Beyond the Backyard: GIS Analysis of Public Green Space Accessibility in Australian Metropolitan Areas
Abstract
:1. Introduction
2. Background
Standards of Urban Green Space Accessibility (UGSA)
3. Materials and Methods
3.1. Study Area
3.2. Population
3.3. Urban Green Space within Each of the Four Study Cities
3.4. Urban Green Space Area within the Four Cities
3.5. Urban Green Space Catchments
3.6. Residential Accessibility to Urban Green Space
4. Results
4.1. Urban Structure Classification: Inner Urban, Suburban and Peri Urban
4.2. Green Space Area: The Analysis of Green Space in the Four Selected Cities
4.3. Green Space Service Catchments in the Four Selected Cities
4.4. Residential Green Space Accessibility in the Four Selected Cities
5. Discussion
5.1. Green Space Accessibility within Australian Metropolitan Areas
5.2. Comparison with Global Standards and the SDGs
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jennings, V.; Larson, L.; Yun, J. Advancing Sustainability through Urban Green Space: Cultural Ecosystem Services, Equity, and Social Determinants of Health. Int. J. Environ. Res. Public Health 2016, 13, 196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jennings, V.; Bamkole, O. The Relationship between Social Cohesion and Urban Green Space: An Avenue for Health Promotion. Int. J. Environ. Res. Public Health 2019, 16, 452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mensah, C.A.; Andres, L.; Perera, U.; Roji, A. Enhancing Quality of Life through the Lens of Green Spaces: A Systematic Review Approach. Intnl. J. Wellbeing 2016, 6, 142–163. [Google Scholar] [CrossRef] [Green Version]
- Rigolon, A.; Flohr, T.L. Access to Parks for Youth as an Environmental Justice Issue: Access Inequalities and Possible Solutions. Buildings 2014, 4, 69–94. [Google Scholar] [CrossRef]
- Du, X.; Huang, Z. Spatial and Temporal Effects of Urban Wetlands on Housing Prices: Evidence from Hangzhou, China. Land Use Policy 2018, 73, 290–298. [Google Scholar] [CrossRef]
- Kabisch, N.; Qureshi, S.; Haase, D. Human–Environment Interactions in Urban Green Spaces—A Systematic Review of Contemporary Issues and Prospects for Future Research. Environ. Impact Assess. Rev. 2015, 50, 25–34. [Google Scholar] [CrossRef]
- Krekel, C.; Kolbe, J.; Wüstemann, H. The Greener, the Happier? The Effect of Urban Land Use on Residential Well-Being. Ecol. Econ. 2016, 121, 117–127. [Google Scholar] [CrossRef] [Green Version]
- Bartesaghi Koc, C.; Osmond, P.; Peters, A. Evaluating the Cooling Effects of Green Infrastructure: A Systematic Review of Methods, Indicators and Data Sources. Sol. Energy 2018, 166, 486–508. [Google Scholar] [CrossRef]
- Lin, P.; Lau, S.S.Y.; Qin, H.; Gou, Z. Effects of Urban Planning Indicators on Urban Heat Island: A Case Study of Pocket Parks in High-Rise High-Density Environment. Landsc. Urban Plan. 2017, 168, 48–60. [Google Scholar] [CrossRef]
- Feldman, A.; Foti, R.; Montalto, F. Green Infrastructure Implementation in Urban Parks for Stormwater Management. J. Sustain. Water Built Environ. 2019, 5, 05019003. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Chen, W.; Peng, C. Assessing the Effectiveness of Green Infrastructures on Urban Flooding Reduction: A Community Scale Study. Ecol. Model. 2014, 291, 6–14. [Google Scholar] [CrossRef]
- Grafius, D.R.; Corstanje, R.; Harris, J.A. Linking Ecosystem Services, Urban Form and Green Space Configuration Using Multivariate Landscape Metric Analysis. Landsc. Ecol. 2018, 33, 557–573. [Google Scholar] [CrossRef] [Green Version]
- Nilon, C.H.; Aronson, M.F.J.; Cilliers, S.S.; Dobbs, C.; Frazee, L.J.; Goddard, M.A.; O’Neill, K.M.; Roberts, D.; Stander, E.K.; Werner, P.; et al. Planning for the Future of Urban Biodiversity: A Global Review of City-Scale Initiatives. BioScience 2017, 67, 332–342. [Google Scholar] [CrossRef]
- Ignatieva, M. Biodiversity-Friendly Designs in Cities and Towns: Towards a Global Biodiversinesque Style. In Urban Biodiversity; Routledge: London, UK, 2017; ISBN 978-1-315-40258-1. [Google Scholar]
