Recovery of Bound Phenolic Compounds from Rice Hulls via Microwave-Assisted Alkaline Hydrolysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Solvents
2.2. Materials
2.3. Experimental Design for Optimizing the Microwave-Assisted Alkaline Hydrolysis of Rice Hulls
2.4. Determination of the Total Phenol Content (TPC)
2.5. Antioxidant Activity Determination
2.6. RP-HPLC-DAD Analysis of Phenolic Compounds
2.7. Application of Optimum Conditions to Rice Hull Samples of Different Varieties and Comparison to Ultrasound-Assisted Alkaline Hydrolysis
2.8. Statistical Analysis
3. Results
3.1. Model Fitting for TPC, ADPPH, AABTS, ACUPRAC, p-CA, and FA
3.2. Main Effects of Microwave-Assisted Alkaline Hydrolysis Conditions on Total Phenol Content, Antioxidant Activity, and Concentration of Major Phenolic Acids
3.3. Multiple Response Optimization for Microwave-Assisted Alkaline Hydrolysis Conditions
3.4. Application of Optimum Conditions to Greek Rice Hull Samples and Comparison to Ultrasound-Assisted Alkaline Hydrolysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chaudhari, P.R.; Tamrakar, N.; Singh, L.; Tandon, A.; Sharma, D. Rice nutritional and medicinal properties: A review article. J. Pharmacogn. Phytochem. 2018, 7, 150–156. [Google Scholar]
- Tan, B.L.; Norhaizan, M.E. Rice By-Products: Phytochemicals and Food Products Application; Springer Nature: Berlin, Germany, 2020. [Google Scholar]
- Nenadis, N.; Kyriakoudi, A.; Tsimidou, M.Z. Impact of alkaline or acid digestion to antioxidant activity, phenolic content and composition of rice hull extracts. LWT-Food Sci. Technol. 2013, 54, 207–215. [Google Scholar] [CrossRef]
- Butsat, S.; Siriamornpun, S. Antioxidant capacities and phenolic compounds of the husk, bran and endosperm of Thai rice. Food Chem. 2010, 119, 606–613. [Google Scholar] [CrossRef]
- Shahidi, F.; Yeo, J.D. Insoluble-bound phenolics in food. Molecules 2016, 21, 1216. [Google Scholar] [CrossRef]
- Barberousse, H.; Roiseux, O.; Robert, C.; Paquot, M.; Deroanne, C.; Blecker, C. Analytical methodologies for quantification of ferulic acid and its oligomers. J. Sci. Food Agric. 2008, 88, 1494–1511. [Google Scholar] [CrossRef]
- Juhnevica-Radenkova, K.; Kviesis, J.; Moreno, D.A.; Seglina, D.; Vallejo, F.; Valdovska, A.; Radenkovs, V. Highly-efficient release of ferulic acid from agro-industrial by-products via enzymatic hydrolysis with cellulose-degrading enzymes: Part I-The superiority of hydrolytic enzymes versus conventional hydrolysis. Foods 2021, 10, 782. [Google Scholar] [CrossRef]
