Barley Straw Biochar and Compost Affect Heavy Metal Transport in Soil and Uptake by Potatoes Grown under Wastewater Irrigation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
Mineral Components | Values (mg kg−1) | Soil Properties | Values |
---|---|---|---|
N | 3.67 ± 0.21 | Sand (%) | 92.2 |
P | 74.7 ± 3.52 | Silt (%) | 4.3 |
K | 54.7 ± 6.03 | Clay (%) | 3.5 |
Mg | 50.0 ± 2.93 | pH | 5.61 ± 0.19 |
Ca | 754 ± 48.15 | SOM (%) | 1.82 ± 0.05 |
Al | 1689.2 ± 96.85 | EC (mS cm−1) | 66.43 ± 11.13 |
Mn | 1.9 ± 0.22 | ZPC | 3.40 |
Cd | <LOD | CEC (cmol(+) kg−1) | 3.35 ± 0.33 |
Cr | 21.1 ± 2.81 | C (%) | 0.82 ± 0.14 |
Cu | 6.8 ± 1.24 | N (%) | 0.085 |
Fe | 8822 ± 352.14 | C: N Ratio | 9.61 ± 0.72 |
Pb | <LOD | DOC (mg kg−1) | 29.52 ± 2.15 |
Zn | 22 ± 5.14 | Bulk Density (Mg m−3) | 1.35 |
2.2. Physicochemical Characterization of Biochar and Compost
2.3. Sample Extraction and Quantification
2.4. Statistical Analysis
3. Results
3.1. Effects of Soil Amendment on Soil Properties
3.2. Effect of Soil Amendments on Heavy Metals Mobility in Soil
3.3. Effect of Soil Amendments on Heavy Metals Uptake by Plant
4. Discussion
4.1. Effect of Soil Amendments on Soil Properties and Heavy Metal Mobility
4.2. Effect of Soil Amendments on Heavy Metal Uptake by Plant
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Parameter | Value (%, w/w) | Element Concentrations (mg kg−1) | * Allowable Thresholds (mg kg−1) | ||||
---|---|---|---|---|---|---|---|
BC | CP | Element | BC | CP | BC | CP | |
Moisture TGA | 3.88 | 4.38 | Cd | <LOD | <LOD | 1.40 | 20.00 |
Ash TGA | 19.29 | 64.43 | Cr | 29.80 | 19.91 | 64 | 1060 |
Volatile Matter | 18.19 | 29.09 | Cu | <LOD | 44.22 | 63 | 757 |
Fixed Carbon | 62.53 | 6.47 | Fe | 706.71 | 8205.25 | NA | NA |
Carbon | 70.40 | 18.80 | Pb | <LOD | <LOD | 70 | 505 |
Hydrogen | 2.20 | 1.83 | Zn | 33.11 | 90.01 | 200 | 1850 |
Nitrogen | 1.07 | 1.28 | N | 5.12 | 36.81 | NA | NA |
Total Sulfur | 0.53 | 0.16 | P | 244.02 | 763.72 | NA | NA |
Oxygen | 6.47 | 13.47 | K | 18,201.05 | 4324.15 | NA | NA |
SSA (m2 g−1) | 8.5 | 2.05 | Mg | 520.23 | 1008.01 | NA | NA |
pH | 9.61 | 7.87 | Ca | 750.09 | 4991.21 | NA | NA |
EC (mS cm−1) | 4302.02 | 1226.61 | Mn | 40.02 | 40.15 | NA | NA |
Treatments | 0–2 cm | 2–4 cm | 4–6 cm | 6–8 cm | 8–10 cm |
---|---|---|---|---|---|
2017 | |||||
BC0CP0 | 60.10 ± 2.10 a | 42.42 ± 12.15 a | 25.67 ± 8.84 a | 24.06 ± 1.89 a | 20.58 ± 1.45 a |
BC1CP0 | 60.77 ± 6.60 a | 36.31 ± 5.69 a | 20.52 ± 2.45 a | 25.44 ± 5.62 a | 21.23 ± 1.06 a |
BC3CP0 | 64.92 ± 8.78 a | 32.58 ± 9.89 a | 23.62 ± 2.35 a | 24.48 ± 4.32 a | 19.34 ± 0.64 a |
BC0CP7.5 | 66.73 ± 21.54 a | 31.99 ± 4.84 a | 21.97 ± 1.12 a | 23.15 ± 3.94 a | 22.81 ± 1.31 a |
BC1CP7.5 | 90.46 ± 23.38 a | 31.55 ± 3.96 a | 24.83 ± 3.52 a | 26.11 ± 5.63 a | 22.41 ± 3.44 a |
BC3CP7.5 | 90.94 ± 38.87 a | 41.17 ± 13.70 a | 23.23 ± 1.98 a | 23.89 ± 5.25 a | 22.01 ± 5.46 a |
2018 | |||||
BC0CP0 | 30.60 ± 2.78 a | 33.02 ± 9.01 a | 29.51 ± 3.41 bc | 27.14 ± 2.37 a | 23.42 ± 2.39 bc |
BC1CP0 | 34.70 ± 5.34 a | 32.52 ± 6.44 a | 32.87 ± 4.63 bc | 32.65 ± 6.73 a | 26.55 ± 2.14 ab |
BC3CP0 | 35.03 ± 9.15 a | 29.13 ± 3.01 a | 26.14 ± 4.08 c | 24.76 ± 6.30 a | 22.44 ± 3.11 bc |
BC0CP7.5 | 39.36 ± 3.52 a | 36.04 ± 6.67 a | 41.50 ± 2.85 a | 35.13 ± 3.30 a | 24.56 ± 1.14 ab |
BC1CP7.5 | 41.25 ± 8.99 a | 37.92 ± 2.25 a | 36.10 ± 5.49 ab | 39.15 ± 15.97 a | 28.48 ± 2.17 ab |
BC3CP7.5 | 37.99 ± 5.65 a | 34.30 ± 6.87 a | 33.94 ± 6.65 abc | 36.83 ± 9.34 a | 30.89 ± 7.55 a |
Treatments | 0–2 cm | 2–4 cm | 4–6 cm | 6–8 cm | 8–10 cm |
---|---|---|---|---|---|
2017 | |||||
BC0CP0 | 292.00 ± 6.88 a | 172.96 ± 111.01 a | 10.77 ± 0.82 c | 28.54 ± 3.75 a | <LOD |
BC1CP0 | 319.80 ± 39.43 a | 122.97 ± 41.06 a | 23.53 ± 2.60 abc | 30.03 ± 22.08 a | <LOD |
BC3CP0 | 354.86 ± 37.47 a | 109.92 ± 54.42 a | 32.05 ± 17.91 ab | 44.51 ± 18.54 a | <LOD |
BC0CP7.5 | 357.89 ± 136.83 a | 43.85 ± 5.69 a | 23.68 ± 3.86 abc | 23.90 ± 7.70 a | <LOD |
