Analysis of Environmental Carrying Capacity Based on the Ecological Footprint for the Sustainable Development of Alborz, Iran
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Assessment of Land Use/Land Cover Change (LULCC)
2.3. Environmental Carrying Capacity (ECC)
2.3.1. Biological Capacity
Production Coefficient
Equilibrium Coefficient
2.3.2. Ecological Footprint
2.4. The ECC Forecasting Model
2.5. Data Sources
3. Results
3.1. Land Use/Land Cover Change (LULCC)
3.2. Validation of the Model
3.3. Assessment of Biological Capacity in Productive Ecosystems
3.4. Ecological Footprint of Industries and Mines
- (A)
- Resource Consumption
- (B)
- Waste
- (C)
- Energy
- (D)
- Pollution
- (E)
- Water
Ecological Footprint of Agricultural, Service, and Household Consumption
- -
- In the agricultural sector, the EF calculation for resource consumption and waste emissions is a function of the cultivated land. A conversion matrix was used to convert resource consumption and waste emissions into the corresponding land areas [72,73,74]. Resource consumption in this sector is divided into pesticides and seeds [75,76]. According to [61,77], 25% of agricultural products are converted into waste;
- -
- In the household sector, the EF calculation for resource, energy, and water consumption, as well as waste, pollution, and wastewater emissions, is a function of population. Each citizen in the study area produces 700 g of waste per day, about 100 g more than average in Iran. However, 20% of the amount is recycled;
- -
- In the service sector, the EF calculation includes transportation and tourism [78,79]. Resources consumption and waste emissions in the transportation sector, as well as energy consumption, and pollutant emissions in the tourism sector, were not significant, so these indicators were not considered in this sector. The tourist population was equal to 2,261,896 persons per night, each producing approximately 900 g of waste in the study area.
3.5. Estimating the Ecological Carrying Capacity, Biological Capacity, and Ecological Footprint
3.6. Scenarios
- (a)
- 20% reduction in annual pollutants emission;
- (b)
- 85% recycling in waste;
- (c)
- 22% reduction in water consumption;
- (d)
- 30% reduction in agricultural water consumption;
- (e)
- 80% recycling of agricultural wastewater;
- (f)
- 25% reduction in raw material consumption in the food industry.
3.6.1. Continuing Current Status
3.6.2. Sustainable Scenario
Short-Term Scenario: Preventing the ED from Reaching the Critical Threshold of Ecological Deficit by 2030
Mid-Term Scenario: Maintaining the ED at the Same Level until 2043
Long-Term Scenario: Returning the ED to 0
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, Z.; Ding, M.; He, C.; Li, J.; Wu, J. The impairment of environmental sustainability due to rapid urbanization in the dryland region of northern China. Landsc. Urban Plan. 2019, 187, 165–180. [Google Scholar] [CrossRef]
- Golia, E.E.; Papadimou, S.G.; Cavalaris, C.; Tsiropoulos, N.G. Level of Contamination Assessment of Potentially Toxic Elements in the Urban Soils of Volos City (Central Greece). Sustainability 2021, 13, 2029. [Google Scholar] [CrossRef]
- Christoforidis, A.; Stamatis, N. Heavy metal contamination in street dust and roadside soil along the major national road in Kavala’s region, Greece. Geoderma 2009, 151, 257–263. [Google Scholar] [CrossRef]
- Ahmed, Z.; Asghar, M.M.; Malik, M.N.; Nawaz, K. Moving towards a sustainable environment: The dynamic linkage between natural resources, human capital, urbanization, economic growth, and ecological footprint in China. Resour. Policy 2020, 67, 101677. [Google Scholar] [CrossRef]