- Butsat, S.; Weerapreeyakul, N.; Siriamornpun, S. Changes in phenolic acids and antioxidant activity in Thai rice husk at five growth stages during grain development. J. Agric. Food Chem. 2009, 57, 4566–4571. [Google Scholar] [CrossRef]
- Butsat, S.; Siriamornpun, S. Phenolic acids and antioxidant activities in husk of different Thai rice varieties. Food Sci. Technol. Int. 2010, 16, 329–336. [Google Scholar] [CrossRef]
- Vadivel, V.; Brindha, P. Antioxidant property of solvent extract and acid/alkali hydrolysates from rice hulls. Food Biosci. 2015, 11, 85–91. [Google Scholar] [CrossRef]
- Jha, A.K.; Sit, N. Extraction of bioactive compounds from plant materials using combination of various novel methods: A Review. Trends Food Sci. Technol. 2022, 119, 579–591. [Google Scholar] [CrossRef]
- Irakli, M.; Kleisiaris, F.; Kadoglidou, K.; Katsantonis, D. Optimizing extraction conditions of free and bound phenolic compounds from rice by-products and their antioxidant effects. Foods 2018, 7, 93. [Google Scholar] [CrossRef]
- Kim, M.Y.; Yoon, N.; Lee, Y.J.; Woo, K.S.; Kim, H.Y.; Lee, J.; Jeong, H.S. Influence of thermal processing on free and bound forms of phenolics and antioxidant capacity of rice hull (Oryza sativa L.). Prev. Nutr. Food Sci. 2020, 25, 310–318. [Google Scholar] [CrossRef]
- Wanyo, P.; Meeso, N.; Siriamornpun, S. Effects of different treatments on the antioxidant properties and phenolic compounds of rice bran and rice husk. Food Chem. 2014, 157, 457–463. [Google Scholar] [CrossRef]
- Chiremba, C.; Rooney, L.W.; Beta, T. Microwave-assisted extraction of bound phenolic acids in bran and flour fractions from sorghum and maize cultivars varying in hardness. J. Agric. Food Chem. 2012, 9, 4735–4742. [Google Scholar] [CrossRef]
- Moreira, M.M.; Morais, S.; Barros, A.A.; Delerue-Matos, C.; Guido, L.F. A novel application of microwave-assisted extraction of polyphenols from brewer’s spent grain with HPLC-DAD-MS analysis. Anal. Bioanal. Chem. 2012, 403, 1019–1029. [Google Scholar] [CrossRef]
- Durović, S.; Nikolić, B.; Luković, N.; Jovanović, J.; Stefanović, A.; Šekuljica, N.; Mijin, D.; Knežević-Jugović, Z. The impact of high-power ultrasound and microwave on the phenolic acid profile and antioxidant activity of the extract from yellow soybean seeds. Ind. Crops Prod. 2018, 122, 223–231. [Google Scholar] [CrossRef]
- Jha, P.; Das, A.J.; Deka, S.C. Optimization of ultrasound and microwave assisted extractions of polyphenols from black rice (Oryza sativa cv. Poireton) husk. J. Food Sci. Technol. 2017, 54, 3847–3858. [Google Scholar] [CrossRef]