BC1CP7.5 | 512.71 ± 163.66 a | 116.12 ± 74.16 a | 36.34 ± 16.16 a | 44.21 ± 24.96 a | <LOD |
BC3CP7.5 | 478.87 ± 183.55 a | 139.99 ± 97.67 a | 15.78 ± 2.08 bc | 24.60 ± 19.00 a | <LOD |
2018 | |||||
BC0CP0 | 366.91 ± 75.91 b | 131.77 ± 113.43 a | 144.45 ± 150.17 a | 73.84 ± 38.46 ab | 37.93 ± 29.67 a |
BC1CP0 | 345.32 ± 45.81 b | 230.55 ± 259.36 a | 59.17 ± 47.10 a | 88.19 ± 75.93 ab | 38.89 ± 39.80 a |
BC3CP0 | 383.83 ± 118.61 b | 131.31 ± 134.81 a | 42.78 ± 29.08 a | 29.13 ± 21.77 b | 7.60 ± 2.83 a |
BC0CP7.5 | 456.28 ± 180.58 b | 179.42 ± 72.22 a | 178.48 ± 88.65 a | 87.25 ± 50.13 ab | 23.01 ± 16.62 a |
BC1CP7.5 | 556.85 ± 166.02 ab | 330.90 ± 112.52 a | 167.98 ± 110.62 a | 163.29 ± 96.02 a | 110.85 ± 176.82 a |
BC3CP7.5 | 724.91 ± 133.58 a | 150.97 ± 110.91 a | 191.96 ± 62.72 a | 148.18 ± 18.68 a | 29.35 ± 33.96 a |
Treatments | 0–2 cm | 2–4 cm | 4–6 cm | 6–8 cm | 8–10 cm |
---|---|---|---|---|---|
2017 | |||||
BC0CP0 | 15,424.44 ± 305.48 a | 15,584.31 ± 410.82 a | 14,815.54 ± 1158.52 a | 13,757.77 ± 879.31 a | 12,296.06 ± 1384.47 a |
BC1CP0 | 15,638.91 ± 1229.95 a | 15,484.50 ± 423.90 a | 13,184.62 ± 483.58 a | 14,213.65 ± 983.29 a | 13,620.87 ± 934.55 a |
BC3CP0 | 14,899.25 ± 707.55 a | 14,082.52 ± 2417.82 a | 14,381.73 ± 1195.88 a | 12,688.85 ± 2433.57 a | 11,820.13 ± 769.12 a |
BC0CP7.5 | 15,707.36 ± 1024.78 a | 14,612.88 ± 642.89 a | 13,335.80 ± 959.10 a | 12,790.16 ± 1299.73 a | 13,514.55 ± 757.46 a |
BC1CP7.5 | 16,545.92 ± 756.84 a | 14,592.07 ± 468.43 a | 13,356.42 ± 837.48 a | 13,357.83 ± 801.69 a | 12,428.86 ± 247.42 a |
BC3CP7.5 | 16,126.18 ± 1051.67 a | 16,235.98 ± 651.43 a | 13,230.18 ± 986.85 a | 14,254.73 ± 2597.80 a | 13,042.83 ± 2498.00 a |
2018 | |||||
BC0CP0 | 15,766.43 ± 2054.19 a | 14,398.20 ± 1340.50 bc | 14,795.42 ± 1535.24 ab | 13,468.15 ± 385.03 ab | 12,657.73 ± 631.50 ab |
BC1CP0 | 15,589.19 ± 1383.89 a | 14,574.01 ± 1386.05 b | 14,216.98 ± 1453.63 ab | 14,052.59 ± 1426.64 a | 13,623.98 ± 311.68 ab |
BC3CP0 | 15,287.49 ± 3444.10 a | 12,887.64 ± 834.86 c | 13,047.33 ± 512.72 b | 11,618.55 ± 577.17 b | 12,117.48 ± 1068.98 b |
BC0CP7.5 | 16,938.51 ± 1454.31 a | 14,872.43 ± 263.44 ab | 15,342.64 ± 1271.16 a | 13,276.33 ± 646.01 ab | 12,677.46 ± 1256.38 ab |
BC1CP7.5 | 16,477.21 ± 491.24 a | 16,248.04 ± 339.57 a | 14,650.58 ± 1725.93 ab | 13,947.65 ± 1831.53 a | 13,761.56 ± 1047.86 a |
BC3CP7.5 | 16,671.64 ± 739.49 a | 14,157.63 ± 411.40 bc | 14,328.70 ± 542.76 ab | 13,680.20 ± 569.25 a | 12,154.92 ± 832.70 ab |
Treatments | Cu | Fe | Zn |
---|---|---|---|
2017 | |||
BC0CP0 | 59.94 ± 4.73 a | 10,300.64 ± 562.33 a | 23.03 ± 4.39 a |
BC1CP0 | 54.61 ± 14.27 a | 10,517.90 ± 1130.49 a | 27.81 ± 1.99 a |
BC3CP0 | 71.79 ± 23.97 a | 10,562.97 ± 1144.02 a | 26.33 ± 1.34 a |
BC0CP7.5 | 52.87 ± 3.85 a | 10,042.56 ± 1215.49 a | 25.53 ± 3.76 a |
BC1CP7.5 | 59.31 ± 24.24 a | 12,353.07 ± 1050.01 a | 27.93 ± 4.92 a |
BC3CP7.5 | 89.08 ± 19.83 a | 10,259.12 ± 670.99 a | 32.35 ± 6.27 a |
2018 | |||
BC0CP0 | 67.71 ± 15.21 a | 10,318.95 ± 774.80 ab | 24.83 ± 3.22 a |
BC1CP0 | 62.87 ± 18.84 a | 12,403.26 ± 1802.17 a | 31.89 ± 1.35 a |
BC3CP0 | 61.87 ± 14.31 a | 11,608.67 ± 1179.99 ab | 25.22 ± 5.28 a |
BC0CP7.5 | 79.29 ± 31.17 a | 10,049.01 ± 622.05 ab | 24.19 ± 2.21 a |
BC1CP7.5 | 59.88 ± 4.92 a | 10,632.91 ± 507.26 ab | 24.34 ± 2.09 a |
BC3CP7.5 | 68.14 ± 20.76 a | 9588.95 ± 365.98 b | 24.66 ± 2.24 a |
Heavy Metal | Treatments | Flesh | Skin | Root | Stem | Leaves |
---|---|---|---|---|---|---|
Cr | BC0CP0 | 0.10 ± 0.00 a | 0.27 ± 0.05 b | 2.09 ± 0.13 b | 0.42 ± 0.00 ab | 2.66 ± 1.24 ab |
BC1CP0 | 0.25 ± 0.17 a | 0.60 ± 0.17 a | 1.83 ± 0.49 b | 0.35 ± 0.10 b | 0.49 ± 0.23 b | |
BC3CP0 | 0.20 ± 0.04 a | 0.21 ± 0.04 b | 2.62 ± 0.44 ab | 0.80 ± 0.62 ab | 0.75 ± 0.34 b | |
BC0CP7.5 | 0.28 ± 0.18 a | 0.36 ± 0.09 b | 2.22 ± 1.20 ab | 0.22 ± 0.10 b | 4.65 ± 0.66 a | |
BC1CP7.5 | 0.22 ± 0.03 a | 0.45 ± 0.15 ab | 2.73 ± 1.28 ab | 2.14 ± 1.77 a | 4.47 ± 3.46 a | |
