Business as Usual | Can-ESM2 (RCP 4.5) |
The Courts Call | MIROC5 (RCP 4.5) |
Locavore | CNRM-CM5 (RCP 4.5) |
Population Boom | CNRM-CM5 (RCP 4.5) |
Megadrought | MIROC5 (RCP 8.5) |
Happy Valley | CNRM-CM5 (RCP 4.5) |
Population at Each Decadal Timestep | ||||
---|---|---|---|---|
Scenario | 2020 | 2030 | 2040 | 2050 |
Low Growth (Megadrought, Locavore) | 207,327 | 224,100 | 242,500 | 261,000 |
Moderate Growth (Business as Usual, The Courts Call) | 207,327 | 240,400 | 264,100 | 302,400 |
High Growth (Population Boom, Happy Valley) | 207,327 | 313,100 | 374,600 | 435,200 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cronan, D.; Trammell, E.J.; Kliskey, A.; Williams, P.; Alessa, L. Socio-Ecological Futures: Embedded Solutions for Stakeholder-Driven Alternative Futures. Sustainability 2022, 14, 3732. https://doi.org/10.3390/su14073732
Cronan D, Trammell EJ, Kliskey A, Williams P, Alessa L. Socio-Ecological Futures: Embedded Solutions for Stakeholder-Driven Alternative Futures. Sustainability. 2022; 14(7):3732. https://doi.org/10.3390/su14073732
Chicago/Turabian StyleCronan, Daniel, E. Jamie Trammell, Andrew (Anaru) Kliskey, Paula Williams, and Lilian Alessa. 2022. "Socio-Ecological Futures: Embedded Solutions for Stakeholder-Driven Alternative Futures" Sustainability 14, no. 7: 3732. https://doi.org/10.3390/su14073732
APA StyleCronan, D., Trammell, E. J., Kliskey, A., Williams, P., & Alessa, L. (2022). Socio-Ecological Futures: Embedded Solutions for Stakeholder-Driven Alternative Futures. Sustainability, 14(7), 3732. https://doi.org/10.3390/su14073732