- Heo, S.; Bell, M.L. The Influence of Green Space on the Short-Term Effects of Particulate Matter on Hospitalization in the U.S. for 2000–2013. Environ. Res. 2019, 174, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Zhang, L.; Li, Y.; Wu, S. Water-Related Ecosystem Services Provided by Urban Green Space: A Case Study in Yixing City (China). Landsc. Urban Plan. 2015, 136, 40–51. [Google Scholar] [CrossRef]
- Wu, J.; Wang, M.; Li, W.; Peng, J.; Huang, L. Impact of Urban Green Space on Residential Housing Prices: Case Study in Shenzhen. J. Urban Plan. Dev. 2015, 141, 05014023. [Google Scholar] [CrossRef]
- Bartesaghi Koc, C.; Soebarto, V.; Hawken, S.; Sharifi, E. The Potential for Urban Canopy Cover to Reduce Heat-Related Mortality in Adelaide. In Urban Overheating—Heat Mitigation and the Impact on Health; Aghamohammadi, N., Santamouris, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2022. [Google Scholar]
- Maas, J.; Verheij, R.A.; Groenewegen, P.P.; de Vries, S.; Spreeuwenberg, P. Green Space, Urbanity, and Health: How Strong is the Relation? J. Epidemiol. Community Health 2006, 60, 587–592. [Google Scholar] [CrossRef] [Green Version]
- Richardson, E.A.; Pearce, J.; Mitchell, R.; Kingham, S. Role of Physical Activity in the Relationship between Urban Green Space and Health. Public Health 2013, 127, 318–324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Twohig-Bennett, C.; Jones, A. The Health Benefits of the Great Outdoors: A Systematic Review and Meta-Analysis of Greenspace Exposure and Health Outcomes. Environ. Res. 2018, 166, 628–637. [Google Scholar] [CrossRef]
- Vienneau, D.; de Hoogh, K.; Faeh, D.; Kaufmann, M.; Wunderli, J.M.; Röösli, M. More than Clean Air and Tranquillity: Residential Green Is Independently Associated with Decreasing Mortality. Environ. Int. 2017, 108, 176–184. [Google Scholar] [CrossRef]
- Wolsink, M. Environmental Education Excursions and Proximity to Urban Green Space—Densification in a ‘Compact City’. Environ. Educ. Res. 2016, 22, 1049–1071. [Google Scholar] [CrossRef]
- Nutsford, D.; Pearson, A.L.; Kingham, S. An Ecological Study Investigating the Association between Access to Urban Green Space and Mental Health. Public Health 2013, 127, 1005–1011. [Google Scholar] [CrossRef] [PubMed]
- Greener Spaces Better Places COVID-19 Driving a Public Space Revolution. Available online: https://hortinnovationaustralia.createsend1.com/t/ViewEmail/d/839BB92095B052802540EF23F30FEDED/424A4EC82A126A8623B7CB3C95A53812 (accessed on 23 February 2021).
- Lahoti, S.; Lahoti, A.; Saito, O. Benchmark Assessment of Recreational Public Urban Green Space Provisions: A Case of Typical Urbanizing Indian City, Nagpur. Urban For. Urban Green. 2019, 44, 126424. [Google Scholar] [CrossRef]
- Yan, Z. Amid the Coronavirus Pandemic, a Battle Emerges Over Green Spaces. N. Y. Times 2020. Available online: https://www.nytimes.com/2020/11/20/world/australia/coronavirus-green-spaces-golf-courses.html (accessed on 23 February 2021).
- Lorenzo-Sáez, E.; Lerma-Arce, V.; Coll-Aliaga, E.; Oliver-Villanueva, J.-V. Contribution of Green Urban Areas to the Achievement of SDGs. Case Study in Valencia (Spain). Ecol. Indic. 2021, 131, 108246. [Google Scholar] [CrossRef]
- Opoku, A. Biodiversity and the Built Environment: Implications for the Sustainable Development Goals (SDGs). Resour. Conserv. Recycl. 2019, 141, 1–7. [Google Scholar] [CrossRef]
- Kronenberg, J.; Haase, A.; Łaszkiewicz, E.; Antal, A.; Baravikova, A.; Biernacka, M.; Dushkova, D.; Filčak, R.; Haase, D.; Ignatieva, M.; et al. Environmental Justice in the Context of Urban Green Space Availability, Accessibility, and Attractiveness in Postsocialist Cities. Cities 2020, 106, 102862. [Google Scholar] [CrossRef]
- Schüle, S.A.; Gabriel, K.M.A.; Bolte, G. Relationship between Neighbourhood Socioeconomic Position and Neighbourhood Public Green Space Availability: An Environmental Inequality Analysis in a Large German City Applying Generalized Linear Models. Int. J. Hyg. Environ. Health 2017, 220, 711–718. [Google Scholar] [CrossRef]
- Wolch, J.R.; Byrne, J.; Newell, J.P. Urban Green Space, Public Health, and Environmental Justice: The Challenge of Making Cities ‘Just Green Enough’. Landsc. Urban Plan. 2014, 125, 234–244. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; He, Q.; Chen, Y.; Lin, J.; Wang, S. Dismantling the Fence for Social Justice? Evidence Based on the Inequity of Urban Green Space Accessibility in the Central Urban Area of Beijing. Environ. Plan. B Urban Anal. City Sci. 2020, 47, 626–644. [Google Scholar] [CrossRef]