BC3CP7.5 | 0.17 ± 0.09 a | 0.44 ± 0.11 ab | 3.59 ± 0.38 a | 0.45 ± 0.19 b | 0.91 ± 0.38 b | |
Pb | BC0CP0 | 0.24 ± 0.17 ab | 0.41 ± 0.22 b | 27.12 ± 3.02 a | 2.55 ± 0.19 a | 19.54 ± 10.47 a |
BC1CP0 | 0.08 ± 0.03 b | 1.38 ± 0.59 a | 26.46 ± 9.99 a | 2.51 ± 1.09 a | 5.04 ± 5.36 a | |
BC3CP0 | 0.22 ± 0.146 ab | 0.39 ± 0.08 ab | 29.29 ± 10.02 a | 5.61 ± 4.08 a | 3.11 ± 2.06 a | |
BC0CP7.5 | 0.04 ± 0.01 b | 1.17 ± 0.95 ab | 12.43 ± 1.13 a | 1.35 ± 1.18 a | 21.21 ± 17.86 a | |
BC1CP7.5 | 0.35 ± 0.01 a | 1.34 ± 0.19 ab | 27.54 ± 9.80 a | 9.37 ± 8.68 a | 19.69 ± 21.57 a | |
BC3CP7.5 | 0.29 ± 0.04 a | 1.56 ± 0.24 a | 34.01 ± 9.13 a | 2.50 ± 2.21 a | 4.46 ± 2.21 a | |
Fe | BC0CP0 | 22.51 ± 5.21 a | 77.4 ± 21.06 a | 405.04 ± 45.93 a | 44.01 ± 3.74 a | 306.97 ± 115.31 a |
BC1CP0 | 23.09 ± 7.61 a | 80.16 ± 29.5 a | 401.97 ± 185.15 a | 46.27 ± 24.10 a | 190.29 ± 62.08 a | |
BC3CP0 | 21.55 ± 0.65 a | 67.10 ± 23.0 a | 375.04 ± 60.40 a | 69.15 ± 35.61 a | 145.64 ± 24.21 a | |
BC0CP7.5 | 22.23 ± 1.23 a | 51.54 ± 15.4 a | 257.03 ± 54.70 a | 24.38 ± 8.85 a | 310.61 ± 212.25 a | |
BC1CP7.5 | 27.25 ± 5.38 a | 55.38 ± 21.3 a | 359.00 ± 93.70 a | 86.21 ± 64.66 a | 202.26 ± 105.93 a | |
BC3CP7.5 | 23.30 ± 3.80 a | 44.66 ± 8.51 a | 344.90 ± 42.87 a | 32.86 ± 12.27 a | 162.71 ± 32.01 a |
Heavy Metal | Treatments | Flesh | Skin | Root | Stem | Leaves |
---|---|---|---|---|---|---|
Cr | BC0CP0 | 0.04 ± 0.01 a | 0.37 ± 0.04 ab | 2.79 ± 0.90 a | 0.26 ± 0.16 a | 0.37 ± 0.11 a |
BC1CP0 | 0.09 ± 0.08 a | 0.28 ± 0.01 abc | 1.86 ± 1.04 ab | 0.15 ± 0.04 a | 0.26 ± 0.05 a | |
BC3CP0 | 0.06 ± 0.01 a | 0.21 ± 0.10 c | 1.55 ± 0.36 b | 0.24 ± 0.08 a | 0.27 ± 0.14 a | |
BC0CP7.5 | 0.04 ± 0.00 a | 0.43 ± 0.14 a | 1.97 ± 0.49 ab | 0.06 ± 0.01 a | 0.33 ± 0.07 a | |
BC1CP7.5 | 0.05 ± 0.00 a | 0.41 ± 0.05 a | 2.48 ± 0.36 ab | 0.39 ± 0.37 a | 0.41 ± 0.12 a | |
BC3CP7.5 | 0.05 ± 0.00 a | 0.23 ± 0.08 bc | 1.66 ± 0.16 ab | 0.17 ± 0.12 a | 0.26 ± 0.08 a | |
Pb | BC0CP0 | 0.03 ± 0.01 a | 2.32 ± 0.01 a | 38.74 ± 18.16 ab | 0.60 ± 0.32 a | 2.55 ± 0.19 a |
BC1CP0 | 0.04 ± 0.02 a | 2.29 ± 2.25 a | 41.72 ± 13.35 ab | 1.16 ± 0.72 a | 2.51 ± 1.09 a | |
BC3CP0 | 0.04 ± 0.01 a | 0.58 ± 0.21 a | 29.00 ± 14.60 b | 0.66 ± 0.97 a | 5.61 ± 4.08 a | |
BC0CP7.5 | 0.03 ± 0.02 a | 1.60 ± 0.17 a | 18.32 ± 6.92 b | 0.60 ± 0.06 a | 1.35 ± 1.18 a | |
BC1CP7.5 | 0.03 ± 0.01 a | 2.67 ± 0.78 a | 59.13 ± 21.55 a | 0.47 ± 0.10 a | 9.37 ± 8.68 a | |
BC3CP7.5 | 0.04 ± 0.02 a | 2.56 ± 2.44 a | 25.60 ± 17.98 b | 0.80 ± 0.30 a | 2.50 ± 2.21 a | |
Fe | BC0CP0 | 26.25 ± 1.37 a | 134.72 ± 87.14 a | 1021.98 ± 383.32 a | 69.18 ± 24.81 a | 231.93 ± 54.16 a |
BC1CP0 | 19.1 ± 5.28 ab | 83.02 ± 2.23 a | 565.36 ± 87.35 b | 55.41 ± 40.91 a | 167.44 ± 23.92 a | |
BC3CP0 | 19.1 ± 3.85 ab | 67.17 ± 34.18 a | 580.17 ± 143.41 b | 28.83 ± 9.04 a | 166.36 ± 40.59 a | |
BC0CP7.5 | 21.03 ± 6.6 ab | 111.76 ± 67.2 a | 602.66 ± 101.02 b | 68.00 ± 32.42 a | 170.29 ± 38.47 a | |
BC1CP7.5 | 23.55 ± 3.9 ab | 70.37 ± 5.19 a | 963.56 ± 44.25 a | 31.58 ± 6.52 a | 195.26 ± 60.15 a | |
BC3CP7.5 | 18.42 ± 3.02 b | 42.70 ± 15.68 a | 529.24 ± 153.27 b | 57.32 ± 22.98 a | 166.00 ± 63.28 a |
References
- FAO. FAO Statistical Yearbook 2013: World Food and Agriculture; FAO: Rome, Italy, 2013. [Google Scholar]
- FAO. Water for sustainable food and agriculture. In A Report Produced for the G20 Presidency of Germany; Food and Agriculture Organization of the United Nations: Rome, Italy, 2017. [Google Scholar]
- Kunhikrishnan, A.; Bolan, N.S.; Müller, K.; Laurenson, S.; Naidu, R.; Kim, W.-I. The influence of wastewater irrigation on the transformation and bioavailability of heavy metal (loid) s in soil. Adv. Agron. 2012, 115, 215–297. [Google Scholar] [CrossRef]
- ATSDR (Agency for Toxic Substances and Diseases Registry). Priority List of Hazardous Substances. 2013. Available online: https://www.atsdr.cdc.gov/ (accessed on 8 July 2021).