- Burger, J.R.; Allen, C.D.; Brown, J.H.; Burnside, W.R.; Davidson, A.D.; Fristoe, T.S.; Okie, J.G. The macroecology of sustainability. PLoS Biol. 2012, 10, 1001345. [Google Scholar] [CrossRef]
- Imhoff, M.L.; Bounoua, L.; Ricketts, T.; Loucks, C.; Harriss, R.; Lawrence, W.T. Global patterns in human consumption of net primary production. Nature 2004, 429, 870–873. [Google Scholar] [CrossRef] [PubMed]
- Rees, W.E. Ecological footprints and appropriated carrying capacity: What urban economics leaves out. Urbanization 2017, 2, 66–77. [Google Scholar] [CrossRef]
- Wang, Z.; Gao, Y.; Wang, X.; Lin, Q.; Li, L. A new approach to land use optimization and simulation considering urban development sustainability: A case study of Bortala, China. Sustain. Cities Soc. 2022, 87, 104135. [Google Scholar] [CrossRef]
- Genta, C.; Sanyé-Mengual, E.; Sala, S.; Lombardi, P. The Consumption Footprint as possible indicator for environmental impact evaluation at city level. Case Study Turin (Italy). Sustain. Cities Soc. 2022, 79, 103679. [Google Scholar] [CrossRef]
- He, Y.; Xie, H. Exploring the spatiotemporal changes of ecological carrying capacity for regional sustainable development based on GIS: A case study of Nanchang City. Technol. Forecast. Soc. Chang. 2019, 148, 119720. [Google Scholar] [CrossRef]
- Van den Bergh, J.C.; Grazi, F. Ecological footprint policy? Land use as an environmental indicator. J. Ind. Ecol. 2014, 18, 10–19. [Google Scholar] [CrossRef]
- Borucke, M.; Moore, D.; Cranston, G.; Gracey, K.; Iha, K.; Larson, J.; Lazarus, E.; Morales, J.C.; Wackernagel, M.; Galli, A. Accounting for demand and supply of the biosphere’s regenerative capacity: The National Footprint Accounts’ underlying methodology and framework. Ecol. Indic. 2013, 24, 518–533. [Google Scholar] [CrossRef]
- Bruckner, M.; Fischer, G.; Tramberend, S.; Giljum, S. Measuring telecouplings in the global land system: A review and comparative evaluation of land footprint accounting methods. Ecol. Econ. 2015, 114, 11–21. [Google Scholar] [CrossRef]
- Charfeddine, L. The impact of energy consumption and economic development on ecological footprint and CO2 emissions: Evidence from a Markov switching equilibrium correction model. Energy Econ. 2017, 65, 355–374. [Google Scholar] [CrossRef]
- Moran, D.D.; Wackernagel, M.; Kitzes, J.A.; Goldfinger, S.H.; Boutaud, A. Measuring sustainable development—Nation by nation. Ecol. Econ. 2008, 64, 470–474. [Google Scholar] [CrossRef]
- Wackernagel, M.; Monfreda, C.; Moran, D.; Wermer, P.; Goldfinger, S.; Deumling, D.; Murray, M. National Footprint and Biocapacity Accounts: The Underlying Calculation Method; Global Footprint Network: Oakland, CA, USA, 2005; pp. 4–28. [Google Scholar]
- Galli, A.; Iha, K.; Pires, S.M.; Mancini, M.S.; Alves, A.; Zokai, G.; Lin, D.; Murthy, A.; Wackernagel, M. Assessing the ecological footprint and biocapacity of Portuguese cities: Critical results for environmental awareness and local management. Cities 2020, 96, 102442. [Google Scholar] [CrossRef]
- Świąder, M.; Szewrański, S.; Kazak, J.K.; Van Hoof, J.; Lin, D.; Wackernagel, M.; Alves, A. Application of ecological footprint accounting as a part of an integrated assessment of environmental carrying capacity: A case study of the footprint of food of a large city. Resources 2018, 7, 52. [Google Scholar] [CrossRef]
- Tan, S.; Liu, Q.; Han, S. Spatial-temporal evolution of coupling relationship between land development intensity and resources environment carrying capacity in China. J. Environ. Manag. 2022, 301, 113778. [Google Scholar] [CrossRef]
- Wang, X. Managing land carrying capacity: Key to achieving sustainable production systems for food security. Land 2022, 11, 484. [Google Scholar] [CrossRef]