- Wu, L.; Kim, S.K. Exploring the Equality of Accessing Urban Green Spaces: A Comparative Study of 341 Chinese Cities. Ecol. Indic. 2021, 121, 107080. [Google Scholar] [CrossRef]
- Dai, D. Racial/Ethnic and Socioeconomic Disparities in Urban Green Space Accessibility: Where to Intervene? Landsc. Urban Plan. 2011, 102, 234–244. [Google Scholar] [CrossRef]
- Venter, Z.S.; Shackleton, C.M.; Van Staden, F.; Selomane, O.; Masterson, V.A. Green Apartheid: Urban Green Infrastructure Remains Unequally Distributed across Income and Race Geographies in South Africa. Landsc. Urban Plan. 2020, 203, 103889. [Google Scholar] [CrossRef]
- Ferguson, M.; Roberts, H.E.; McEachan, R.R.C.; Dallimer, M. Contrasting Distributions of Urban Green Infrastructure across Social and Ethno-Racial Groups. Landsc. Urban Plan. 2018, 175, 136–148. [Google Scholar] [CrossRef]
- Guo, S.; Song, C.; Pei, T.; Liu, Y.; Ma, T.; Du, Y.; Chen, J.; Fan, Z.; Tang, X.; Peng, Y.; et al. Accessibility to Urban Parks for Elderly Residents: Perspectives from Mobile Phone Data. Landsc. Urban Plan. 2019, 191, 103642. [Google Scholar] [CrossRef]
- Dennis, M.; Cook, P.A.; James, P.; Wheater, C.P.; Lindley, S.J. Relationships between Health Outcomes in Older Populations and Urban Green Infrastructure Size, Quality and Proximity. BMC Public Health 2020, 20, 626. [Google Scholar] [CrossRef]
- Xiao, Y.; Wang, Z.; Li, Z.; Tang, Z. An Assessment of Urban Park Access in Shanghai—Implications for the Social Equity in Urban China. Landsc. Urban Plan. 2017, 157, 383–393. [Google Scholar] [CrossRef]
- Chen, T.; Lang, W.; Li, X. Exploring the Impact of Urban Green Space on Residents’ Health in Guangzhou, China. J. Urban Plan. Dev. 2020, 146, 05019022. [Google Scholar] [CrossRef]
- Wüstemann, H.; Kalisch, D.; Kolbe, J. Access to Urban Green Space and Environmental Inequalities in Germany. Landsc. Urban Plan. 2017, 164, 124–131. [Google Scholar] [CrossRef]
- De Sousa Silva, C.; Viegas, I.; Panagopoulos, Τ.; Bell, S. Environmental Justice in Accessibility to Green Infrastructure in Two European Cities. Land 2018, 7, 134. [Google Scholar] [CrossRef] [Green Version]
- Liotta, C.; Kervinio, Y.; Levrel, H.; Tardieu, L. Planning for Environmental Justice—Reducing Well-Being Inequalities through Urban Greening. Environ. Sci. Policy 2020, 112, 47–60. [Google Scholar] [CrossRef]
- Chaudhary, S.; McGregor, A.; Houston, D.; Chettri, N. Environmental Justice and Ecosystem Services: A Disaggregated Analysis of Community Access to Forest Benefits in Nepal. Ecosyst. Serv. 2018, 29, 99–115. [Google Scholar] [CrossRef]
- Ernstson, H. The Social Production of Ecosystem Services: A Framework for Studying Environmental Justice and Ecological Complexity in Urbanized Landscapes. Landsc. Urban Plan. 2013, 109, 7–17. [Google Scholar] [CrossRef] [Green Version]
- Schlosberg, D. Reconceiving Environmental Justice: Global Movements and Political Theories. Null 2004, 13, 517–540. [Google Scholar] [CrossRef]
- Wen, C.; Albert, C.; Von Haaren, C. Equality in Access to Urban Green Spaces: A Case Study in Hannover, Germany, with a Focus on the Elderly Population. Urban For. Urban Green. 2020, 55, 126820. [Google Scholar] [CrossRef]
- Gerlak, A.K.; Zuniga-Teran, A. Addressing Injustice in Green Infrastructure through Socio-Ecological Practice: What Is the Role of University–Community Partnerships? Socio Ecol. Pract. Res. 2020, 2, 149–159. [Google Scholar] [CrossRef]
- Suárez, M.; Barton, D.N.; Cimburova, Z.; Rusch, G.M.; Gómez-Baggethun, E.; Onaindia, M. Environmental Justice and Outdoor Recreation Opportunities: A Spatially Explicit Assessment in Oslo Metropolitan Area, Norway. Environ. Sci. Policy 2020, 108, 133–143. [Google Scholar] [CrossRef]
- Ye, C.; Hu, L.; Li, M. Urban Green Space Accessibility Changes in a High-Density City: A Case Study of Macau from 2010 to 2015. J. Transp. Geogr. 2018, 66, 106–115. [Google Scholar] [CrossRef]