- Han, S.-H.; Kim, D.-H.; Lee, J.-C. Cadmium and zinc interaction and phytoremediation potential of seven Salix caprea clones. J. Ecol. Environ. 2010, 33, 245–251. [Google Scholar] [CrossRef] [Green Version]
- Tőzsér, D.; Magura, T.; Simon, E. Heavy metal uptake by plant parts of willow species: A meta-analysis. J. Hazard. Mater. 2017, 336, 101–109. [Google Scholar] [CrossRef] [Green Version]
- Vassilev, A.; Perez-Sanz, A.; Semane, B.; Carleer, R.; Vangronsveld, J. Cadmium accumulation and tolerance of two Salix genotypes hydroponically grown in presence of cadmium. J. Plant Nutr. 2005, 28, 2159–2177. [Google Scholar] [CrossRef]
- Dushenkov, V.; Kumar, P.N.; Motto, H.; Raskin, I. Rhizofiltration: The use of plants to remove heavy metals from aqueous streams. Environ. Sci. Technol. 1995, 29, 1239–1245. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Feng, Y.; He, Z.; Stoffella, P.J. Molecular mechanisms of heavy metal hyperaccumulation and phytoremediation. J. Trace Elem. Med. Biol. 2005, 18, 339–353. [Google Scholar] [CrossRef] [PubMed]
- Djingova, R.; Kuleff, I. Instrumental techniques for trace analysis. In Trace Metals in the Environment; Markert, B., Friese, K., Eds.; Elsevier: Amsterdam, The Netherlands, 2000; pp. 137–185. [Google Scholar] [CrossRef]
- Jones, S.; Bardos, R.P.; Kidd, P.S.; Mench, M.; de Leij, F.; Hutchings, T.; Cundy, A.; Joyce, C.; Soja, G.; Friesl-Hanl, W. Biochar and compost amendments enhance copper immobilisation and support plant growth in contaminated soils. J. Environ. Manag. 2016, 171, 101–112. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wang, H.; He, L.; Lu, K.; Sarmah, A.; Li, J.; Bolan, N.S.; Pei, J.; Huang, H. Using biochar for remediation of soils contaminated with heavy metals and organic pollutants. Environ. Sci. Pollut Res. 2013, 20, 8472–8483. [Google Scholar] [CrossRef]
- Dhiman, J.; Prasher, S.O.; ElSayed, E.; Patel, R.; Nzediegwu, C.; Mawof, A. Use of polyacrylamide superabsorbent polymers and plantain peel biochar to reduce heavy metal mobility and uptake by wastewater-irrigated potato plants. Trans. ASABE 2020, 63, 11–28. [Google Scholar] [CrossRef]
- Nzediegwu, C.; Prasher, S.; Elsayed, E.; Dhiman, J.; Mawof, A.; Patel, R. Effect of biochar on heavy metal accumulation in potatoes from wastewater irrigation. J. Environ. Manag. 2019, 232, 153–164. [Google Scholar] [CrossRef]
- Nzediegwu, C.; Prasher, S.; Elsayed, E.; Dhiman, J.; Mawof, A.; Patel, R. Impact of soil biochar incorporation on the uptake of heavy metals present in wastewater by spinach plants. Water Air Soil Pollut. 2020, 231, 123. [Google Scholar] [CrossRef]
- Smith, J.L.; Collins, H.P. Management of organisms and their processes in soils. In Soil Microbiology, Ecology and Biochemistry, 3rd ed.; Paul, E.A., Ed.; Academic Press: Oxford, UK, 2007; pp. 483–486. [Google Scholar] [CrossRef]
- Kocasoy, G.; Güvener, Z. Efficiency of compost in the removal of heavy metals from the industrial wastewater. Environ. Geol. 2009, 57, 291–296. [Google Scholar] [CrossRef]
- Beesley, L.; Moreno-Jiménez, E.; Gomez-Eyles, J.L. Effects of biochar and greenwaste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil. Environ. Pollut. 2010, 158, 2282–2287. [Google Scholar] [CrossRef] [PubMed]
- Kästner, M.; Miltner, A. Application of compost for effective bioremediation of organic contaminants and pollutants in soil. Appl. Microbiol. Biotechnol. 2016, 100, 3433–3449. [Google Scholar] [CrossRef] [PubMed]
- Khan, K.Y.; Ali, B.; Cui, X.; Feng, Y.; Yang, X.; Stoffella, P.J. Impact of different feedstocks derived biochar amendment with cadmium low uptake affinity cultivar of pak choi (Brassica rapa ssb. chinensis L.) on phytoavoidation of Cd to reduce potential dietary toxicity. Ecotoxicol. Environ. Saf. 2017, 141, 129–138. [Google Scholar] [CrossRef]
- Kim, H.-S.; Kim, K.-R.; Kim, H.-J.; Yoon, J.-H.; Yang, J.E.; Ok, Y.S.; Owens, G.; Kim, K.-H. Effect of biochar on heavy metal immobilization and uptake by lettuce (Lactuca sativa L.) in agricultural soil. Environ. Earth Sci. 2015, 74, 1249–1259. [Google Scholar] [CrossRef]
- Li, Y.; Pei, G.; Qiao, X.; Zhu, Y.; Li, H. Remediation of cadmium contaminated water and soil using vinegar residue biochar. Environ. Sci. Pollut. Res. 2018, 25, 15754–15764. [Google Scholar] [CrossRef]
- Lomaglio, T.; Hattab-Hambli, N.; Miard, F.; Lebrun, M.; Nandillon, R.; Trupiano, D.; Scippa, G.S.; Gauthier, A.; Motelica-Heino, M.; Bourgerie, S. Cd, Pb, and Zn mobility and (bio) availability in contaminated soils from a former smelting site amended with biochar. Environ. Sci. Pollut. Res. 2018, 25, 25744–25756. [Google Scholar] [CrossRef] [Green Version]
- Egene, C.E.; Van Poucke, R.; Ok, Y.S.; Meers, E.; Tack, F. Impact of organic amendments (biochar, compost and peat) on Cd and Zn mobility and solubility in contaminated soil of the Campine region after three years. Sci. Total Environ. 2018, 626, 195–202. [Google Scholar] [CrossRef]
- Kargar, M.; Clark, O.G.; Hendershot, W.H.; Jutras, P.; Prasher, S.O. Immobilization of trace metals in contaminated urban soil amended with compost and biochar. Water Air Soil Pollut. 2015, 226, 191. [Google Scholar] [CrossRef]
- Oustriere, N.; Marchand, L.; Rosette, G.; Friesl-Hanl, W.; Mench, M. Wood-derived-biochar combined with compost or iron grit for in situ stabilization of Cd, Pb, and Zn in a contaminated soil. Environ. Sci. Pollut. Res. 2017, 24, 7468–7481. [Google Scholar] [CrossRef] [PubMed]
- Medyńska-Juraszek, A.; Bednik, M.; Chohura, P. Assessing the influence of compost and biochar amendments on the mobility and uptake of heavy metals by green leafy vegetables. Int. J. Environ. Res. Public Health 2020, 17, 7861. [Google Scholar] [CrossRef] [PubMed]
- Jazini, R.; Soleimani, M.; Mirghaffari, N. Characterization of barley straw biochar produced in various temperatures and its effect on lead and cadmium removal from aqueous solutions. Water Environ. J. 2018, 32, 125–133. [Google Scholar] [CrossRef]
- Mawof, A.; Prasher, S.; Bayen, S.; Nzediegwu, C. Effects of Biochar and Biochar-Compost Mix as Soil Amendments on Soil Quality and Yield of Potatoes Irrigated with Wastewater. J. Soil Sci. Plant Nutr. 2021, 21, 2600–2612. [Google Scholar] [CrossRef]
- Parent, L.; Gagné, G. Guide de Référence en Fertilisation; Les Impressions STAMPA Inc.: Québec, QC, Canada, 2010; p. 473. [Google Scholar]
- Stark, J.C.; Westermann, D.T.; Hopkins, B. Nutrient Management Guidelines for Russet Burbank Potatoes; University of Idaho, College of Agricultural and Life Sciences: Moscow, ID, USA, 2004. [Google Scholar]
- Mehlich, A. Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant. Commun. Soil Sci. Plant Anal. 1984, 15, 1409–1416. [Google Scholar] [CrossRef]
- ElSayed, E.M.; Prasher, S.O.; Patel, R.M. Effect of nonionic surfactant Brij 35 on the fate and transport of oxytetracycline antibiotic in soil. J. Environ. Manag. 2013, 116, 125–134. [Google Scholar] [CrossRef] [PubMed]
- Nopens, I.; Capalozza, C.; Vanrolleghem, P.A. Stability Analysis of a Synthetic Municipal Wastewater; Department of Applied Mathematics Biometrics and Process Control, University of Gent: Ghent, Belgium, 2001; Available online: https://modeleau.fsg.ulaval.ca/fileadmin/modeleau/documents/Publications/pvr334.pdf (accessed on 12 May 2021).