- Zhang, Z.; Hu, B.; Qiu, H. Comprehensive evaluation of resource and environmental carrying capacity based on SDGs perspective and Three-dimensional Balance Model. Ecol. Indic. 2022, 138, 108788. [Google Scholar] [CrossRef]
- Arto, I.; Rueda-Cantuche, J.M.; Peters, G.P. Comparing the GTAP-MRIO and WIOD databases for carbon footprint analysis. Econ. Syst. Res. 2014, 26, 327–353. [Google Scholar] [CrossRef]
- Hoekstra, A.Y.; Wiedmann, T.O. Humanity’s unsustainable environmental footprint. Science 2014, 344, 1114–1117. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, D.W.; Fanning, A.L.; Lamb, W.F.; Steinberger, J.K. A good life for all within planetary boundaries. Nat. Sustain. 2018, 1, 88–95. [Google Scholar] [CrossRef]
- Tsuchiya, K.; Iha, K.; Murthy, A.; Lin, D.; Altiok, S.; Rupprecht, C.D.; Kiyono, H.; McGreevy, S.R. Decentralization & local food: Japan’s regional Ecological Footprints indicate localized sustainability strategies. J. Clean. Prod. 2021, 292, 126043. [Google Scholar] [CrossRef]
- Mohapatra, S.; Joseph, G.; Ratha, D. Remittances and natural disasters: Ex-post response and contribution to ex-ante preparedness. Environ. Dev. Sustain. 2012, 14, 365–387. [Google Scholar] [CrossRef]
- Ewing, B.R.; Hawkins, T.R.; Wiedmann, T.O.; Galli, A.; Ercin, A.E.; Weinzettel, J.; Steen-Olsen, K. Integrating ecological and water footprint accounting in a multi-regional input–output framework. Ecol. Indic. 2012, 23, 1–8. [Google Scholar] [CrossRef]
- Chambers, J.C.; Bradley, B.A.; Brown, C.S.; D’Antonio, C.; Germino, M.J.; Grace, J.B.; Hardegree, S.P.; Miller, R.F.; Pyke, D.A. Resilience to stress and disturbance, and resistance to Bromus tectorum L. invasion in cold desert shrublands of western North America. Ecosystems 2014, 17, 360–375. [Google Scholar] [CrossRef]
- Mancini, M.S.; Galli, A.; Coscieme, L.; Niccolucci, V.; Lin, D.; Pulselli, F.M.; Bastianoni, S.; Marchettini, N. Exploring ecosystem services assessment through Ecological Footprint accounting. Ecosyst. Serv. 2018, 30, 228–235. [Google Scholar] [CrossRef]
- Lin, D.; Hanscom, L.; Murthy, A.; Galli, A.; Evans, M.; Neill, E.; Mancini, M.S.; Martindill, J.; Medouar, F.Z.; Huang, S.; et al. Ecological footprint accounting for countries: Updates and results of the National Footprint Accounts, 2012–2018. Resources 2018, 7, 58. [Google Scholar] [CrossRef]
- Özbaş, E.E.; Hunce, S.Y.; Özcan, H.K.; Öngen, A. Ecological Footprint Calculation. Recycl. Reuse Approaches Better Sustain. 2019, 8, 179–186. [Google Scholar] [CrossRef]
- Sylla, M. Mapping and assessment of the potential to supply selected ecosystem services at a sub-regional scale. Ex. Wroc. Its Surround. Munic. Ekon. I Środowisko-Econ. Environ. 2016, 59, 12. [Google Scholar]
- Budihardjo, S.; Hadi, S.P.; Sutikno, S.; Purwanto, P. The ecological footprint analysis for assessing carrying capacity of industrial zone in Semarang. J. Hum. Resour. Sustain. Stud. 2013, 1, 33057. [Google Scholar] [CrossRef]
- Galli, A.; Halle, M.; Grunewald, N. Physical limits to resource access and utilization and their economic implications in Mediterranean economies. Environ. Sci. Policy 2015, 51, 125–136. [Google Scholar] [CrossRef]
- Long, X.; Yu, H.; Sun, M.; Wang, X.C.; Klemeš, J.J.; Xie, W.; Wang, C.; Li, W.; Wang, Y. Sustainability evaluation based on the Three-dimensional Ecological Footprint and Human Development Index: A case study on the four island regions in China. J. Environ. Manag. 2020, 265, 110509. [Google Scholar] [CrossRef]
- Wu, F.; Yang, X.; Shen, Z.; Bian, D.; Babuna, P. Exploring sustainability and decoupling effects of natural capital utilization in China: Evidence from a provincial three-dimensional ecological footprint. J. Clean. Prod. 2021, 295, 126486. [Google Scholar] [CrossRef]