- Frosi, I.; Vallelonga, D.; Colombo, R.; Milanese, C.; Papetti, A. Valorization of rice husk (Oryza sativa L.) as a source of in vitro antiglycative and antioxidant agents. Foods 2023, 12, 529. [Google Scholar] [CrossRef]
- Chan, C.-H.; Yusoff, R.; Ngoh, G.-C.; Kung, F.W.-L. Microwave-assisted extractions of active ingredients from plants. J. Chromatogr. A 2011, 1218, 6213–6225. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Apak, R.; Güçlü, K.; Özyürek, M.; Karademir, S.E. Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. J. Agric. Food Chem. 2004, 52, 7970–7981. [Google Scholar] [CrossRef] [PubMed]
- Hegde, S.; Kavitha, S.; Varadaraj, M.; Muralikrishna, G. Degradation of cereal bran polysaccharide-phenolic acid complexes by Aspergillus niger CFR 1105. Food Chem. 2006, 96, 14–19. [Google Scholar] [CrossRef]
- Wijngaard, H.; Hossain, M.B.; Rai, D.K.; Brunton, N. Techniques to extract bioactive compounds from food by-products of plant origin. Food Res. Int. 2012, 46, 505–513. [Google Scholar] [CrossRef]
- Pyrka, I.; Mantzouridou, F.T.; Nenadis, N. Optimization of olive leaves’ thin layer, intermittent near-infrared-drying. Innov. Food Sci. Emerg. Technol. 2023, 84, 103264. [Google Scholar] [CrossRef]
- Olszowy-Tomczyk, M. Synergistic, antagonistic and additive antioxidant effects in the binary mixtures. Phytochem. Rev. 2020, 19, 63–103. [Google Scholar] [CrossRef]
- Nenadis, N.; Wang, L.-F.; Tsimidou, M.; Zhang, H.-Y. Estimation of scavenging activity of phenolic compounds using the ABTS•+ assay. J. Agric. Food Chem. 2004, 52, 4669–4674. [Google Scholar] [CrossRef]
- Nenadis, N.; Tsimidou, M.Z. Assessing the activity of natural food antioxidants. In Oxidation in Foods and Beverages and Antioxidant Applications. Volume 1: Understanding Mechanisms of Oxidation and Antioxidant Activity, 1st ed.; Decker, E.A., Elias, R.J., McClements, D.J., Eds.; Woodhead Publishing: Sawston, UK, 2010; pp. 332–365. [Google Scholar] [CrossRef]
- Liazid, A.; Palma, M.; Brigui, J.; Barroso, C.G. Investigation on phenolic compounds stability during microwave-assisted extraction. J. Chromatogr. A 2007, 1140, 29–34. [Google Scholar] [CrossRef]
- Castrica, M.; Rebucci, R.; Giromini, C.; Tretola, M.; Cattaneo, D.; Baldi, A. Total phenolic content and antioxidant capacity of agri-food waste and by-products. Ital. J. Anim. Sci. 2019, 18, 336–341. [Google Scholar] [CrossRef]
- Makris, D.P.; Boskou, G.; Andrikopoulos, N.K. Polyphenolic content and in vitro antioxidant characteristics of wine industry and other agri-food solid waste extracts. J. Food Compos. Anal. 2007, 20, 125–132. [Google Scholar] [CrossRef]