- LaPara, T.M.; Klatt, C.G.; Chen, R. Adaptations in bacterial catabolic enzyme activity and community structure in membrane-coupled bioreactors fed simple synthetic wastewater. J. Biotechnol. 2006, 121, 368–380. [Google Scholar] [CrossRef] [PubMed]
- Aboulhassan, M.; Souabi, S.; Yaacoubi, A.; Baudu, M. Removal of surfactant from industrial wastewaters by coagulation flocculation process. Int. J. Environ. Sci. Technol. 2006, 3, 327–332. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, A.; Ghufran, R.; Zularisam, A. Phytosequestration of metals in selected plants growing on a contaminated Okhla industrial areas, Okhla, New Delhi, India. Water Air Soil Pollut. 2011, 217, 255–266. [Google Scholar] [CrossRef]
- Sim, W.-J.; Lee, J.-W.; Shin, S.-K.; Song, K.-B.; Oh, J.-E. Assessment of fates of estrogens in wastewater and sludge from various types of wastewater treatment plants. Chemosphere 2011, 82, 1448–1453. [Google Scholar] [CrossRef]
- Zhou, Y.; Zha, J.; Wang, Z. Occurrence and fate of steroid estrogens in the largest wastewater treatment plant in Beijing, China. Environ. Monit. Assess. 2012, 184, 6799–6813. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Lin, J.; Yuan, D.; Hu, R. Determination of steroid sex hormones in wastewater by stir bar sorptive extraction based on poly (vinylpyridine-ethylene dimethacrylate) monolithic material and liquid chromatographic analysis. J. Chromatogr. A 2009, 1216, 3508–3511. [Google Scholar] [CrossRef] [PubMed]
- Guerra, P.; Kim, M.; Shah, A.; Alaee, M.; Smyth, S. Occurrence and fate of antibiotic, analgesic/anti-inflammatory, and antifungal compounds in five wastewater treatment processes. Sci. Total Environ. 2014, 473, 235–243. [Google Scholar] [CrossRef] [PubMed]
- Lietz, A.C.; Meyer, M.T. Evaluation of emerging contaminants of concern at the south district wastewater treatment plant based on seasonal sampling events, Miami-Dade County, Florida, 2004. In Scientific Investigations Report 2006–5240; US Geological Survey: Reston, VA, USA, 2006. [Google Scholar]
- Sui, Q.; Huang, J.; Deng, S.; Yu, G.; Fan, Q. Occurrence and removal of pharmaceuticals, caffeine and DEET in wastewater treatment plants of Beijing, China. Water Res. 2010, 44, 417–426. [Google Scholar] [CrossRef] [PubMed]
- Singh, K.P.; Rai, P.; Singh, A.K.; Verma, P.; Gupta, S. Occurrence of pharmaceuticals in urban wastewater of north Indian cities and risk assessment. Environ. Monit. Assess. 2014, 186, 6663–6682. [Google Scholar] [CrossRef] [PubMed]
- Sabaliunas, D.; Webb, S.F.; Hauk, A.; Jacob, M.; Eckhoff, W.S. Environmental fate of triclosan in the River Aire Basin, UK. Water Res. 2003, 37, 3145–3154. [Google Scholar] [CrossRef]
- Li, D.; Yang, M.; Hu, J.; Ren, L.; Zhang, Y.; Li, K. Determination and fate of oxytetracycline and related compounds in oxytetracycline production wastewater and the receiving river. Environ. Toxicol. Chem. 2008, 27, 80–86. [Google Scholar] [CrossRef]
- Environmental Protection Agency. Epa Method 3050B. Acid Digestion of Sediments, Sludges, and Soils; Environmental Protection Agency: Washington, DC, USA, 1996.
- Carter, M.R.; Gregorich, E.G. Total Nitrogen. In Soil Sampling and Methods of Analysis, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2006; pp. 239–250. [Google Scholar]
- Hendershot, W.; Lalande, H.; Duquette, M. Ion exchange and exchangeable cations. In Soil Sampling and Methods of Analysis, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2006; pp. 167–176. [Google Scholar]
- Rayment, G.; Higginson, F.R. Australian Laboratory Handbook of Soil and Water Chemical Methods; Inkata Press: Melbourne, Australia, 1992. [Google Scholar]
- Liu, J.; Schulz, H.; Brandl, S.; Miehtke, H.; Huwe, B.; Glaser, B. Short-term effect of biochar and compost on soil fertility and water status of a Dystric Cambisol in NE Germany under field conditions. J. Plant Nutr. Soil Sci. 2012, 175, 698–707. [Google Scholar] [CrossRef]
- Ouédraogo, E.; Mando, A.; Zombré, N. Use of compost to improve soil properties and crop productivity under low input agricultural system in West Africa. Agric. Ecosyst. Environ. 2001, 84, 259–266. [Google Scholar] [CrossRef]
- Harvey, O.R.; Herbert, B.E.; Rhue, R.D.; Kuo, L.J. Metal interactions at the biochar-water interface: Energetics and structure-sorption relationships elucidated by flow adsorption microcalorimetry. Environ. Sci. Technol. 2011, 45, 5550–5556. [Google Scholar] [CrossRef]
- Huff, M.D.; Kumar, S.; Lee, J.W. Comparative analysis of pinewood, peanut shell, and bamboo biomass derived biochars produced via hydrothermal conversion and pyrolysis. J. Environ. Manag. 2014, 146, 303–308. [Google Scholar] [CrossRef] [PubMed]
- Basso, A.S.; Miguez, F.E.; Laird, D.A.; Horton, R.; Westgate, M. Assessing potential of biochar for increasing water-holding capacity of sandy soils. Glob. Change Biol. Bioenergy 2013, 5, 132–143. [Google Scholar] [CrossRef] [Green Version]
- Cavallaro, N.; McBride, M. Copper and cadmium adsorption characteristics of selected acid and calcareous soils. Soil Sci. Soc. Am. J. 1978, 42, 550–556. [Google Scholar] [CrossRef]
- Straathof, A.L.; Chincarini, R.; Comans, R.N.; Hoffland, E. Dynamics of soil dissolved organic carbon pools reveal both hydrophobic and hydrophilic compounds sustain microbial respiration. Soil Biol. Biochem. 2014, 79, 109–116. [Google Scholar] [CrossRef]
- Asensio, V.; Vega, F.; Covelo, E. Effect of soil reclamation process on soil C fractions. Chemosphere 2014, 95, 511–518. [Google Scholar] [CrossRef]
- Qualls, R.G.; Richardson, C.J. Factors controlling concentration, export, and decomposition of dissolved organic nutrients in the Everglades of Florida. Biogeochemistry 2003, 62, 197–229. [Google Scholar] [CrossRef]
- Beesley, L.; Inneh, O.S.; Norton, G.J.; Moreno-Jimenez, E.; Pardo, T.; Clemente, R.; Dawson, J.J. Assessing the influence of compost and biochar amendments on the mobility and toxicity of metals and arsenic in a naturally contaminated mine soil. Environ. Pollut. 2014, 186, 195–202. [Google Scholar] [CrossRef]
- Karami, N.; Clemente, R.; Moreno-Jiménez, E.; Lepp, N.W.; Beesley, L. Efficiency of green waste compost and biochar soil amendments for reducing lead and copper mobility and uptake to ryegrass. J. Hazard. Mater. 2011, 191, 41–48. [Google Scholar] [CrossRef]
- Huang, B.; Li, Z.; Huang, J.; Guo, L.; Nie, X.; Wang, Y.; Zhang, Y.; Zeng, G. Adsorption characteristics of Cu and Zn onto various size fractions of aggregates from red paddy soil. J. Hazard. Mater. 2014, 264, 176–183. [Google Scholar] [CrossRef]
- Zeng, F.; Ali, S.; Zhang, H.; Ouyang, Y.; Qiu, B.; Wu, F.; Zhang, G. The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants. Environ. Pollut. 2011, 159, 84–91. [Google Scholar] [CrossRef]
- Harter, R.D. Effect of soil pH on adsorption of lead, copper, zinc, and nickel. Soil Sci. Soc. Am. J. 1983, 47, 47–51. [Google Scholar] [CrossRef]