- Al-hadithy, A. Urban Planning Ecological footprint and its impact on city sustainability Ecological footprint and its impact on city sustainability. Urban Plan. 2022, 6, 1–23. [Google Scholar] [CrossRef]
- Xie, B.; Zhang, X.; Lu, J.; Liu, F.; Fan, Y. Research on ecological evaluation of Shanghai port logistics based on emergy ecological footprint models. Ecol. Indic. 2022, 139, 108916. [Google Scholar] [CrossRef]
- Clark, T.P.; Longo, S.B. Examining the effect of economic development, region, and time period on the fisheries footprints of nations (1961–2010). Int. J. Comp. Sociol. 2019, 60, 225–248. [Google Scholar] [CrossRef]
- Kong, F.; Cui, W.; Xi, H. Spatial–temporal variation, decoupling effects and prediction of marine fishery based on modified ecological footprint model: Case study of 11 coastal provinces in China. Ecol. Indic. 2021, 132, 108271. [Google Scholar] [CrossRef]
- Akrour, S.; Grimes, S. Is the Ecological Footprint Enough Science for Algerian Fisheries Management? Sustainability 2022, 14, 1418. [Google Scholar] [CrossRef]
- Ahmed, Z.; Wang, Z. Investigating the impact of human capital on the ecological footprint in India: An empirical analysis. Environ. Sci. Pollut. Res. 2019, 26, 26782–26796. [Google Scholar] [CrossRef] [PubMed]
- Destek, M.A.; Ulucak, R.; Dogan, E. Analyzing the environmental Kuznets curve for the EU countries: The role of ecological footprint. Environ. Sci. Pollut. Res. 2018, 25, 29387–29396. [Google Scholar] [CrossRef]
- Shakeel, M. Analyses of energy-GDP-export nexus: The way-forward. Energy 2021, 216, 119280. [Google Scholar] [CrossRef]
- Chezgi, J.; Pourghasemi, H.R.; Naghibi, S.A.; Moradi, H.R.; Kheirkhah Zarkesh, M. Assessment of a spatial multi-criteria evaluation to site selection underground dams in the Alborz Province, Iran. Geocarto Int. 2016, 31, 628–646. [Google Scholar] [CrossRef]
- Arbabi, Z.; Yeganegi, K.; Obaid, A.J. Application of neural networks in evaluation of key factors of knowledge management system, Case Study: Iranian Companies Based in Alborz Province. J. Phys. 2020, 1530, 012111. [Google Scholar] [CrossRef]
- Nath, B.; Wang, Z.; Ge, Y.; Islam, K.P.; Singh, R.; Niu, Z. Land use and land cover change modeling and future potential landscape risk assessment using Markov-CA model and analytical hierarchy process. ISPRS Int. J. Geo-Inf. 2020, 9, 134. [Google Scholar] [CrossRef]
- Nguyen, H.T.T.; Pham, T.A.; Doan, M.T.; Tran, P.T.X. Land use/land cover change prediction using multi-temporal satellite imagery and multi-layer perceptron markov model. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. ISPRS Arch. 2020, 54, 99–105. [Google Scholar] [CrossRef]
- Nguyen, T.T.H.; Ngo, T.T.P. Land use/land cover change prediction in Dak Nong Province based on remote sensing and Markov Chain Model and Cellular Automata. J. Vietnam. Environ. 2018, 9, 132–140. [Google Scholar] [CrossRef]
- Hamad, R.; Balzter, H.; Kolo, K. Predicting land use/land cover changes using a CA-Markov model under two different scenarios. Sustainability 2018, 10, 3421. [Google Scholar] [CrossRef]
- Eastman, J.R. TerrSet Geospatial Monitoring and Modeling System–Manual; Clark University: Worcester, MA, USA, 2016; p. 395. [Google Scholar]
- Abdulrahman, A.I.; Ameen, S.A. Predicting Land use and land cover spatiotemporal changes utilizing CA-Markov model in Duhok district between 1999 and 2033. Acad. J. Nawroz Univ. 2020, 9, 71–80. [Google Scholar] [CrossRef]
- Schaefer, F.; Luksch, U.; Steinbach, N.; Cabeça, J.; Hanauer, J. Ecological Footprint and Biocapacity: The World’s Ability to Regenerate Resources and Absorb Waste in a Limited Time Period. Office for Official Publications of the European Communities, Luxembourg. 2006. Available online: http://ec.europa.eu/eurostat/documents/3888793/5835641/KSAU-06-001-EN.PDF (accessed on 28 December 2016).
