How Is the Forest Sector’s Contribution to the Sustainable Development Goals (SDGs) Being Addressed? A Systematic Review of the Methods
Abstract
:1. Introduction
- RQ1. How the contributions of the forest sector to the SDGs have been addressed and studied over the last several years?
- RQ2. Which methods have been used to investigate this relationship?
2. Methodology
2.1. Research Protocol
2.2. Search Strategy
- Population: The study’s population must be related to forest, forestry, wood, pulp, paper, furniture, and timber sector. The study’s population can be related to forest management, forest operations, forest certification, sustainability, sustainable development, bioeconomy, and circular economy;
- Outcome: The study’s outcome must be an assessment of the Sustainable Development Goals (SDGs). The study’s outcome should be clearly related to addressing, analyzing, measuring, and/or contextualizing all SDGs, some SDGs, or specific SDGs. The study’s outcome can be related to self-assessments, third-party assessments, case studies, and/or the application of frameworks that explicitly address the SDGs.
2.3. Forest Sector Definition
“The forest sector concept is all embracing. Globally, it covers all types of forest and wood vegetation, from rain forest in the tropics to boreal coniferous ecosystems, and includes all manner of human activities based on forest resources. Sector activities range from large scale forest industries, which manufacture timber, panels, paper and other mass-produced goods to meet the needs of consumers in home and foreign markets, to the small-scale collection and processing of forest products for domestic and local use. Service activities which aim to satisfy social, cultural and environmental needs are also included. Outputs from the sector are very diverse and comprise intangible benefits, such as scenery and biodiversity, in addition to the wide range of goods derived from forests and trees. From a human point of view the sector is a collection of groups, organizations and institutions, with interests ranging from the conservation and exploitation of the forests to the processing and distribution of the goods and services obtained from them. The sector’s contribution to social and economic welfare is heterogeneous”.[19]
2.4. CADIMA
2.5. Study Selection
2.6. Data Extraction
- Direct methods/tools: extract methods that directly measure, address, and assess the SDGs;
- Indirect methods/tools: extract methods that indirectly measure, address, and assess the SDGs;
- Results related to addressing the SDGs: a study did not mention any direct or indirect method to address the SDGs but presented results or discussions considering the topic.
2.7. Critical Appraisal
2.8. Analysis and Synthesis
3. Results
3.1. Characteristics of the Reviewed Articles
- Social-related cluster (red): keywords such as “community forests”, “livelihoods”, and “governance”;
- Economic-related cluster (blue): keywords such as “economic development”, “economics”, and “planning”;
- Environmental-related cluster (green): keywords such as “biodiversity”, “environmental protection”, and “conservation of natural resources”. In this cluster, the keyword “Brazil” appeared. This may be related to the country’s importance and role in environment-related issues.
3.2. Thematic Analysis and Methods Categorization
3.2.1. Content Analysis
3.2.2. Personal Perception
3.2.3. Interpretative Analysis
3.2.4. Frameworks
3.2.5. Model/Flows
3.2.6. Impact Analysis
3.2.7. Time Series Data and Geospatial Information
3.2.8. SDG Indicators and Indexes
4. Discussion
4.1. How Have the Contributions of the Forest Sector to the SDGs Been Addressed and Studied over the Last Several Years?
4.2. Which Methods Have Been Used to Investigate This Relationship?
4.3. Challenges and Future Opportunities Regarding the Forest Sector and SDGs
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- UN/United Nations Transforming Our World, the 2030 Agenda for Sustainable Development. General Assembly Resolution/RES/70/1. 2015. Available online: https://sustainabledevelopment.un.org/post2015/transformingourworld/publication (accessed on 20 January 2023).
- UN/United Nations 55/2. United Nations Millennium Declaration—Resolution Adopted by the General Assembly. 2000. Available online: https://www.un.org/en/development/desa/population/migration/generalassembly/docs/globalcompact/A_RES_55_2.pdf (accessed on 23 January 2023).