- Martínez-Valverde, I.; Periago, M.J.; Provan, G.; Chesson, A. Phenolic compounds, lycopene and antioxidant activity in commercial varieties of tomato (Lycopersicum esculentum). J. Sci. Food Agric. 2002, 82, 323–330. [Google Scholar] [CrossRef]
Symbols | Variable | Level | ||||
---|---|---|---|---|---|---|
Coded value 1 | ||||||
−a | −1 | 0 | +1 | +a | ||
Uncoded value 1 | ||||||
Χ1 | Duration of sonication (min) | 0.4 | 3.5 | 8.0 | 12.5 | 15.6 |
Χ2 | Temperature (°C) | 59.4 | 85.0 | 122.5 | 160.0 | 185.6 |
Χ3 | Solvent:solid ratio (v/w) | 60:1 | 50:1 | 35:1 | 20:1 | 10:1 |
Run | Independent Variables | Dependent Variables | |||||||
---|---|---|---|---|---|---|---|---|---|
Duration of Sonication (min) (Χ1) | Temperature (°C) (Χ2) | Solvent:Solid Ratio (v/w) (Χ3) | TPC (mg GAE/100 g Dry Rice Hulls) | ADPPH (μmol Trolox/100 g Dry Rice Hulls) | AABTS (μmol Trolox/100 g Dry Rice Hulls) | ACUPRAC (μmol Trolox/100 g Dry Rice Hulls) | p-CA (mg/100 g Dry Rice Hulls) | FA (mg/100 g Dry Rice Hulls) | |
1 | 12.5 | 160.0 | 50.0 | 3614 ± 415 | 4261 ± 38 | 35,832 ± 2213 | 32,509 ± 3725 | 787 ± 40 | 189 ± 9 |
2 | 3.5 | 85.0 | 50.0 | 1402 ± 132 | 2052 ± 218 | 18,633 ± 212 | 9877 ± 1064 | 614 ± 58 | 78 ± 8 |
3 | 8.0 | 122.5 | 35.0 | 1447 | 1563 | 25,847 | 9435.35 | 647 | 178 |
4 | 8.0 | 122.5 | 35.0 | 1836 | 1578 | 23,022 | 8882.50 | 522 | 140 |
5 | 8.0 | 122.5 | 60.0 | 2655 ± 248 | 4153 ± 208 | 26,490 ± 2204 | 25,428 ± 2227 | 1110 ± 39 | 189 ± 23 |
6 | 15.6 | 122.5 | 35.0 | 1242 ± 55 | 2032 ± 215 | 15,893 ± 916 | 21,340 ± 1529 | 662 ± 38 | 96 ± 22 |
7 | 8.0 | 122.5 | 10.0 | 1560 ± 11 | 1524 ± 58 | 6928 ± 704 | 10,679 ± 1239 | 850 ± 48 | 101 ± 18 |
8 | 3.5 | 85.0 | 20.0 | 1148 ± 77 | 2246 ± 139 | 6709 ± 352 | 9811 ± 380 | 819 ± 29 | 83 ± 7 |
9 | 12.5 | 85.0 | 50.0 | 1334 ± 101 | 2302 ± 167 | 21,257 ± 1284 | 15,053 ± 804 | 713 ± 47 | 81 ± 8 |
10 | 8.0 | 122.5 | 35.0 | 1353 | 1691 | 22,458 | 11,831 | 543 | 84 |
11 | 8.0 | 122.5 | 35.0 | 1339 | 1566 | 18,981 | 8514 | 497 | 119 |
12 | 8.0 | 185.6 | 35.0 | 2857 ± 195 | 2624 ± 146 | 25,348 ± 2644 | 39,228 ± 4186 | 827 ± 51 | 97 ± 2 |
13 | 8.0 | 122.5 | 35.0 | 1507 | 1689 | 18,528 | 12,200 | 554 | 101 |
14 | 3.5 | 160.0 | 50.0 | 3262 ± 365 | 4082 ± 108 | 32,923 ± 2406 | 26,720 ± 1096 | 1220 ± 43 | 297 ± 14 |
15 | 8.0 | 122.5 | 35.0 | 1777 | 1756 | 22,632 | 9988 | 553 | 156 |
16 | 12.5 | 160.0 | 20.0 | 2816 ± 191 | 3538 ± 18 | 12,744 ± 856 | 20,828 ± 1512 | 800 ± 52 | 267 ± 13 |
17 | 0.4 | 122.5 | 35.0 | 1468 ± 143 | 1754 ± 75 | 14,724 ± 589 | 17,452 ± 1111 | 820 ± 58 | 125 ± 11 |
18 | 3.5 | 160.0 | 20.0 | 2919 ± 154 | 3477 ± 29 | 13,030 ± 853 | 22,828 ± 747 | 1104 ± 91 | 269 ± 9 |