- Neagu, O. Economic Complexity and Ecological Footprint: Evidence from the Most Complex Economies in the World. Sustainability 2020, 12, 9031. [Google Scholar] [CrossRef]
- Wiedmann, T.; Barrett, J. A Review of the Ecological Footprint Indicator—Perceptions and Methods. Sustainability 2010, 2, 1645–1693. [Google Scholar] [CrossRef]
- Hausmann, R.; Hidalgo, C.A.; Bustos, S.; Coscia, M.; Simoes, A.; Yildirim, M.A. The Atlas of Economic Complexity: Mapping Paths to Prosperity; MIT Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Vaisi, S.; Alizadeh, H.; Lotfi, W.; Mohammadi, S. Developing the Ecological Footprint Assessment for a University Campus, the Component-Based Method. Sustainability 2021, 13, 9928. [Google Scholar] [CrossRef]
- Kitzes, J.; Galli, A.; Bagliani, M.; Barrett, J.; Dige, G.; Ede, S.; Erb, K.; Giljum, S.; Haberl, H.; Hails, C.; et al. A research agenda for improving national Ecological Footprint accounts. Ecol. Econ. 2009, 68, 1991–2007. [Google Scholar] [CrossRef]
- Costa, I.; Martins, F.G.; Alves, I. Ecological footprint as a sustainability indicator to analyze energy consumption in a Portuguese textile facility. Int. J. Energy Environ. Eng. 2019, 10, 523–528. [Google Scholar] [CrossRef]
- Costanza, R. The dynamics of the ecological footprint concept. Ecol. Econ. 2000, 32, 341–345. [Google Scholar] [CrossRef]
- DeLurgio, S.A. Forecasting Principles and Applications; McGraw-Hill/Irwin: Philadelphia, PA, USA, 1998. [Google Scholar]
- Box, G. Box and Jenkins: Time Series Analysis, Forecasting and Control. In A Very British Affair. Palgrave Advanced Texts in Econometrics; Palgrave Macmillan: London, UK, 2013. [Google Scholar] [CrossRef]
- Agriculture-Jahad-Alborz, 2015–2016. Available online: https://alborz.maj.ir/page-alborzmain/FA/98/form/pId15634 (accessed on 12 November 2022).
- Alborz Environmental Yearbook. 2018. Available online: https://alborz.mporg.ir/Portal/View/Page.aspx?PageId=d5bb27ec-5669-4e2c-9b82-593becc970e4 (accessed on 1 November 2022).
- Energy Yearbook. Production, Trade and Supply of Natural Gas; Statistical Centre of Iran: Tehran, Iran, 2016; Available online: https://irandataportal.syr.edu/ (accessed on 20 November 2022).
- IMTY. Industry, Mine, and Trade Yearbook, 2006–2022. Available online: https://en.mimt.gov.ir/ (accessed on 5 December 2022).
- ISY. Iran Statistical Yearbooks, 2009–2022. Available online: https://www.amar.org.ir/english (accessed on 17 December 2022).
- SYE. Statistical Yearbook Energy, 1990–2021. Available online: https://pep.moe.gov.ir (accessed on 3 October 2022).
- SYF. Statistical Yearbook of Fisheries, 1999–2021. Available online: http://www.fisheries.ir/site/News_view.aspx?id=113032&tbl=N (accessed on 20 December 2022).
- Miao, Y.; Blunsom, P. Language as a latent variable: Discrete generative models for sentence compression. arXiv 2016, arXiv:1609.07317. [Google Scholar] [CrossRef]
- IPCC. Inter-Governmental Panel on Climate Change—Organization of IPCC. 2014. Available online: http://www.ipcc.ch/organization/organization.shtml#.UvnDl_mSzCs (accessed on 11 February 2014).