- Gupta, J.; Vegelin, C. Sustainable Development Goals and Inclusive Development. Int. Env. Agreem. 2016, 16, 433–448. [Google Scholar] [CrossRef] [Green Version]
- Mensah, J. Sustainable Development: Meaning, History, Principles, Pillars, and Implications for Human Action: Literature Review. Cogent Soc. Sci. 2019, 5, 1653531. [Google Scholar] [CrossRef]
- Sousa, M.; Almeida, M.F.; Calili, R. Multiple Criteria Decision Making for the Achievement of the UN Sustainable Development Goals: A Systematic Literature Review and a Research Agenda. Sustainability 2021, 13, 4129. [Google Scholar] [CrossRef]
- Viana, C.M.; Freire, D.; Abrantes, P.; Rocha, J.; Pereira, P. Agricultural Land Systems Importance for Supporting Food Security and Sustainable Development Goals: A Systematic Review. Sci. Total Environ. 2022, 806, 150718. [Google Scholar] [CrossRef]
- Nazari, M.T.; Mazutti, J.; Basso, L.G.; Colla, L.M.; Brandli, L. Biofuels and Their Connections with the Sustainable Development Goals: A Bibliometric and Systematic Review. Environ. Dev. Sustain. 2021, 23, 11139–11156. [Google Scholar] [CrossRef]
- Skevington, S.M.; Epton, T. How Will the Sustainable Development Goals Deliver Changes in Well-Being? A Systematic Review and Meta-Analysis to Investigate Whether WHOQOL-BREF Scores Respond to Change. BMJ Glob. Health 2018, 3, e000609. [Google Scholar] [CrossRef] [Green Version]
- Meese, N.; McMahon, C. Knowledge Sharing for Sustainable Development in Civil Engineering: A Systematic Review. AI Soc. 2012, 27, 437–449. [Google Scholar] [CrossRef]
- Lukin, E.; Krajnović, A.; Bosna, J. Sustainability Strategies and Achieving SDGs: A Comparative Analysis of Leading Companies in the Automotive Industry. Sustainability 2022, 14, 4000. [Google Scholar] [CrossRef]
- Schaafsma, M.; Ferrini, S.; Turner, R.K. Assessing Smallholder Preferences for Incentivised Climate-Smart Agriculture Using a Discrete Choice Experiment. Land Use Policy 2019, 88, 104153. [Google Scholar] [CrossRef]
- Maitah, M.; Toth, D.; Smutka, L.; Maitah, K.; Jarolínová, V. Income Differentiation as a Factor of Unsustainability in Forestry. Sustainability 2020, 12, 4749. [Google Scholar] [CrossRef]
- Baumgartner, R.J. Sustainable Development Goals and the Forest Sector—A Complex Relationship. Forests 2019, 10, 152. [Google Scholar] [CrossRef] [Green Version]
- Hazarika, R.; Jandl, R. The Nexus between the Austrian Forestry Sector and the Sustainable Development Goals: A Review of the Interlinkages. Forests 2019, 10, 205. [Google Scholar] [CrossRef] [Green Version]
- Ma, Z.; Hu, C.; Huang, J.; Li, T.; Lei, J. Forests and Forestry in Support of Sustainable Development Goals (SDGs): A Bibliometric Analysis. Forests 2022, 13, 1960. [Google Scholar] [CrossRef]
- Allen, C.; Metternicht, G.; Wiedmann, T. Initial Progress in Implementing the Sustainable Development Goals (SDGs): A Review of Evidence from Countries. Sustain. Sci. 2018, 13, 1453–1467. [Google Scholar] [CrossRef]
- Page, M.J.; Moher, D.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. PRISMA 2020 Explanation and Elaboration: Updated Guidance and Exemplars for Reporting Systematic Reviews. BMJ 2021, 372, n160. [Google Scholar] [CrossRef]
- Guidelines for Authors—Environmental Evidence. Available online: https://environmentalevidence.org/information-for-authors/ (accessed on 18 May 2023).
- Gane, M. Forest Strategy: Strategic Management and Sustainable Development for the Forest Sector; Springer: Dordrecht, The Netherlands, 2007; ISBN 978-1-4020-5964-3. [Google Scholar]
- Kohl, C.; McIntosh, E.J.; Unger, S.; Haddaway, N.R.; Kecke, S.; Schiemann, J.; Wilhelm, R. Online Tools Supporting the Conduct and Reporting of Systematic Reviews and Systematic Maps: A Case Study on CADIMA and Review of Existing Tools. Environ. Evid. 2018, 7, 8. [Google Scholar] [CrossRef] [Green Version]
- Schoneveld, G.; Di Matteo, F.; Brandao, F.; Pacheco, P.; Jelsma, I.; Jarnholt, E. A Systematic Mapping Protocol: What Are the Impacts of Different Upstream Business Models in the Agriculture and Forestry Sector on Sustainable Development in Tropical Developing Countries? Environ. Evid. 2015, 4, 1. [Google Scholar] [CrossRef] [Green Version]
- Pullin, A.S.; Stewart, G.B. Guidelines for Systematic Review in Conservation and Environmental Management. Conserv. Biol. 2006, 20, 1647–1656. [Google Scholar] [CrossRef]
- ATLAS.Ti 22 Windows—User Manual. 598. Available online: https://atlasti.com/manuals-and-documents#user-manuals (accessed on 7 December 2022).