- Rigolon, A. A Complex Landscape of Inequity in Access to Urban Parks: A Literature Review. Landsc. Urban Plan. 2016, 153, 160–169. [Google Scholar] [CrossRef]
- Kabisch, N.; Haase, D. Green Justice or Just Green? Provision of Urban Green Spaces in Berlin, Germany. Landsc. Urban Plan. 2014, 122, 129–139. [Google Scholar] [CrossRef]
- La Rosa, D. Accessibility to Greenspaces: GIS Based Indicators for Sustainable Planning in a Dense Urban Context. Ecol. Indic. 2014, 42, 122–134. [Google Scholar] [CrossRef]
- Lee, G.; Hong, I. Measuring Spatial Accessibility in the Context of Spatial Disparity between Demand and Supply of Urban Park Service. Landsc. Urban Plan. 2013, 119, 85–90. [Google Scholar] [CrossRef]
- Rojas, C.; Páez, A.; Barbosa, O.; Carrasco, J. Accessibility to Urban Green Spaces in Chilean Cities Using Adaptive Thresholds. J. Transp. Geogr. 2016, 57, 227–240. [Google Scholar] [CrossRef]
- Ekkel, E.D.; de Vries, S. Nearby Green Space and Human Health: Evaluating Accessibility Metrics. Landsc. Urban Plan. 2017, 157, 214–220. [Google Scholar] [CrossRef]
- Potestio, M.L.; Patel, A.B.; Powell, C.D.; McNeil, D.A.; Jacobson, R.D.; McLaren, L. Is There an Association between Spatial Access to Parks/Green Space and Childhood Overweight/Obesity in Calgary, Canada? Int. J. Behav. Nutr. Phys. Act. 2009, 6, 77. [Google Scholar] [CrossRef] [Green Version]
- Higgs, G.; Fry, R.; Langford, M. Investigating the Implications of Using Alternative GIS-Based Techniques to Measure Accessibility to Green Space. Environ. Plan. B Plan. Des. 2012, 39, 326–343. [Google Scholar] [CrossRef]
- Reyes, M.; Páez, A.; Morency, C. Walking Accessibility to Urban Parks by Children: A Case Study of Montreal. Landsc. Urban Plan. 2014, 125, 38–47. [Google Scholar] [CrossRef]
- Liu, D.; Kwan, M.-P.; Kan, Z. Analysis of Urban Green Space Accessibility and Distribution Inequity in the City of Chicago. Urban For. Urban Green. 2021, 59, 127029. [Google Scholar] [CrossRef]
- Miller, H. Place-Based versus People-Based Geographic Information Science. Geogr. Compass 2007, 1, 503–535. [Google Scholar] [CrossRef]
- Fan, P.; Xu, L.; Yue, W.; Chen, J. Accessibility of Public Urban Green Space in an Urban Periphery: The Case of Shanghai. Landsc. Urban Plan. 2017, 165, 177–192. [Google Scholar] [CrossRef]
- Delafontaine, M.; Neutens, T.; Van de Weghe, N. A GIS Toolkit for Measuring and Mapping Space–Time Accessibility from a Place-Based Perspective. Int. J. Geogr. Inf. Sci. 2012, 26, 1131–1154. [Google Scholar] [CrossRef] [Green Version]
- Sharifi, F.; Nygaard, A.; Stone, W.M. Heterogeneity in the Subjective Well-Being Impact of Access to Urban Green Space. Sustain. Cities Soc. 2021, 74, 103244. [Google Scholar] [CrossRef]
- Zhu, Z.; Li, J.; Chen, Z. Green Space Equity: Spatial Distribution of Urban Green Spaces and Correlation with Urbanization in Xiamen, China. Environ. Dev. Sustain. 2022. Available online: https://link.springer.com/article/10.1007/s10668-021-02061-0 (accessed on 23 February 2021). [CrossRef]
- Shi, L.; Halik, Ü.; Abliz, A.; Mamat, Z.; Welp, M. Urban Green Space Accessibility and Distribution Equity in an Arid Oasis City: Urumqi, China. Forests 2020, 11, 690. [Google Scholar] [CrossRef]
- Hu, S.; Song, W.; Li, C.; Lu, J. A Multi-Mode Gaussian-Based Two-Step Floating Catchment Area Method for Measuring Accessibility of Urban Parks. Cities 2020, 105, 102815. [Google Scholar] [CrossRef]
- Amati, M.; Kaspar, J.; Boruff, B.; Caccetta, P.; Devereux, D.; Phelan, K.; Saunders, A. Where Should All the Trees Go? Investigating the Impact of Tree Canopy Cover on Socio-Economic Status and Wellbeing in LGA’s; Hort Innovation by the Centre for Urban Research; RMIT University: Melbourne, Australia, 2017. [Google Scholar]
- BMUB. Nationale Strategie Zur Biologischen Vielfalt; BMUB, Bundesministerium für Umwelt, Naturschutz, Bau und Reaktorsicherheit: Paderborn, Germany, 2007. [Google Scholar]
- U.S. Green Building Council. STAR Community Rating System Technical Guide (V2); U.S. Green Building Council: Washington, DC, USA, 2016. [Google Scholar]
- Government of South Australia. The 30-Year Plan for Greater Adelaide; Government of South Australia: Adelaide, SA, Australia, 2017.