- Liang, H.; Zou, J.; Li, Z.; Khan, M.J.; Lu, Y. Dynamic evaluation of drilling leakage risk based on fuzzy theory and PSO-SVR algorithm. Future Gener. Comput. Syst. 2019, 95, 454–466. [Google Scholar] [CrossRef]
- Liang, H.; Zou, J.; Zuo, K.; Khan, M.J. An improved genetic algorithm optimization fuzzy controller applied to the wellhead back pressure control system. Mech. Syst. Signal Process. 2020, 142, 106708. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhu, R.; Chen, Z.; Gao, J.; Xia, D. Evaluating and selecting features via information theoretic lower bounds of feature inner correlations for high-dimensional data. Eur. J. Oper. Res. 2020, 290, 235–247. [Google Scholar] [CrossRef]
- Passeri, N.; Borucke, M.; Blasi, E.; Franco, S.; Lazarus, E. The Influence of Farming Technique on Cropland: A New Approach for the Ecological Footprint. Ecol. Indic. 2013, 29, 1–5. [Google Scholar] [CrossRef]
- Kool, A.; Marinussen, M.; Blonk, H. LCI Data for the Calculation Tool Feedprint for Greenhouse Gas Emissions of Feed Production and Utilization. GHG Emissions of N, P and K Fertiliser Production; Blonk Consultants: Gouda, The Netherlands, 2012. [Google Scholar]
- Khosravani, F.; PezeshkiRad, G.; Farhadian, H. Investigating the status of agricultural waste and waste and providing management solutions in order to achieve the goals of sustainable development. Promot. Sci. 2013, 3, 95–112. [Google Scholar]
- Aboelnaga, S.; Tóth, T.; Neszmélyi, G. Calculations on ecological footprint as a tool for land use planning and development on v4 countries. Cent. Eur. J. Reg. Dev. Tour. 2021, 13, 24–39. [Google Scholar] [CrossRef]
- Wiedmann, T.; Minx, J.; Barrett, J.; Wackernagel, M. Allocating ecological footprints to final consumption categories with input–output analysis. Ecol. Econ. 2006, 56, 28–48. [Google Scholar] [CrossRef]
- Clift, R.; Sim, S.; King, H.; Chenoweth, J.L.; Christie, I.; Clavreul, J.; Mueller, C.; Posthuma, L.; Boulay, A.-M.; Chaplin-Kramer, R.; et al. The Challenges of Applying Planetary Boundaries as a Basis for Strategic Decision-Making in Companies with Global Supply Chains. Sustainability 2017, 9, 279. [Google Scholar] [CrossRef]
- McPhearson, T.; Haase, D.; Kabisch, N.; Gren, Å. Advancing understanding of the complex nature of urban systems. Ecol. Indic. 2016, 70, 566–573. [Google Scholar] [CrossRef]
- Fatemi, M.; Rezaei-Moghaddam, K.; Karami, E.; Hayati, D.; Wackernagel, M. An integrated approach of Ecological Footprint (EF) and Analytical Hierarchy Process (AHP) in human ecology: A base for planning toward sustainability. PLoS ONE 2021, 16, 0250167. [Google Scholar] [CrossRef]
- Zeshan, M.; Shakeel, M. Adaptations and mitigation policies to climate change: A dynamic CGE-WE model. Singap. Econ. Rev. 2020, 1, 1–25. [Google Scholar] [CrossRef]
Year | ID | Date Acquired |
---|---|---|
2001 | LE07_L2SP_165035_20010626_20200917_02_T1 | 2001/06/26 |
2016 | LC08_L2SP_165035_20160424_20200907_02_T1 | 2016/04/24 |