- Braun, V.; Clarke, V. Using Thematic Analysis in Psychology. Qual. Res. Psychol. 2006, 3, 77–101. [Google Scholar] [CrossRef] [Green Version]
- Mays, N.; Pope, C.; Popay, J. Systematically Reviewing Qualitative and Quantitative Evidence to Inform Management and Policy-Making in the Health Field. J. Health Serv. Res. Policy 2005, 10, 6–20. [Google Scholar] [CrossRef]
- van Eck, N.J.; Waltman, L. Software Survey: VOSviewer, a Computer Program for Bibliometric Mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef] [Green Version]
- Purvis, B.; Mao, Y.; Robinson, D. Three Pillars of Sustainability: In Search of Conceptual Origins. Sustain. Sci. 2019, 14, 681–695. [Google Scholar] [CrossRef] [Green Version]
- Martinez-Hernandez, E.; Sadhukhan, J.; Aburto, J.; Amezcua-Allieri, M.A.; Morse, S.; Murphy, R. Modelling to Analyse the Process and Sustainability Performance of Forestry-Based Bioenergy Systems. Clean Technol. Environ. Policy 2022, 24, 1709–1725. [Google Scholar] [CrossRef]
- Amaruzaman, S.; Trong Hoan, D.; Catacutan, D.; Leimona, B.; Malesu, M. Polycentric Environmental Governance to Achieving SDG 16: Evidence from Southeast Asia and Eastern Africa. Forests 2022, 13, 68. [Google Scholar] [CrossRef]
- Kim, G.; Kim, J.; Ko, Y.; Eyman, O.T.G.; Chowdhury, S.; Adiwal, J.; Lee, W.; Son, Y. How Do Nature-Based Solutions Improve Environmental and Socio-Economic Resilience to Achieve the Sustainable Development Goals? Reforestation and Afforestation Cases from the Republic of Korea. Sustainability 2021, 13, 12171. [Google Scholar] [CrossRef]
- Kline, K.L.; Dale, V.H.; Rose, E.; Tonn, B. Effects of Production of Woody Pellets in the Southeastern United States on the Sustainable Development Goals. Sustainability 2021, 13, 821. [Google Scholar] [CrossRef]
- Linser, S.; Lier, M. The Contribution of Sustainable Development Goals and Forest-Related Indicators to National Bioeconomy Progress Monitoring. Sustainability 2020, 12, 2898. [Google Scholar] [CrossRef] [Green Version]
- Gawel, E.; Pannicke, N.; Hagemann, N. A Path Transition Towards a Bioeconomy—The Crucial Role of Sustainability. Sustainability 2019, 11, 3005. [Google Scholar] [CrossRef] [Green Version]
- Costa, I.; Riccotta, R.; Montini, P.; Stefani, E.; de Souza Goes, R.; Gaspar, M.A.; Martins, F.S.; Fernandes, A.A.; Machado, C.; Loçano, R.; et al. The Degree of Contribution of Digital Transformation Technology on Company Sustainability Areas. Sustainability 2022, 14, 462. [Google Scholar] [CrossRef]
- Downing, A.S.; Wong, G.Y.; Dyer, M.; Aguiar, A.P.; Selomane, O.; Jiménez Aceituno, A. When the Whole Is Less than the Sum of All Parts—Tracking Global-Level Impacts of National Sustainability Initiatives. Glob. Environ. Chang. 2021, 69, 102306. [Google Scholar] [CrossRef]
- Delabre, I.; Alexander, A.; Rodrigues, C. Strategies for Tropical Forest Protection and Sustainable Supply Chains: Challenges and Opportunities for Alignment with the UN Sustainable Development Goals. Sustain. Sci. 2020, 15, 1637–1651. [Google Scholar] [CrossRef] [Green Version]
- Aryal, K.; Laudari, H.K.; Ojha, H.R. To What Extent Is Nepal’s Community Forestry Contributing to the Sustainable Development Goals? An Institutional Interaction Perspective. Int. J. Sustain. Dev. World Ecol. 2020, 27, 28–39. [Google Scholar] [CrossRef]