- Handley, J.; Pauleit, S.; Slinn, P.; Baker, M.; Barber, A.; Jones, C.; Lindley, S. Accessible Natural Green Space Standards in Towns and Cities A Review and Toolkit for Their Implementation(ENRR526); English Nature: Peterborough, UK, 2003. [Google Scholar]
- Organisation for Economic Cooperation and Development (OECD) Frameworks and Sector Policies for Urban Development in Chile. In OECD Urban Policy Reviews, Chile 2013; OECD: Paris, France, 2013.
- Roo, M.; Kuypers, V.H.M.; Lenzholzer, S. The Green City Guidelines: Techniques for a Healthy Liveable City. In The Green City; WUR: Wageningen, The Netherlands, 2011. [Google Scholar]
- Siragusa, A.; Vizcaino, P.; Proietti, P.; Lavalle, C.; Lavalle, C. European Handbook for SDG Voluntary Local Reviews; Publications Office of the European Union: Luxembourg, 2020; ISBN 978-92-76-15403-7. [Google Scholar]
- Stanners, D.; Bourdeau, P. Europe’s Environment: The Dobris Assessment; European Environment Agency: Copenhagen, Denmark, 1995. [Google Scholar]
- Singapore National Government Singapore Green Plan 2030 Key Targets. Available online: https://www.greenplan.gov.sg/key-focus-areas/overview (accessed on 14 March 2022).
- Fang, L.; Wang, Y. Multi-Disciplinary Determination of the Rural/Urban Boundary: A Case Study in Xi’an, China. Sustainability 2018, 10, 2632. [Google Scholar] [CrossRef] [Green Version]
- Maroko, A.R.; Maantay, J.A.; Sohler, N.L.; Grady, K.L.; Arno, P.S. The Complexities of Measuring Access to Parks and Physical Activity Sites in New York City: A Quantitative and Qualitative Approach. Int. J. Health Geogr. 2009, 8, 34. [Google Scholar] [CrossRef] [Green Version]
- Australia Bureau of Statistics Australian Statistical Geography Standard (ASGS). Available online: https://www.abs.gov.au/AUSSTATS/[email protected]/DetailsPage/1270.0.55.001July%202016?OpenDocument (accessed on 23 January 2021).
- Greater Sydney Commission. Greater Sydney Regional Plan; Greater Sydney Commission: Sydney, NSW, Australia, 2018. [Google Scholar]
- Queensland Government. Shaping SEQ—South East Queensland Regional Plan 2017; Queensland Government: Brisbane, QLD, Australia, 2017.
- Victoria State Government. Plan Melbourne 2017–2050; Victoria State Government: Melbourne, VIC, Australia, 2016.
- Australia Bureau of Statistics Census of Population and Housing. Available online: https://www.abs.gov.au/ausstats/[email protected]/7d12b0f6763c78caca257061001cc588/d03e1a299364603eca257ad0000f1efe!OpenDocument (accessed on 23 January 2021).
- Vaughan, K.B.; Kaczynski, A.T.; Wilhelm Stanis, S.A.; Besenyi, G.M.; Bergstrom, R.; Heinrich, K.M. Exploring the Distribution of Park Availability, Features, and Quality Across Kansas City, Missouri by Income and Race/Ethnicity: An Environmental Justice Investigation. Ann. Behav. Med. 2013, 45, S28–S38. [Google Scholar] [CrossRef] [Green Version]
- Matthew McConnachie, M.; Shackleton, C.M. Public Green Space Inequality in Small Towns in South Africa. Habitat Int. 2010, 34, 244–248. [Google Scholar] [CrossRef] [Green Version]
- You, H. Characterizing the Inequalities in Urban Public Green Space Provision in Shenzhen, China. Habitat Int. 2016, 56, 176–180. [Google Scholar] [CrossRef]
- Talen, E. The Spatial Logic of Parks. J. Urban Des. 2010, 15, 473–491. [Google Scholar] [CrossRef]
- Gong, F.; Zheng, Z.-C.; Ng, E. Modeling Elderly Accessibility to Urban Green Space in High Density Cities: A Case Study of Hong Kong. Procedia Environ. Sci. 2016, 36, 90–97. [Google Scholar] [CrossRef] [Green Version]
- Van Herzele, A.; Wiedemann, T. A Monitoring Tool for the Provision of Accessible and Attractive Urban Green Spaces. Landsc. Urban Plan. 2003, 63, 109–126. [Google Scholar] [CrossRef]
- Shoari, N.; Ezzati, M.; Baumgartner, J.; Malacarne, D.; Fecht, D. Accessibility and Allocation of Public Parks and Gardens in England and Wales: A COVID-19 Social Distancing Perspective. PLoS ONE 2020, 15, e0241102. [Google Scholar] [CrossRef]
- Laan, C.M.; Piersma, N. Accessibility of Green Areas for Local Residents. Environ. Sustain. Indic. 2021, 10, 100114. [Google Scholar] [CrossRef]