2022 | LC08_L2SP_165035_20220426_20220503_02_T1 | 2022/04/26 |
Class | Fallow Land | Garden | Bare Land | Forest | Arable Land | Grass Land | Settlement | Water Body | User’s Accuracy |
---|---|---|---|---|---|---|---|---|---|
Fallow land | 70 | 1 | 6 | 1 | 1 | 3 | 3 | 0 | 0.81 |
Garden | 1 | 67 | 0 | 7 | 8 | 1 | 1 | 0 | 0.78 |
Bare land | 7 | 0 | 72 | 1 | 4 | 0 | 1 | 1 | 0.83 |
Forest | 0 | 7 | 1 | 73 | 2 | 1 | 2 | 0 | 0.85 |
Arable land | 2 | 4 | 5 | 4 | 65 | 5 | 1 | 0 | 0.76 |
Grass land | 4 | 5 | 0 | 1 | 3 | 72 | 2 | 0 | 0.84 |
Settlement | 2 | 0 | 2 | 0 | 2 | 3 | 76 | 0 | 0.89 |
Water body | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 85 | 0.99 |
Producer’s Accuracy | 0.81 | 0.78 | 0.83 | 0.84 | 0.76 | 0.84 | 0.89 | 0.99 |
Land Use/Land Cover | eqf | |
---|---|---|
Biological Capacity | Ecological Footprint | |
Crop land | 2.56 | 2.56 |
Grass land | 0.43 | 0.43 |
Water Body | 0.35 | 0.35 |
Forest | 1.28 | 1.28 |
Infrastructure | - | 2.56 |
Built up area | - | 1.42 |
Actual | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Projected | Class | Fallow Land | Garden | Bare Land | Forest | Arable Land | Grass Land | Settlement | Water Body | User’s Accuracy |
Fallow land | 12,074 | 764 | 688 | 4 | 0 | 3898 | 2596 | 1969 | 0.55 | |
Garden | 457 | 4496 | 54 | 4 | 251 | 1437 | 1131 | 189 | 0.56 | |
Bare land | 966 | 4 | 9640 | 75 | 0 | 70 | 4311 | 175 | 0.63 | |
Forest | 0 | 0 | 0 | 488 | 0 | 0 | 0 | 0 | 1.00 | |
Arable land | 0 | 131 | 0 | 0 | 138 | 0 | 451 | 0 | 0.19 | |
Grass land | 2103 | 1024 | 36 | 0 | 0 | 3419 | 397 | 263 | 0.47 | |
Settlement | 3207 | 1106 | 1624 | 163 | 527 | 522 | 147,659 | 690 | 0.95 | |
Water Body | 4311 | 2666 | 96 | 0 | 0 | 1398 | 383 | 11,804 | 0.57 | |
Producer’s Accuracy | 0.52 | 0.44 | 0.79 | 0.66 | 0.15 | 0.32 | 0.94 | 0.78 |
Land Use/Land Cover | Area (×103 hec) | RL | SA | |||
---|---|---|---|---|---|---|
Yc (tons/hec) | Yr (tons/hec) | Yf | eqf | BC (×103) | ||
Crop land | 108.4 | 13 | 47.9 | 3.68 | 2.56 | 1021.54 |
Grass land | 383.22 | 103 | 20 | 0.19 | 0.43 | 31.30 |
Water body | 20.41 | 244 | 371 | 1.5 | 0.35 | 10.71 |
Forest | 5.83 | 53 | 68.5 | 1.29 | 1.28 | 9.63 |
1073.20 |
Code | In-Province Consumption (×103 tons) | EF (×103 hec) |
---|---|---|
3 | 4928.47 | 346.23 |
2 | 477.04 | 0.64 |
1 | 216.61 | 14.06 |
360.94 | ||
Code | Out-of-Province Consumption (×103 tons) | EF (×103) |
3 | 6003.93 | 1182.31 |
Total | 1543.26 |
Type of Energy * | Weight of Energy Consumption (×103 tons) | Grasslands | Water Resource | Forest | EF (hec) | Sources (Statistical Yearbook Energy (SYE) Available online: https://pep.moe.gov.ir (accessed on 1 December 2022) |
---|---|---|---|---|---|---|
Kerosene | 1.21 | 0.15 | 0.85 | 0 | 0.8 | Table (1–77), P176. |
Gasoil | 29.05 | 0.15 | 0.85 | 0 | 18.3 | Table (1–134), P212, and Table (1–136), P201. |
Natural gas | 896.58 | 0.15 | 0.85 | 0 | 565.4 | |
Liquefied Gas | 12.10 | 0.15 | 0.85 | 0 | 7.6 | Table (1–77), P176. |
Gasoline | 23.91 | 0.15 | 0.85 | 0 | 15.1 | Table (1–77), P176. |