- Ishtiaque, A.; Masrur, A.; Rabby, Y.W.; Jerin, T.; Dewan, A. Remote Sensing-Based Research for Monitoring Progress towards SDG 15 in Bangladesh: A Review. Remote Sens. 2020, 12, 691. [Google Scholar] [CrossRef] [Green Version]
- Sharrock, S.; Jackson, P.W. Plant Conservation and the Sustainable Development Goals: A Policy Paper Prepared for the Global Partnership for Plant Conservation. Ann. Mo. Bot. Gard. 2017, 102, 290–302. [Google Scholar] [CrossRef] [Green Version]
- Carr, J.A.; Petrokofsky, G.; Spracklen, D.V.; Lewis, S.L.; Roe, D.; Trull, N.; Vidal, A.; Wicander, S.; Worthington-Hill, J.; Sallu, S.M. Anticipated Impacts of Achieving SDG Targets on Forests—A Review. For. Policy Econ. 2021, 126, 102423. [Google Scholar] [CrossRef]
- Springgay, E.; Casallas Ramirez, S.; Janzen, S.; Vannozzi Brito, V. The Forest–Water Nexus: An International Perspective. Forests 2019, 10, 915. [Google Scholar] [CrossRef] [Green Version]
- Makwinja, R.; Mengistou, S.; Kaunda, E.; Alamirew, T. Managing Ecosystem Services Demand under a Changing Catchment: A Case Study of Lake Malombe Catchment, Malawi. GeoJournal 2022, 87, 5305–5325. [Google Scholar] [CrossRef]
- Dandabathula, G.; Chintala, S.R.; Ghosh, S.; Balakrishnan, P.; Jha, C.S. Exploring the Nexus between Indian Forestry and the Sustainable Development Goals. Reg. Sustain. 2021, 2, 308–323. [Google Scholar] [CrossRef]
- Emilkamayana; Husen Nadiroh, N. Community Based Conservation to Create SDGs in Soeharto Hill Forest Areas, East Kalimantan. Asian J. Conserv. Biol. 2020, 9, 328–334. [Google Scholar]
- van Noordwijk, M.; Duguma, L.A.; Dewi, S.; Leimona, B.; Catacutan, D.C.; Lusiana, B.; Öborn, I.; Hairiah, K.; Minang, P.A. SDG Synergy between Agriculture and Forestry in the Food, Energy, Water and Income Nexus: Reinventing Agroforestry? Curr. Opin. Environ. Sustain. 2018, 34, 33–42. [Google Scholar] [CrossRef]
- Timko, J.; Le Billon, P.; Zerriffi, H.; Honey-Rosés, J.; de la Roche, I.; Gaston, C.; Sunderland, T.C.; Kozak, R.A. A Policy Nexus Approach to Forests and the SDGs: Tradeoffs and Synergies. Curr. Opin. Environ. Sustain. 2018, 34, 7–12. [Google Scholar] [CrossRef]
- Milbank, C.; Coomes, D.; Vira, B. Assessing the Progress of REDD+ Projects towards the Sustainable Development Goals. Forests 2018, 9, 589. [Google Scholar] [CrossRef] [Green Version]
- Wahlén, C.B. Opportunities for Making the Invisible Visible: Towards an Improved Understanding of the Economic Contributions of NTFPs. For. Policy Econ. 2017, 84, 11–19. [Google Scholar] [CrossRef]
- Bastos Lima, M.G.; Kissinger, G.; Visseren-Hamakers, I.J.; Braña-Varela, J.; Gupta, A. The Sustainable Development Goals and REDD+: Assessing Institutional Interactions and the Pursuit of Synergies. Int. Environ. Agreem. 2017, 17, 589–606. [Google Scholar] [CrossRef] [Green Version]
- Zhai, J.; Wang, L.; Liu, Y.; Wang, C.; Mao, X. Assessing the Effects of China’s Three-North Shelter Forest Program over 40 Years. Sci. Total Environ. 2023, 857, 159354. [Google Scholar] [CrossRef]
- Mutta, D.; Mahamane, L.; Wekesa, C.; Kowero, G.; Roos, A. Sustainable Business Models for Informal Charcoal Producers in Kenya. Sustainability 2021, 13, 3475. [Google Scholar] [CrossRef]
- Tengberg, A.; Gustafsson, M.; Samuelson, L.; Weyler, E. Knowledge Production for Resilient Landscapes: Experiences from Multi-Stakeholder Dialogues on Water, Food, Forests, and Landscapes. Forests 2020, 12, 1. [Google Scholar] [CrossRef]