- Wang, H.; Yuan, X.; Wu, Y.; Huang, H.; Zeng, G.; Liu, Y.; Wang, X.; Lin, N.; Qi, Y. Adsorption characteristics and behaviors of graphene oxide for Zn (II) removal from aqueous solution. Appl. Surf. Sci. 2013, 279, 432–440. [Google Scholar] [CrossRef]
- Hargreaves, J.; Adl, M.; Warman, P. A review of the use of composted municipal solid waste in agriculture. Agric. Ecosyst. Environ. 2008, 123, 1–14. [Google Scholar] [CrossRef]
- Chintala, R.; Mollinedo, J.; Schumacher, T.E.; Malo, D.D.; Julson, J.L. Effect of biochar on chemical properties of acidic soil. Arch. Agron. Soil Sci. 2014, 60, 393–404. [Google Scholar] [CrossRef]
- Friesl-Hanl, W.; Platzer, K.; Horak, O.; Gerzabek, M. Immobilising of Cd, Pb, and Zn contaminated arable soils close to a former Pb/Zn smelter: A field study in Austria over 5 years. Enviro. Geochem. Health 2009, 31, 581–594. [Google Scholar] [CrossRef] [PubMed]
- Friesl, W.; Friedl, J.; Platzer, K.; Horak, O.; Gerzabek, M. Remediation of contaminated agricultural soils near a former Pb/Zn smelter in Austria: Batch, pot and field experiments. Environ. Pollut. 2006, 144, 40–50. Available online: https://www.cabdirect.org/cabdirect/FullTextPDF/2007/20073222297.pdf (accessed on 12 June 2021). [CrossRef] [Green Version]
- Gusiatin, Z.M.; Kulikowska, D. Behaviors of heavy metals (Cd, Cu, Ni, Pb and Zn) in soil amended with composts. Environ. Technol. 2016, 37, 2337–2347. [Google Scholar] [CrossRef]
- Tang, J.; Zhang, L.; Zhang, J.; Ren, L.; Zhou, Y.; Zheng, Y.; Luo, L.; Yang, Y.; Huang, H.; Chen, A. Physicochemical features, metal availability and enzyme activity in heavy metal-polluted soil remediated by biochar and compost. Sci. Total Environ. 2020, 701, 134751. [Google Scholar] [CrossRef]
- Nzediegwu, C.; Prasher, S.; Elsayed, E.; Dhiman, J.; Mawof, A.; Patel, R. Biochar applied to soil under wastewater irrigation remained environmentally viable for the second season of potato cultivation. J. Environ. Manag. 2020, 254, 109822. [Google Scholar] [CrossRef]
- Ding, Y.; Liu, Y.; Liu, S.; Li, Z.; Tan, X.; Huang, X.; Zeng, G.; Zhou, Y.; Zheng, B.; Cai, X. Competitive removal of Cd (II) and Pb (II) by biochars produced from water hyacinths: Performance and mechanism. RSC Adv. 2016, 6, 5223–5232. [Google Scholar] [CrossRef]
- Dudev, T.; Lim, C. Competition among metal ions for protein binding sites: Determinants of metal ion selectivity in proteins. Chem. Rev. 2014, 114, 538–556. [Google Scholar] [CrossRef] [PubMed]
- Park, J.-H.; Ok, Y.S.; Kim, S.-H.; Cho, J.-S.; Heo, J.-S.; Delaune, R.D.; Seo, D.-C. Competitive adsorption of heavy metals onto sesame straw biochar in aqueous solutions. Chemosphere 2016, 142, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Kabata-Pendias, A. Trace Elements in Plants. In Trace Elements in Soils and Plants, 4th ed.; Kabata-Pendias, A., Ed.; CRC Press (Taylor and Francis Group): Boca Raton, FL, USA, 2010; pp. 338–352. [Google Scholar]
- CCME (Canadian Council of Ministers of the Environment). Canadian Soil Quality Guidelines for the Protection of Environmental and Human Health; CCME: Winnipeg, MB, Canada, 2007; Available online: http://esdat.net/Environmental%20Standards/Canada/SOIL/rev_soil_summary_tbl_7.0_e.pdf (accessed on 15 July 2021).
- Al Mamun, S.A.; Lehto, N.; Cavanagh, J.; McDowell, R.; Aktar, M.; Benyas, E.; Robinson, B. Effects of lime and organic amendments derived from varied source materials on cadmium uptake by potato. J. Environ. Qual. 2017, 46, 836–844. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Codex Alimentarius Commission. Codex Standard CDX 193-1995, General Standard for Contaminants and Toxins in Food and Feed; Food and Agriculture Organization of the United Nations: Rome, Italy, 1995; Available online: http://www.fao.org/fileadmin/user_upload/livestockgov/documents/1_CXS_193e.pdf (accessed on 5 June 2021).
- Antonious, G.F.; Snyder, J.C. Accumulation of heavy metals in plants and potential phytoremediation of lead by potato, Solanum tuberosum L. J. Environ. Sci. Health A 2007, 42, 811–816. [Google Scholar] [CrossRef]
- Milojković, J.V.; Mihajlović, M.L.; Stojanović, M.D.; Lopičić, Z.R.; Petrović, M.S.; Šoštarić, T.D.; Ristić, M.Đ. Pb (II) removal from aqueous solution by Myriophyllum spicatum and its compost: Equilibrium, kinetic and thermodynamic study. J. Chem. Technol. Biotechnol. 2014, 89, 662–670. [Google Scholar] [CrossRef]
- Khan, S.; Cao, Q.; Zheng, Y.; Huang, Y.; Zhu, Y. Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China. Environ. Pollut. 2008, 152, 686–692. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.; Sturgis, T.; Landin, M. Heavy metal uptake by marsh plants in hydroponic solution cultures. J. Plant Nutr. 1981, 3, 139–151. [Google Scholar] [CrossRef]
- Eissa, M.A. Effect of compost and biochar on heavy metals phytostabilization by the halophytic plant old man saltbush [Atriplex nummularia Lindl]. Soil Sediment Contam. 2019, 28, 135–147. [Google Scholar] [CrossRef]
- Chen, H.; Awasthi, S.K.; Liu, T.; Duan, Y.; Zhang, Z.; Awasthi, M.K. Compost biochar application to contaminated soil reduces the (im) mobilization and phytoavailability of lead and copper. J. Chem. Technol. Biotechnol. 2020, 95, 408–417. [Google Scholar] [CrossRef]
- Soja, G.; Wimmer, B.; Rosner, F.; Faber, F.; Dersch, G.; von Chamier, J.; Pardeller, G.; Ameur, D.; Keiblinger, K.; Zehetner, F. Compost and biochar interactions with copper immobilisation in copper-enriched vineyard soils. J. Appl. Geochem. 2018, 88, 40–48. [Google Scholar] [CrossRef]
- Wilson, C.; Zebarth, B.J.; Burton, D.L.; Goyer, C.; Moreau, G.; Dixon, T. Effect of diverse compost products on potato yield and nutrient availability. Am. J. Potato Res. 2019, 96, 272–284. [Google Scholar] [CrossRef]
- Kargar, M.; Clark, O.G.; Hendershot, W.H.; Jutras, P.; Prasher, S.O. Bioavailability of sodium and trace metals under direct and indirect effects of compost in urban soils. J. Environ. Qual. 2016, 45, 1003–1012. [Google Scholar] [CrossRef] [PubMed]
- Seguin, R.; Kargar, M.; Prasher, S.O.; Grant Clark, O.; Jutras, P. Remediating Montreal’s Tree Pit Soil Applying an Ash Tree-Derived Biochar. Water Air Soil Pollut. 2018, 229, 84. [Google Scholar] [CrossRef]
- Tahir, S.; Gul, S.; Aslam Ghori, S.; Sohail, M.; Batool, S.; Jamil, N.; Naeem Shahwani, M.; Butt, M.u.R. Biochar influences growth performance and heavy metal accumulation in spinach under wastewater irrigation. Cogent Food Agric. 2018, 4, 1467253. [Google Scholar] [CrossRef]
- Angelova, V.; Ivanova, R.; Pevicharova, G.; Ivanov, K. In Effect of organic amendments on heavy metals uptake by potato plants. In Proceedings of the 19th World Congress of Soil Science, Soil Solutions for a Changing World, Brisbane, QLD, Australia, 1–6 August 2010; pp. 84–87. Available online: https://www.iuss.org/19th%20WCSS/Symposium/pdf/0660.pdf (accessed on 24 April 2021).