Black oil and Fuel oil | 91.76 | 0.15 | 0.85 | 0 | 57.9 | Table (1–188), P243. |
Coal | 0.34 | 0.3 | 0 | 0.7 | 17.4 | |
Wood coal | 0.07 | 0.15 | 0 | 0.8 | 5.4 | Table (1–219), P268. |
Electricity | 0 | 0.15 | 0.85 | 0 | 0 | Table (1–172), P242. |
Total | 687.9 |
Energy Consumption (×103 m3) | Diffusion Coefficient (kg/m3) | Pollutant Emissions (×103 tons) | EF (×103 hec) | |
---|---|---|---|---|
Kerosene | 0.973 | 2.7 | 2.62 | 0.97 |
Gasoil | 348.70 | 2.7 | 941.5 | 348.7 |
Natural gas | 0.628 | 1.9 | 1.19 | 0.62 |
Liquefied gas | 12.10 | 2.7 | 32.68 | 12.10 |
Gasoline | 28.69 | 2.7 | 77.48 | 28.69 |
Black oil and Fuel oil | 91.76 | 2.7 | 247.76 | 91.76 |
Coal | 272.12 | 3.7 | 1006.87 | 272.12 |
Wood coal | 15.65 | 3.3 | 51.66 | 15.65 |
Electricity | 0 | 0 | 0 | 0 |
Total | 770.65 |
Water | Annual consumption (×103 tons) | EF (×103 hec) |
52,000 | 70 | |
Wastewater (50%Purification) | Annual nonpurification (×103 tons) | |
220 | 0.24 |
EF (×103 hec) | |||||||
---|---|---|---|---|---|---|---|
Water | Resource | Waste | Pollutant | Energy | Wastewater | Total | |
Industry and Mines | 70 | 1543.26 | 25.37 | 770.65 | 0.687 | 0.246 | 2410.22 |
Agriculture | 546.09 | 2.27 | 3.04 | 2.2 | 0.025 | 24 | 577.65 |
Service | 0.388 | 0.4 | 0.049 | 12.6 | 8.76 | 0 | 22.20 |
Household Consumption | 179.43 | 52.65 | 17.3 | 326.68 | 1.63 | 42.84 | 620.55 |
EF (×103 hec) | |||||||
---|---|---|---|---|---|---|---|
Water | Resource | Waste | Pollutant | Energy | Wastewater | Total | |
Industry and Mines | 54.6 | 1157.44 | 3806.55 | 601.11 | 0.687 | 0.246 | 1817.89 |
Agriculture | 382.26 | 2.27 | 456.45 | 1.72 | 0.025 | 4.8 | 391.54 |
Service | 0.302 | 0.4 | 7.35 | 12.33 | 8.76 | 0 | 21.80 |
Household Consumption | 139.95 | 52.65 | 2595.75 | 254.81 | 1.63 | 42.84 | 494.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pourebrahim, S.; Hadipour, M.; Emlaei, Z.; Heidari, H.; Goh, C.T.; Lee, K.E. Analysis of Environmental Carrying Capacity Based on the Ecological Footprint for the Sustainable Development of Alborz, Iran. Sustainability 2023, 15, 7935. https://doi.org/10.3390/su15107935
Pourebrahim S, Hadipour M, Emlaei Z, Heidari H, Goh CT, Lee KE. Analysis of Environmental Carrying Capacity Based on the Ecological Footprint for the Sustainable Development of Alborz, Iran. Sustainability. 2023; 15(10):7935. https://doi.org/10.3390/su15107935
Chicago/Turabian StylePourebrahim, Sharareh, Mehrdad Hadipour, Zahra Emlaei, Hamidreza Heidari, Choo Ta Goh, and Khai Ern Lee. 2023. "Analysis of Environmental Carrying Capacity Based on the Ecological Footprint for the Sustainable Development of Alborz, Iran" Sustainability 15, no. 10: 7935. https://doi.org/10.3390/su15107935
APA StylePourebrahim, S., Hadipour, M., Emlaei, Z., Heidari, H., Goh, C. T., & Lee, K. E. (2023). Analysis of Environmental Carrying Capacity Based on the Ecological Footprint for the Sustainable Development of Alborz, Iran. Sustainability, 15(10), 7935. https://doi.org/10.3390/su15107935