- Tegegne, Y.; Cramm, M.; Van Brusselen, J.; Linhares-Juvenal, T. Forest Concessions and the United Nations Sustainable Development Goals: Potentials, Challenges and Ways Forward. Forests 2019, 10, 45. [Google Scholar] [CrossRef] [Green Version]
- Russell, E.; Lee, J.; Clift, R. Can the SDGs Provide a Basis for Supply Chain Decisions in the Construction Sector? Sustainability 2018, 10, 629. [Google Scholar] [CrossRef] [Green Version]
- Halofsky, J.E.; Warziniack, T.W.; Peterson, D.L.; Ho, J.J. Understanding and Managing the Effects of Climate Change on Ecosystem Services in the Rocky Mountains. Mt. Res. Dev. 2017, 37, 340–352. [Google Scholar] [CrossRef] [Green Version]
- Jimenez, E.; de la Cuesta-Gonzalez, M.; Boronat-Navarro, M. How Small and Medium-Sized Enterprises Can Uptake the Sustainable Development Goals through a Cluster Management Organization: A Case Study. Sustainability 2021, 13, 5939. [Google Scholar] [CrossRef]
- Blair, M.J.; Gagnon, B.; Klain, A.; Kulišić, B. Contribution of Biomass Supply Chains for Bioenergy to Sustainable Development Goals. Land 2021, 10, 181. [Google Scholar] [CrossRef]
- Susanto, H.; Sukoharsono, E.G.; Hendroyono, B.; Leksono, A.S. Soil Infiltration Management on Perspective of Sustainable Development Goals (SDGs). Int. J. Biol. Biomed. Eng. 2021, 15, 219–227. [Google Scholar] [CrossRef]
- Wood, S.L.R.; Jones, S.K.; Johnson, J.A.; Brauman, K.A.; Chaplin-Kramer, R.; Fremier, A.; Girvetz, E.; Gordon, L.J.; Kappel, C.V.; Mandle, L.; et al. Distilling the Role of Ecosystem Services in the Sustainable Development Goals. Ecosyst. Serv. 2018, 29, 70–82. [Google Scholar] [CrossRef] [Green Version]
- de Jong, W.; Pokorny, B.; Katila, P.; Galloway, G.; Pacheco, P. Community Forestry and the Sustainable Development Goals: A Two Way Street. Forests 2018, 9, 331. [Google Scholar] [CrossRef] [Green Version]
- Nath, T.K.; Jashimuddin, M.; Inoue, M. Achieving Sustainable Development Goals through Participatory Forest Management: Examples from South-Eastern Bangladesh. Nat. Resour. Forum. 2020, 44, 353–368. [Google Scholar] [CrossRef]
- Caglayan, İ.; Yeşil, A.; Kabak, Ö.; Bettinger, P. A Decision Making Approach for Assignment of Ecosystem Services to Forest Management Units: A Case Study in Northwest Turkey. Ecol. Indic. 2021, 121, 107056. [Google Scholar] [CrossRef]
- Huong, H.T.L.; Nguyen Thi, L.; Tran Thanh, T. Assessment of Co-Benefits of Climate Change Response in Vietnam. Int. J. Clim. Change Impacts Responses 2021, 13, 85–104. [Google Scholar] [CrossRef]
- Bloomfield, G.; Bucht, K.; Martínez-Hernández, J.C.; Ramírez-Soto, A.F.; Sheseña-Hernández, I.; Lucio-Palacio, C.R.; Ruelas Inzunza, E. Capacity Building to Advance the United Nations Sustainable Development Goals: An Overview of Tools and Approaches Related to Sustainable Land Management. J. Sustain. For. 2018, 37, 157–177. [Google Scholar] [CrossRef]
- Mathez-Stiefel, S.-L.; Peralvo, M.; Báez, S.; Rist, S.; Buytaert, W.; Cuesta, F.; Fadrique, B.; Feeley, K.J.; Groth, A.A.P.; Homeier, J.; et al. Research Priorities for the Conservation and Sustainable Governance of Andean Forest Landscapes. Mt. Res. Dev. 2017, 37, 323. [Google Scholar] [CrossRef] [Green Version]