- Comber, A.; Brunsdon, C.; Green, E. Using a GIS-Based Network Analysis to Determine Urban Greenspace Accessibility for Different Ethnic and Religious Groups. Landsc. Urban Plan. 2008, 86, 103–114. [Google Scholar] [CrossRef] [Green Version]
- Žlender, V.; Ward Thompson, C. Accessibility and Use of Peri-Urban Green Space for Inner-City Dwellers: A Comparative Study. Landsc. Urban Plan. 2017, 165, 193–205. [Google Scholar] [CrossRef] [Green Version]
- Annerstedt van den Bosch, M.; Mudu, P.; Uscila, V.; Barrdahl, M.; Kulinkina, A.; Staatsen, B.; Swart, W.; Kruize, H.; Zurlyte, I.; Egorov, A.I. Development of an Urban Green Space Indicator and the Public Health Rationale. Scand J. Public Health 2016, 44, 159–167. [Google Scholar] [CrossRef] [PubMed]
- Dadvand, P.; Nieuwenhuijsen, M. Green Space and Health. In Integrating Human Health into Urban and Transport Planning: A Framework; Nieuwenhuijsen, M., Khreis, H., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2019; pp. 409–423. ISBN 978-3-319-74983-9. [Google Scholar]
- Hartig, T. Green Space, Psychological Restoration, and Health Inequality. Lancet 2008, 372, 1614–1615. [Google Scholar] [CrossRef]
- Hawken, S.; Rahmat, H.; Sepasgozar, S.M.E.; Zhang, K. The SDGs, Ecosystem Services and Cities: A Network Analysis of Current Research Innovation for Implementing Urban Sustainability. Sustainability 2021, 13, 14057. [Google Scholar] [CrossRef]
- Jennings, V.; Browning, M.H.E.M.; Rigolon, A. Urban Green Space at the Nexus of Environmental Justice and Health Equity. In Urban Green Spaces: Public Health and Sustainability in the United States; Jennings, V., Browning, M.H.E.M., Rigolon, A., Eds.; SpringerBriefs in Geography; Springer International Publishing: Berlin/Heidelberg, Germany, 2019; pp. 47–69. ISBN 978-3-030-10469-6. [Google Scholar]
- Hawken, S.; Han, H.; Pettit, C. Introduction: Open Data and the Generation of Urban Value. In Open Cities | Open Data: Collaborative Cities in the Information Era; Hawken, S., Han, H., Pettit, C., Eds.; Springer: Singapore, 2020; pp. 1–25. ISBN 9789811366055. [Google Scholar]
- Hawken, S.; Han, H.; Pettit, C. Open Cities | Open Data: Collaborative Cities in the Information Era; Palgrave Macmillan: Singapore, 2020. [Google Scholar]
- Fang, X.; Wu, J.; He, C. Assessing Human-Environment System Sustainability Based on Regional Safe and Just Operating Space: The Case of the Inner Mongolia Grassland. Environ. Sci. Policy 2021, 116, 276–286. [Google Scholar] [CrossRef]
- Mathey, J.; Hennersdorf, J.; Lehmann, I.; Wende, W. Qualifying the Urban Structure Type Approach for Urban Green Space Analysis—A Case Study of Dresden, Germany. Ecol. Indic. 2021, 125, 107519. [Google Scholar] [CrossRef]
- Kolosna, C.; Spurlock, D. Uniting Geospatial Assessment of Neighborhood Urban Tree Canopy with Plan and Ordinance Evaluation for Environmental Justice. Urban For. Urban Green. 2019, 40, 215–223. [Google Scholar] [CrossRef]
- Wortzel, A. State Laws Provide New Pathways for Environmental Justice Claims. Nat. Resour. Environ. 2021, 36, 5. [Google Scholar]
- Haaland, C.; van den Bosch, C.K. Challenges and Strategies for Urban Green-Space Planning in Cities Undergoing Densification: A Review. Urban For. Urban Green. 2015, 14, 760–771. [Google Scholar] [CrossRef]
No. | Method | Authorities and Organization | Metric Type | Metric Used in This Article |
---|---|---|---|---|
1 | No person should live more than 300 m from their nearest area of green space [73] | Natural England of UK | Proximity | Distance to the nearest UGS (m) |
2 | The UK urban dwellers should have access to 20 ha of urban green space within a 300 m distance to the place of residence [73] | Natural England of UK |
| Accessible UGS within 500 m around SA1 boundary (km2) |
3 | Can access any green site within 300 m of minimum administrative boundary [73] | Natural England of UK |
| Distance to the nearest UGS (m) |
4 | Provision should be made of at least 2 ha of accessible natural greenspace per 1000 population [73] | Natural England of UK | Population Share | UGS per capita (m2) |
5 | Every resident should have access to UGS of a minimum of 0.5 ha within a 500 m distance from home [53] | Berlin’s Department of Urban Development and the Environment |
| Accessible UGS within 500 m radius |