19 | 12.5 | 85.0 | 20.0 | 1156 ± 52 | 2409 ± 131 | 7722 ± 364 | 9249 ± 920 | 864 ± 47 | 83 ± 14 |
20 | 8.0 | 59.4 | 35.0 | 826 ± 49 | 1156 ± 100 | 10,979 ± 560 | 13,305 ± 1106 | 647 ± 34 | 71 ± 5 |
TPC | ADPPH | AABTS | ACUPRAC | p-CA | FA | |
---|---|---|---|---|---|---|
R2 (%) | 89.69 | 78.58 | 93.59 | 95.76 | 90.84 | 54.45 |
R2adj (%) | 80.41 | 59.29 | 87.82 | 91.95 | 82.60 | 13.46 |
p-values | ||||||
Regression | 0.001 | 0.059 | 0.000 | 0.000 | 0.000 | 0.331 |
Lack of fit | 0.057 | 0.000 | 0.442 | 0.068 | 0.059 | 0.038 |
Χ1 | 0.889 | 0.640 | 0.451 | 0.138 | 0.022 | 0.531 |
Χ2 | 0.000 | 0.003 | 0.000 | 0.000 | 0.003 | 0.012 |
Χ3 | 0.029 | 0.041 | 0.000 | 0.001 | 0.574 | 0.714 |
Χ12 | 0.814 | 0.148 | 0.031 | 0.003 | 0.009 | 0.777 |
Χ22 | 0.068 | 0.150 | 0.276 | 0.000 | 0.010 | 0.803 |
Χ32 | 0.013 | 0.005 | 0.096 | 0.011 | 0.000 | 0.342 |
Χ1Χ2 | 0.770 | 0.924 | 0.902 | 0.910 | 0.005 | 0.559 |
Χ1Χ3 | 0.719 | 0.910 | 0.563 | 0.085 | 0.766 | 0.588 |
Χ2Χ3 | 0.505 | 0.380 | 0.054 | 0.201 | 0.088 | 0.820 |
Model | Response | Polynomial Equation | |
---|---|---|---|
Coded Value of Factors | Actual Value of Factors | ||
A | TPC | TPC = 1529.47 + 804.50X2 + 250.17X3 + 289.12X32 (2) | TPPC = 3167.91 − 98.18X3 + 1.28X32 (3) |
B | AABTS | AABTS = 21,840.5 + 4713.7X2 + 7420.4X3 − 1871.5X12 (4) | AABTS = −16,101.2 − 92.4X12 (5) |
C | ACUPRAC | ACUPRAC = 10,256.5 + 7504.7X2 + 3386.4X3 + 2522.2X12 + 4951.3X22 + 2047.5X32 (6) | ACUPRAC = 63,507.6 − 2551.6X1 − 733.1X2 − 875.7X3 + 124.6X12 + 3.5X22 + 9.1X32 (7) |
D | p-CA | p-CA = 551.689 − 62.836X1 + 88.207X2 + 72.779X12 + 71.440X22 + 157.331X32 − 110.100X1X2 (8) | p-CA = 1951.03 − 59.41X3 + 3.59X12 + 0.05X22 + 0.70X32 − 0.65X1X2 (9) |
Factor | Optimum Actual Values | Predicted Values | Mean Experimental Values |
---|---|---|---|
Duration (min) | 3.6 | TPC (mg GAE/100 g dry rice hulls) | |
2941 | 2659 ± 218 | ||
Temperature (°C) | 155 | AABTS (μmol Trolox/100 g dry rice hulls) | |
30,370 | 33,543 ± 2268 | ||
ACUPRAC (μmol Trolox/100 g dry rice hulls) | |||
Solvent:solid ratio (v/w) | 50:1 | 26,670 | 21,500 ± 1963 |
p-CA (mg/100 g dry rice hulls) | |||
1130 | 956 ± 49 |
Variety | Protocol 1 | TPC (mg GAE/100 g Dry Rice Hulls) 2 | ADPPH (μmol Trolox/100 g Dry Rice Hulls) 2 | AABTS (μmol Trolox/100 g Dry Rice Hulls) 2 | ACUPRAC (μmol Trolox/100 g Dry Rice Hulls) 2 | p-CA (mg/100 g Dry Rice Hulls) 2 | FA (mg/100 g Dry Rice Hulls) 2 |
---|---|---|---|---|---|---|---|
Gladio | 1 | 2832 ± 299 | 3504 ± 195 | 28,625 ± 4550 | 13,561 ± 402 | 885 ± 86 | 210 ± 12 |
2 | 1286 ± 13 | 1430 ± 52 | 15,700 ± 401 | 3626 ± 127 | 397 ± 3 | 75 ± 6 | |