- Högbom, L.; Abbas, D.; Armolaitis, K.; Baders, E.; Futter, M.; Jansons, A.; Jõgiste, K.; Lazdins, A.; Lukminė, D.; Mustonen, M.; et al. Trilemma of Nordic–Baltic Forestry—How to Implement UN Sustainable Development Goals. Sustainability 2021, 13, 5643. [Google Scholar] [CrossRef]
- Ali, K.M.; Kassim, S. Waqf Forest: How Waqf Can Play a Role In Forest Preservation and SDGs Achievement? Etikonomi 2020, 19, 349–364. [Google Scholar] [CrossRef]
- Gratzer, G.; Keeton, W.S. Mountain Forests and Sustainable Development: The Potential for Achieving the United Nations’ 2030 Agenda. Mt. Res. Dev. 2017, 37, 246–253. [Google Scholar] [CrossRef] [Green Version]
- Bryan, B.A.; Gao, L.; Ye, Y.; Sun, X.; Connor, J.D.; Crossman, N.D.; Stafford-Smith, M.; Wu, J.; He, C.; Yu, D.; et al. China’s Response to a National Land-System Sustainability Emergency. Nature 2018, 559, 193–204. [Google Scholar] [CrossRef]
- Humpenöder, F.; Popp, A.; Bodirsky, B.L.; Weindl, I.; Biewald, A.; Lotze-Campen, H.; Dietrich, J.P.; Klein, D.; Kreidenweis, U.; Müller, C.; et al. Large-Scale Bioenergy Production: How to Resolve Sustainability Trade-Offs? Environ. Res. Lett. 2018, 13, 024011. [Google Scholar] [CrossRef] [Green Version]
- Katila, P.; McDermott, C.; Larson, A.; Aggarwal, S.; Giessen, L. Forest Tenure and the Sustainable Development Goals—A Critical View. For. Policy Econ. 2020, 120, 102294. [Google Scholar] [CrossRef]
- Swamy, L.; Drazen, E.; Johnson, W.R.; Bukoski, J.J. The Future of Tropical Forests under the United Nations Sustainable Development Goals. J. Sustain. For. 2018, 37, 221–256. [Google Scholar] [CrossRef]
- Liu, L.; Liang, Y.; Hashimoto, S. Integrated Assessment of Land-Use/Coverage Changes and Their Impacts on Ecosystem Services in Gansu Province, Northwest China: Implications for Sustainable Development Goals. Sustain. Sci. 2020, 15, 297–314. [Google Scholar] [CrossRef]
- Dobriyal, P.; Badola, S.; Hussain, S.A.; Badola, R. Toward SDGs: Forest, Market and Human Wellbeing Nexus in Indian Western Himalayas. Front. Ecol. Evol. 2022, 10, 497. [Google Scholar] [CrossRef]
- Anderson, V.; Gough, W.A. A Typology of Nature-Based Solutions for Sustainable Development: An Analysis of Form, Function, Nomenclature, and Associated Applications. Land 2022, 11, 1072. [Google Scholar] [CrossRef]
- Bennich, T.; Belyazid, S.; Stjernquist, I.; Diemer, A.; Seifollahi-Aghmiuni, S.; Kalantari, Z. The Bio-Based Economy, 2030 Agenda, and Strong Sustainability—A Regional-Scale Assessment of Sustainability Goal Interactions. J. Clean. Prod. 2021, 283, 125174. [Google Scholar] [CrossRef]
- Bruzzese, S.; Blanc, S.; Brun, F. Strategies for the Valorisation of Chestnut Resources in Italian Mountainous Areas from a Sustainable Development Perspective. Resources 2020, 9, 60. [Google Scholar] [CrossRef]
- Kussul, N.; Lavreniuk, M.; Kolotii, A.; Skakun, S.; Rakoid, O.; Shumilo, L. A Workflow for Sustainable Development Goals Indicators Assessment Based on High-Resolution Satellite Data. Int. J. Digit. Earth 2020, 13, 309–321. [Google Scholar] [CrossRef] [Green Version]
- Jarosch, L.; Zeug, W.; Bezama, A.; Finkbeiner, M.; Thrän, D. A Regional Socio-Economic Life Cycle Assessment of a Bioeconomy Value Chain. Sustainability 2020, 12, 1259. [Google Scholar] [CrossRef] [Green Version]
- Honeck, E.; Castello, R.; Chatenoux, B.; Richard, J.-P.; Lehmann, A.; Giuliani, G. From a Vegetation Index to a Sustainable Development Goal Indicator: Forest Trend Monitoring Using Three Decades of Earth Observations across Switzerland. Int. J. Geo-Inf. 2018, 7, 455. [Google Scholar] [CrossRef] [Green Version]