6 | A minimum green provision of 60 m2 per-capita within a 500 m radius around households [75] | Netherlands |
| Accessible UGS per capita within 500 m of SA1 area (m2) |
7 | Every household in Germany should have access to urban green space within walking distance [70] | National Strategy on Biological Diversity in Germany | Proximity | Distance to the nearest UGS (m) |
8 | The SDG indicator of urban greenness is the total amount of green area in square meters [76] | European Commission, Joint Research Centre of EU | Area Based Provision | UGS cover (%) |
9 | People should have access to urban green within 15 min walking distance, which is approximately 900–1000 m [77] | European Environment Agency (EEA) |
| People living within 1000 m of UGS |
10 | Cities provide a minimum of 9 m2 of green area per inhabitant [74] | World Health Organization | Population Share | UGS per capita (m2) |
11 | Residents live within a 15 min walk of green areas [74] | World Health Organization |
|
|
12 | Every household will be within a 10-min walk from a park [78] | Green Plan 2030, Singapore |
|
|
13 | Create 20% more and better green space in urban areas in Australia by 2020 [69] | Program of Greener space better places, Australia | Area Based Provision | UGS cover (km2) |
14 | A target of increasing urban green cover by 20% in metropolitan Adelaide by 2045 [72] | Government of South Australia | Area Based Provision | UGS cover (%) |
15 | Parkland thresholds per 1000 residents based on population density: Low for 20.3 acres; intermediate-low for 13.5 acres; intermediate-high for 7.3 acres; high for 6.8 acres [71] | U.S. Green Building Council | Population Share | UGS per capita (m2) |
16 | Population located within a 1/2 miles or 10-min walk of public parkland: low for 70% and high for 85% [71] | U.S. Green Building Council |
|
|
Metric Type | Metric | References | Calculation Method for Maps | Formula Applied | |
---|---|---|---|---|---|
1 | Area based provision | UGS cover (km2) | [69,86,87] | Total green space area in a SA1 | |
2 | UGS proportion (%) | [72,76,87] | Proportion of green space area in a SA1 | ||
3 | Population share | UGS per capita (m2) | [53,71,73,74] | Total green space area in a SA1 divided by the total population of a SA1 | |
4 | Green space catchment | People living within 500 m of UGS | [74,78,88] | Population which located in the 500 m catchment of total green space | |
5 | People living within 500 m of UGS (%) | [35,71] | Proportion of population in a SA1, which located in the 500 m catchment of total green space | ||
6 | People living within 1000 m of UGS | [74,77,78,88] | Population located in the 1000 m catchment of total green space | ||
7 | People living within 1000 m of UGS (%) | [35,71] | Proportion of population in a SA1, which located in the 1000 m catchment of total green space | ||
8 | Proximity | Distance to the nearest UGS(m) | [54,70,73,89] | Average of the distance from the centre of census mesh block to the nearest green space in SA1. | |
9 |
| Accessible UGS within 500 m radius | [53,90,91] | Average green space area within 500 m around the centroid point of Mesh Block in each SA1 | |
10 | Accessible UGS within 500 m of SA1 area (km2) | [19,73,75,90,91] | Green space area located at 500 m around the boundary of SA1. | ||
11 |
| Accessible UGS per capita within 500 m of SA1 area (m2) | [92,93] | Green space area per capita of 500 m around the boundary of SA1. |
City Overview (Figure 3) | Area (km2) | Population | Population Density (People/km2) |
---|---|---|---|
Metropolitan Zones | |||
Greater Sydney | 12,367.542 | 4,822,739 | 389.951 |
Inner urban | 200.435 | 1,050,552 | 5241.360 |
Suburban | 1643.621 | 2,981,318 | 1813.872 |
Peri urban | 10,527.638 | 790,869 | 75.123 |
Greater Melbourne | 9991.464 | 4,484,394 | 448.823 |
Inner urban | 286.944 | 1,053,515 | 3671.499 |
Suburban | 2006.511 | 2,608,332 | 1299.934 |
Peri urban | 7698.008 | 822,547 | 106.852 |
Greater Brisbane | 15,829.990 | 2,270,743 | 143.446 |
Inner urban | 123.973 | 370,750 | 2990.566 |
Suburban | 2274.882 | 1,563,451 | 687.267 |
Peri urban | 13,431.135 | 336,542 | 25.057 |
Greater Adelaide | 3260.732 | 1,295,649 | 397.349 |
Inner urban | 204.728 | 439,819 | 2148.312 |