Krezo | 1 | 2683 ± 158 | 3761 ± 67 | 27,980 ± 1609 | 14,993 ± 848 | 1026 ± 46 | 289 ± 9 |
2 | 1048 ± 25 | 1520 ± 107 | 14,729 ± 798 | 3579 ± 348 | 608 ± 55 | 73 ± 11 | |
Scirocco | 1 | 2621 ± 230 | 3642 ± 106 | 25,438 ± 2381 | 12,333 ± 1187 | 885 ± 86 | 286 ± 13 |
2 | 1066 ± 32 | 1470 ± 28 | 13,977 ± 2074 | 3579 ± 348 | 397 ± 3 | 48 ± 2 | |
Karolina-1 | 1 | 2259 ± 128 | 3218 ± 93 | 24,344 ± 1432 | 11,105 ± 696 | 701 ± 10 | 163 ± 7 |
2 | 1070 ± 541 | 1535 ± 313 | 13,834 ± 428 | 4868 ± 439 | 535 ± 45 | 53 ± 6 | |
Karolina-2 | 1 | 2580 ± 60 | 3368 ± 122 | 23,562 ± 485 | 12,947 ± 263 | 711 ± 53 | 160 ± 13 |
2 | 1324 ± 89 | 1445 ± 163 | 16,325 ± 1371 | 3114 ± 219 | 593 ± 44 | 76 ± 17 | |
Europa | 1 | 2764 ± 202 | 3428 ± 102 | 24,750 ± 1335 | 10,842 ± 526 | 1017 ± 17 | 238 ± 11 |
2 | 1176 ± 75 | 1374 ± 16 | 15,962 ± 476 | 3833 ± 382 | 834 ± 58 | 83 ± 8 | |
Bravo | 1 | 2267 ± 206 | 3252 ± 128 | 21,191 ± 871 | 10,667 ± 924 | 689 ± 68 | 172 ± 8 |
2 | 1202 ± 117 | 1473 ± 183 | 14,704 ± 550 | 2237 ± 219 | 564 ± 60 | 51 ± 10 | |
Bella | 1 | 2794 ± 224 | 3570 ± 119 | 29,110 ± 611 | 15,318 ± 1393 | 1152 ± 18 | 256 ± 4 |
2 | 1029 ± 28 | 1124 ± 23 | 13,690 ± 577 | 3711 ± 348 | 756 ± 44 | 52 ± 2 | |
Fino | 1 | 2995 ± 144 | 3560 ± 48 | 25,958 ± 1130 | 13,912 ± 996 | 1269 ± 53 | 245 ± 6 |
2 | 1311 ± 48 | 1494 ± 156 | 16,221 ± 290 | 3333 ± 219 | 844 ± 71 | 65 ± 2 | |
Statistical analysis 2 | |||||||
t | 18.16 | 26.41 | 10.90 | 14.98 | 5.87 | 9.17 | |
Conclusion | t > t (critical value) | t > t (critical value) | t > t (critical value) | t > t (critical value) | t > t (critical value) | t > t (critical value) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kyriakoudi, A.; Misirli, K.; Mourtzinos, I.; Nenadis, N. Recovery of Bound Phenolic Compounds from Rice Hulls via Microwave-Assisted Alkaline Hydrolysis. Sustainability 2023, 15, 8425. https://doi.org/10.3390/su15108425
Kyriakoudi A, Misirli K, Mourtzinos I, Nenadis N. Recovery of Bound Phenolic Compounds from Rice Hulls via Microwave-Assisted Alkaline Hydrolysis. Sustainability. 2023; 15(10):8425. https://doi.org/10.3390/su15108425
Chicago/Turabian StyleKyriakoudi, Anastasia, Kleoniki Misirli, Ioannis Mourtzinos, and Nikolaos Nenadis. 2023. "Recovery of Bound Phenolic Compounds from Rice Hulls via Microwave-Assisted Alkaline Hydrolysis" Sustainability 15, no. 10: 8425. https://doi.org/10.3390/su15108425
APA StyleKyriakoudi, A., Misirli, K., Mourtzinos, I., & Nenadis, N. (2023). Recovery of Bound Phenolic Compounds from Rice Hulls via Microwave-Assisted Alkaline Hydrolysis. Sustainability, 15(10), 8425. https://doi.org/10.3390/su15108425