- Mondal, P.; McDermid, S.S.; Qadir, A. A Reporting Framework for Sustainable Development Goal 15: Multi-Scale Monitoring of Forest Degradation Using MODIS, Landsat and Sentinel Data. Remote Sens. Environ. 2020, 237, 111592. [Google Scholar] [CrossRef]
- Macqueen, D.; Bolin, A.; Greijmans, M.; Grouwels, S.; Humphries, S. Innovations towards Prosperity Emerging in Locally Controlled Forest Business Models and Prospects for Scaling Up. World Dev. 2020, 125, 104382. [Google Scholar] [CrossRef]
- Gregersen, H.; El Lakany, H.; Blaser, J. Forests for Sustainable Development: A Process Approach to Forest Sector Contributions to the UN 2030 Agenda for Sustainable Development. Int. For. Rev. 2017, 19, 10–23. [Google Scholar] [CrossRef]
- Chen, D.; Zhao, Q.; Jiang, P.; Li, M. Incorporating Ecosystem Services to Assess Progress towards Sustainable Development Goals: A Case Study of the Yangtze River Economic Belt, China. Sci. Total Environ. 2022, 806, 151277. [Google Scholar] [CrossRef]
- Peng, K.; Jiang, W.; Ling, Z.; Hou, P.; Deng, Y. Evaluating the Potential Impacts of Land Use Changes on Ecosystem Service Value under Multiple Scenarios in Support of SDG Reporting: A Case Study of the Wuhan Urban Agglomeration. J. Clean. Prod. 2021, 307, 127321. [Google Scholar] [CrossRef]
- Zhang, Y.; Runting, R.K.; Webb, E.L.; Edwards, D.P.; Carrasco, L.R. Coordinated Intensification to Reconcile the ‘Zero Hunger’ and ‘Life on Land’ Sustainable Development Goals. J. Environ. Manag. 2021, 284, 112032. [Google Scholar] [CrossRef] [PubMed]
- Xoxo, S.; Mantel, S.; De Vos, A.; Mahlaba, B.; Le Maître, D.; Tanner, J. Towards SDG 15.3: The Biome Context as the Appropriate Degradation Monitoring Dimension. Environ. Sci. Policy 2022, 136, 400–412. [Google Scholar] [CrossRef]
- Onah, I.; Nyong, A.; Ayuba, K.H. A Case Study of Improved Cookstoves and Clean Fuel Use by Selected Nigerian Households. World Dev. 2021, 142, 105416. [Google Scholar] [CrossRef]
- Pfaff, A.; Robalino, J.; Reis, E.J.; Walker, R.; Perz, S.; Laurance, W.; Bohrer, C.; Aldrich, S.; Arima, E.; Caldas, M.; et al. Roads & SDGs, Tradeoffs and Synergies: Learning from Brazil’s Amazon in Distinguishing Frontiers. Economics 2018, 12, 20180011. [Google Scholar] [CrossRef] [Green Version]
- Hu, S.; Yang, Y.; Li, A.; Liu, K.; Mi, C.; Shi, R. Integrating Ecosystem Services Into Assessments of Sustainable Development Goals: A Case Study of the Beijing-Tianjin-Hebei Region, China. Front. Environ. Sci. 2022, 10, 897792. [Google Scholar] [CrossRef]
- Han, N.; Yu, M.; Jia, P. Multi-Scenario Landscape Ecological Risk Simulation for Sustainable Development Goals: A Case Study on the Central Mountainous Area of Hainan Island. Int. J. Environ. Res. Public Health 2022, 19, 4030. [Google Scholar] [CrossRef] [PubMed]
- Allen, C.; Oldfield, P.; Teh, S.H.; Wiedmann, T.; Langdon, S.; Yu, M.; Yang, J. Modelling Ambitious Climate Mitigation Pathways for Australia’s Built Environment. Sustain. Cities Soc. 2022, 77, 103554. [Google Scholar] [CrossRef]
- Vaz, A.S.; Gonçalves, J.F.; Pereira, P.; Santarém, F.; Vicente, J.R.; Honrado, J.P. Earth Observation and Social Media: Evaluating the Spatiotemporal Contribution of Non-Native Trees to Cultural Ecosystem Services. Remote Sens. Environ. 2019, 230, 111193. [Google Scholar] [CrossRef]