Suburban | 913.294 | 698,958 | 765.315 |
Peri urban | 2142.710 | 156,872 | 73.212 |
Urban Structure | Greater Sydney | Greater Melbourne | Greater Brisbane | Greater Adelaide | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Inner Urban | Suburban | Peri Urban | Inner Urban | Suburban | Peri Urban | Inner Urban | Suburban | Peri Urban | Inner Urban | Suburban | Peri Urban | ||||||
Green Space Cover (Figure 4 and Figure 5) | UGS cover (km2) | 7049.850 | 28.751 | 505.999 | 6515.100 | 2054.637 | 40.263 | 328.201 | 1686.173 | 2849.958 | 17.671 | 894.020 | 1938.267 | 352.688 | 24.532 | 199.538 | 128.618 |
UGS cover (%) | 57.003% | 14.344% | 31.101% | 61.842% | 20.564% | 14.032% | 16.357% | 21.904% | 18.004% | 14.254% | 39.300% | 14.431% | 10.816% | 11.983% | 21.848% | 6.003% | |
UGS per capita (m2) | 1461.794 | 27.367 | 171.463 | 8232.122 | 458.175 | 38.217 | 125.828 | 2049.941 | 1255.077 | 47.663 | 571.825 | 5759.361 | 272.210 | 55.778 | 285.479 | 819.893 | |
Green Space Catchments (Figure 6, Figure 7 and Figure 8) | People live within 500 m of UGS | 4,428,250 | 988,162 | 2,818,902 | 621,186 | 3812,694 | 953,760 | 2,303,062 | 555,872 | 1,953,895 | 334,132 | 1,442,754 | 177,009 | 1,081,121 | 355,486 | 643,451 | 82,184 |
People live within 500 m of UGS (%) | 91.820% | 94.061% | 94.772% | 78.856% | 85.021% | 90.531% | 88.296% | 67.579% | 86.047% | 90.123% | 92.280% | 52.596% | 83.442% | 80.826% | 92.059% | 52.389% | |
People live within 1000 m of UGS | 4,731,474 | 1,050,552 | 2,977,321 | 703,601 | 4353,962 | 1,052,958 | 2,589,854 | 711,150 | 2,160,867 | 370,709 | 1,553,480 | 236,678 | 1,233,855 | 431,077 | 692,349 | 110,429 | |
People live within 1000 m of UGS (%) | 98.108% | 100.000% | 99.866% | 88.966% | 97.091% | 99.947% | 99.292% | 86.457% | 95.161% | 99.989% | 99.362% | 70.326% | 95.231% | 98.012% | 99.054% | 70.394% | |
Residential Green Space Accessibility (average of SA1) (Figure 9, Figure 10, Figure 11, Figure 12 and Figure 13) | Distance to the nearest UGS (m) | 242.162 | 220.692 (0~843.061) | 195.174 (0~2136.714) | 432.072 (0~5296.344) | 330.489 | 246.024 (0~1069.563) | 260.308 (0~5149.360) | 662.025 (0~9517.016) | 365.952 | 247.957 (0~923.522) | 220.839 (0~2371.375) | 1207.710 (0~11,133.712) | 387.511 | 315.634 (0~1485.218) | 234.318 (0~3996.420) | 1199.498 (0~9753.489) |
Accessible UGS within 500 m radius | 113,663.87 14.48% | 73,524.449 9.37% | 113,242.299 14.43% | 163,690.623 20.85% | 83,123.345 10.59% | 78,632.628 10.02% | 85,993.825 10.95% | 80,245.694 10.22% | 105,276.26 13.41% | 78,140.159 9.95% | 114,905.745 14.64% | 93,598.745 11.92% | 91,501.032 11.66% | 67,888.989 8.65% | 109,812.515 13.99% | 75,235.85 9.58% | |
Accessible UGS within 500 m of SA1 area (km2) | 1.033 | 0.155 (0~2.643) | 0.392 (0~147.472) | 4.318 (0~2307.482) | 0.484 | 0.184 (0~2.916) | 0.317 (0~67.804) | 1.395 (0~252.911) | 0.917 | 0.202 (0~1.919) | 0.567 (0~268.124) | 3.420 (0~714.573) | 0.383 | 0.186 (0~2.629) | 0.439 (0~32.163) | 0.637 (0~32.836) | |
Accessible UGS per capita within 500 m of SA1 area (m2) | 12,990.541 | 964.854 | 6064.699 | 51,509.332 | 14,435.050 | 2088.205 | 3487.059 | 65,144.232 | 16,834.445 | 1468.99 | 10,696.811 | 63,862.693 | 5228.744 | 1654.13 | 7829.983 | 3376.823 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsu, Y.-Y.; Hawken, S.; Sepasgozar, S.; Lin, Z.-H. Beyond the Backyard: GIS Analysis of Public Green Space Accessibility in Australian Metropolitan Areas. Sustainability 2022, 14, 4694. https://doi.org/10.3390/su14084694
Hsu Y-Y, Hawken S, Sepasgozar S, Lin Z-H. Beyond the Backyard: GIS Analysis of Public Green Space Accessibility in Australian Metropolitan Areas. Sustainability. 2022; 14(8):4694. https://doi.org/10.3390/su14084694
Chicago/Turabian StyleHsu, Yi-Ya, Scott Hawken, Samad Sepasgozar, and Zih-Hong Lin. 2022. "Beyond the Backyard: GIS Analysis of Public Green Space Accessibility in Australian Metropolitan Areas" Sustainability 14, no. 8: 4694. https://doi.org/10.3390/su14084694
APA StyleHsu, Y. -Y., Hawken, S., Sepasgozar, S., & Lin, Z. -H. (2022). Beyond the Backyard: GIS Analysis of Public Green Space Accessibility in Australian Metropolitan Areas. Sustainability, 14(8), 4694. https://doi.org/10.3390/su14084694