- Novak, J.M.; Ippolito, J.A.; Watts, D.W.; Sigua, G.C.; Ducey, T.F.; Johnson, M.G. Biochar compost blends facilitate switchgrass growth in mine soils by reducing Cd and Zn bioavailability. Biochar 2019, 1, 97–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Awasthi, M.K.; Wang, Q.; Chen, H.; Liu, T.; Awasthi, S.K.; Duan, Y.; Varjani, S.; Pandey, A.; Zhang, Z. Role of compost biochar amendment on the (im) mobilization of cadmium and zinc for Chinese cabbage (Brassica rapa L.) from contaminated soil. J. Soils Sediments 2019, 19, 3883–3897. [Google Scholar] [CrossRef]
- Karer, J.; Zehetner, F.; Dunst, G.; Fessl, J.; Wagner, M.; Puschenreiter, M.; Stapkēviča, M.; Friesl-Hanl, W.; Soja, G. Immobilisation of metals in a contaminated soil with biochar-compost mixtures and inorganic additives: 2-year greenhouse and field experiments. Environ. Sci. Pollut. Res. 2018, 25, 2506–2516. [Google Scholar] [CrossRef]
- Liang, J.; Yang, Z.; Tang, L.; Zeng, G.; Yu, M.; Li, X.; Wu, H.; Qian, Y.; Li, X.; Luo, Y. Changes in heavy metal mobility and availability from contaminated wetland soil remediated with combined biochar-compost. Chemosphere 2017, 181, 281–288. [Google Scholar] [CrossRef]
- CCME (Canadian Council for Ministers of the Environment). Guidelines for Compost Quality; Report No. PN 1340; CCME: Winnipeg, MB, Canada, 2005. [Google Scholar]
Category | Substance/Compounds | Country | Concentration | Reference |
---|---|---|---|---|
Basic synthetic wastewater constituents | ||||
C Source | Na Acetate | NA | 79.37 | [34] |
Milk powder | NA | 116.19 | ||
Soy Oil | NA | 29.02 | ||
Starch | NA | 122 | ||
Yeast Extract | NA | 52.24 | ||
N Source | NH4Cl | NA | 12.75 | |
Peptone | NA | 17.41 | ||
Urea | NA | 91.74 | ||
P Source | Mg3O8P2 | NA | 29.02 | |
Minerals | CaCl2 | NA | 60 | [35] |
NaHCO3 | NA | 100 | ||
Surfactant | Triton X-100 | NA | * 30 | [36] |
Wastewater contaminants | ||||
Heavy Metals | Chromium (Cr) | India | 2 | [37] |
Cadmium (Cd) | India | 5 | ||
Lead (Pb) | India | 16 | ||
Iron (Fe)(II) | India | 120 | ||
Zinc (Zn) | India | 3 | ||
Copper (Cu)(II) | India | 8 | ||
Hormones | Estrone: E1 | S. Korea | * 8.15 (20) | [38] |
Estradiol: E2 | S. Korea | * 0.634 (20) | ||
Estriol: E3 | S. Korea | * 2.28 (20) | ||
Ethinylestradiol: EE2 | China | * 0.33 (20) | [39] | |
Progesterone | China | * 0.90 (20) | [40] | |
PPCPs | Ibuprofen | Canada | * 45 | [41] |
DEET | USA | * 6.5 | [42] | |
Caffeine | China | * 6.6 | [43] | |
Carbamazepine | S. Korea | * 21.6 | [38] | |
Diclofenac | India | * 25.68 | [44] | |
Triclosan | UK | * 21.9 | [45] | |
Oxytetracycline | China | * 19.5 | [46] |
Treatments | CEC (cmolc kg−1) | DOC (mg kg−1) | pH | |||
---|---|---|---|---|---|---|
Surface | 0.10 m | Surface | 0.10 m | Surface | 0.10 cm | |
BC0CP0 | 1.78 ± 0.29 b | 2.62 ± 1.24 c | 13.17 ± 0.85 d | 12.61 ± 0.75 b | 5.00 ± 0.10 d | 5.26 ± 0.14 d |
BC1CP0 | 1.69 ± 0.31 b | 1.88 ± 0.33 c | 11.62 ± 1.18 d | 11.68 ± 3.27 b | 5.18 ± 0.15 cd | 5 ± 0.2 d |
BC3CP0 | 1.94 ± 0.44 b | 4.12 ± 1.34 bc | 13.38 ± 1.67 d | 19.85 ± 0.20 ab | 5.33 ± 0.14 bc | 6.11 ± 0.03 c |
BC0CP7.5 | 4.58 ± 0.94 a | 7.39 ± 0.93 ab | 27.31 ± 1.06 a | 24.10 ± 11.36 a | 5.60 ± 0.10 a | 6.43 ± 0.3 bc |
BC1CP7.5 | 4.60 ± 1.46 a | 5.54 ± 0.29 b | 23.35 ± 2.69 b | 24.90 ± 2.45 a | 5.43 ± 0.17 ab | 6.5 ± 0.14 b |
BC3CP7.5 | 5.73 ± 2.74 a | 7.57 ± 1.60 a | 18.33 ± 1.75 c | 28.43 ± 8.03 a | 5.66 ± 0.11 a | 7.13 ± 0.15 a |
Heavy Metal | Treatments | Flesh | Skin | Root | Stem | Leaves |
---|---|---|---|---|---|---|
Cd | BC0CP0 | 1.50 ± 0.96 a | 11.29 ± 0.81 a | 146.26 ± 16.54 a | 14.04 ± 6.53 a | 9.70 ± 2.49 a |
BC1CP0 | 1.07 ± 0.37 ab | 7.35 ± 3.21 ab | 68.52 ± 22.33 b | 19.48 ± 7.04 a | 6.12 ± 1.48 a | |
BC3CP0 | 0.74 ± 0.13 ab | 3.02 ± 0.82 c | 68.33 ± 20.17 b | 22.18 ± 13.53 a | 4.65 ± 1.53 a | |
BC0CP7.5 | 0.63 ± 0.06 b | 2.29 ± 1.48 c | 43.82 ± 34.73 b | 9.98 ± 4.85 b | 8.28 ± 5.87 a | |
BC1CP7.5 | 0.63 ± 0.10 b | 2.12 ± 1.18 c | 43.29 ± 4.74 b | 15.69 ± 6.48 b | 8.40 ± 2.49 a | |
BC3CP7.5 | 0.79 ± 0.16 ab | 5.65 ± 2.75 bc | 54.30 ± 26.96 b | 10.44 ± 4.56 b | 4.77 ± 1.64 a | |
Cu | BC0CP0 | 11.61 ± 1.73 a | 10.9 ± 2.18 ab | 39.54 ± 8.80 a | 7.61 ± 2.67 a | 19.00 ± 4.25 a |
BC1CP0 | 8.76 ± 1.83 bc | 12.91 ± 2.65 a | 39.34 ± 12.23 a | 6.16 ± 2.41 a | 9.73 ± 3.02 abc | |
BC3CP0 | 6.70 ± 0.94 c | 8.67 ± 0.78 b | 39.94 ± 12.94 a | 7.66 ± 4.43 a | 6.24 ± 1.24 c | |
BC0CP7.5 | 8.018 ± 1.01 bc | 10.47 ± 2.2 ab | 25.80 ± 17.57 a | 7.61 ± 4.74 a | 16.53 ± 10.04 ab | |
BC1CP7.5 | 9.07 ± 0.50 b | 10.69 ± 1.5 ab | 30.63 ± 2.80 a | 9.93 ± 6.52 a | 15.64 ± 7.28 abc | |
BC3CP7.5 | 6.82 ± 0.79 c | 11.64 ± 2.6 ab | 36.94 ± 6.78 a | 4.51 ± 1.25 a | 7.36 ± 0.79 bc | |
Zn | BC0CP0 | 19.61 ± 6.45 a | 39.39 ± 12.72 a | 217.36 ± 26.80 a | 37.95 ± 7.82 b | 13.97 ± 2.81 a |
BC1CP0 | 17.95 ± 2.34 a | 32.63 ± 2.78 ab | 166.16 ± 19.54 b | 96.06 ± 32.49 a | 9.89 ± 2.09 a | |
BC3CP0 | 17.50 ± 2.23 a | 21.52 ± 2.04 c | 87.16 ± 18.35 c | 55.71 ± 26.20 ab | 9.93 ± 0.31 a | |
BC0CP7.5 | 17.95 ± 5.06 a | 21.21 ± 7.28 c | 56.97 ± 0.19 c | 65.35 ± 10.64 ab | 13.59 ± 6.09 a | |
BC1CP7.5 | 17.72 ± 1.16 a | 21.22 ± 2.78 c | 81.26 ± 10.05 c | 59.38 ± 27.75 ab | 11.35 ± 2.49 a | |
BC3CP7.5 | 19.80 ± 4.13 a | 25.08 ± 3.98 bc | 72.25 ± 21.91 c | 59.00 ± 29.67 ab | 11.38 ± 0.83 a |
Heavy Metal | Treatments | Flesh | Skin | Root | Stem | Leaves |
---|---|---|---|---|---|---|
Cd | BC0CP0 | 5.30 ± 1.37 a | 59.36 ± 19.64 a | 249.69 ± 43.02 a | 24.77 ± 13.18 ab | 15.35 ± 1.30 a |
BC1CP0 | 4.46 ± 1.79 ab | 49.99 ± 6.98 a | 223.76 ± 45.74 a | 30.37 ± 7.52 ab | 10.58 ± 1.70 a | |
BC3CP0 | 3.06 ± 1.33 bc | 12.61 ± 4.58 b | 254.31 ± 25.42 a | 32.64 ± 14.64 a | 11.84 ± 6.61 a | |
BC0CP7.5 | 1.30 ± 0.05 c | 8.32 ± 6.37 b | 46.31 ± 4.82 b | 15.79 ± 6.10 b | 9.90 ± 0.94 a | |
BC1CP7.5 | 1.86 ± 0.57 c | 7.43 ± 3.95 b | 76.04 ± 22.56 b | 15.28 ± 4.13 b | 8.85 ± 2.40 a | |
BC3CP7.5 | 1.16 ± 0.21 c | 3.98 ± 0.52 b | 100.29 ± 40.45 b | 14.13 ± 1.03 b | 10.10 ± 5.96 a | |
Cu | BC0CP0 | 10.8 ± 0.97 ab | 23.50 ± 5.77 ab | 72.35 ± 36.61 ab | 12.88 ± 6.34 a | 22.21 ± 6.74 a |
BC1CP0 | 11.2 ± 1.24 ab | 23.93 ± 5.25 a | 91.53 ± 45.00 a | 11.25 ± 3.52 a | 15.34 ± 1.47 bc | |
BC3CP0 | 8.01 ± 0.71 c | 15.93 ± 2.15 ab | 60.92 ± 29.78 ab | 6.13 ± 4.65 a | 13.36 ± 2.70 bc | |
BC0CP7.5 | 9.21 ± 1.25 bc | 22.94 ± 5.81 ab | 24.37 ± 4.88 b | 12.66 ± 5.44 a | 16.19 ± 4.31 abc | |
BC1CP7.5 | 12.99 ± 2.31 a | 19.72 ± 4.24 ab | 66.46 ± 32.64 ab | 9.25 ± 1.77 a | 18.72 ± 2.52 ab | |
BC3CP7.5 | 6.93 ± 1.05 c | 15.49 ± 3.69 b | 32.09 ± 17.66 b | 6.22 ± 2.51 a | 12.08 ± 1.22 c | |
Zn | BC0CP0 | 26.10 ± 3.51 a | 101.46 ± 27.90 a | 396.82 ± 27.27 a | 93.64 ± 4.38 a | 17.14 ± 1.74 a |
BC1CP0 | 23.83 ± 2.72 ab | 82.70 ± 9.43 a | 312.42 ± 51.88 b | 116.38 ± 64.93 a | 15.15 ± 1.43 ab | |
BC3CP0 | 20.84 ± 1.59 b | 41.16 ± 0.20 b | 307.20 ± 39.76 b | 91.52 ± 45.76 a | 11.77 ± 1.36 bc | |
BC0CP7.5 | 21.15 ± 2.20 b | 44.65 ± 7.96 b | 115.71 ± 13.23 c | 100.11 ± 37.03 a | 13.95 ± 3.28 abc | |
BC1CP7.5 | 22.03 ± 1.33 ab | 37.77 ± 4.99 b | 115.31 ± 35.20 c | 75.08 ± 14.08 a | 13.54 ± 3.12 abc | |
BC3CP7.5 | 19.86 ± 3.86 b | 34.88 ± 12.03 b | 122.70 ± 41.77 c | 55.88 ± 18.85 a | 10.83 ± 1.92 c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mawof, A.; Prasher, S.O.; Bayen, S.; Anderson, E.C.; Nzediegwu, C.; Patel, R. Barley Straw Biochar and Compost Affect Heavy Metal Transport in Soil and Uptake by Potatoes Grown under Wastewater Irrigation. Sustainability 2022, 14, 5665. https://doi.org/10.3390/su14095665
Mawof A, Prasher SO, Bayen S, Anderson EC, Nzediegwu C, Patel R. Barley Straw Biochar and Compost Affect Heavy Metal Transport in Soil and Uptake by Potatoes Grown under Wastewater Irrigation. Sustainability. 2022; 14(9):5665. https://doi.org/10.3390/su14095665
Chicago/Turabian StyleMawof, Ali, Shiv O. Prasher, Stéphane Bayen, Emma C. Anderson, Christopher Nzediegwu, and Ramanbhai Patel. 2022. "Barley Straw Biochar and Compost Affect Heavy Metal Transport in Soil and Uptake by Potatoes Grown under Wastewater Irrigation" Sustainability 14, no. 9: 5665. https://doi.org/10.3390/su14095665
APA StyleMawof, A., Prasher, S. O., Bayen, S., Anderson, E. C., Nzediegwu, C., & Patel, R. (2022). Barley Straw Biochar and Compost Affect Heavy Metal Transport in Soil and Uptake by Potatoes Grown under Wastewater Irrigation. Sustainability, 14(9), 5665. https://doi.org/10.3390/su14095665