- Duguma, L.A.; Atela, J.; Ayana, A.N.; Alemagi, D.; Mpanda, M.; Nyago, M.; Minang, P.A.; Nzyoka, J.M.; Foundjem-Tita, D.; Ngo Ntamag-Ndjebet, C. Community Forestry Frameworks in Sub-Saharan Africa and the Impact on Sustainable Development. Ecol. Soc. 2018, 23, art21. [Google Scholar] [CrossRef] [Green Version]
- Spanos, I.; Kucukvar, M.; Bell, T.C.; Elnimah, A.; Hamdan, H.; Al Meer, B.; Prakash, S.; Lundberg, O.; Kutty, A.A.; AlKhereibi, A.H.A. How FIFA World Cup 2022TM Can Meet the Carbon Neutral Commitments and the United Nations 2030 Agenda for Sustainable Development?: Reflections from the Tree Nursery Project in Qatar. Sustain. Dev. 2022, 30, 203–226. [Google Scholar] [CrossRef]
- Nasr, M.; Tawfik, A.; Awad, H.M.; Galal, A.; El-Qelish, M.; Abdul Qyyum, M.; Mumtaz Ali Khan, M.; Rehan, M.; Nizami, A.-S.; Lee, M. Dual Production of Hydrogen and Biochar from Industrial Effluent Containing Phenolic Compounds. Fuel 2021, 301, 121087. [Google Scholar] [CrossRef]
- Zeug, W.; Bezama, A.; Thrän, D. Application of Holistic and Integrated LCSA: Case Study on Laminated Veneer Lumber Production in Central Germany. Int. J. Life Cycle Assess. 2022, 27, 1352–1375. [Google Scholar] [CrossRef]
- Marini Govigli, V.; Rois-Díaz, M.; den Herder, M.; Bryce, R.; Tuomasjukka, D.; Górriz-Mifsud, E. The Green Side of Social Innovation: Using Sustainable Development Goals to Classify Environmental Impacts of Rural Grassroots Initiatives. Environ. Policy Gov. 2022, 32, 459–477. [Google Scholar] [CrossRef]
- Poussin, C.; Massot, A.; Ginzler, C.; Weber, D.; Chatenoux, B.; Lacroix, P.; Piller, T.; Nguyen, L.; Giuliani, G. Drying Conditions in Switzerland—Indication from a 35-Year Landsat Time-Series Analysis of Vegetation Water Content Estimates to Support SDGs. Big Earth Data 2021, 5, 445–475. [Google Scholar] [CrossRef]
- Mariathasan, V.; Bezuidenhoudt, E.; Olympio, K.R. Evaluation of Earth Observation Solutions for Namibia’s SDG Monitoring System. Remote Sens. 2019, 11, 1612. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Zhong, R.; Liu, L.; Zhang, J. Ecological Effect of Ecological Engineering Projects on Low-Temperature Forest Cover in Great Khingan Mountain, China. Int. J. Environ. Res. Public Health 2021, 18, 10625. [Google Scholar] [CrossRef]
- Solano, F.; Praticò, S.; Piovesan, G.; Chiarucci, A.; Argentieri, A.; Modica, G. Characterizing Historical Transformation Trajectories of the Forest Landscape in Rome’s Metropolitan Area (Italy) for Effective Planning of Sustainability Goals. Land Degrad. Dev. 2021, 32, 4708–4726. [Google Scholar] [CrossRef]
- Liu, S.; Bai, J.; Chen, J. Measuring SDG 15 at the County Scale: Localization and Practice of SDGs Indicators Based on Geospatial Information. Int. J. Geo-Inf. 2019, 8, 515. [Google Scholar] [CrossRef] [Green Version]
- Helmer, E.; Ruzycki, T.; Wilson, B.; Sherrill, K.; Lefsky, M.; Marcano-Vega, H.; Brandeis, T.; Erickson, H.; Ruefenacht, B. Tropical Deforestation and Recolonization by Exotic and Native Trees: Spatial Patterns of Tropical Forest Biomass, Functional Groups, and Species Counts and Links to Stand Age, Geoclimate, and Sustainability Goals. Remote Sens. 2018, 10, 1724. [Google Scholar] [CrossRef] [Green Version]
- Dickens, C.; McCartney, M.; Tickner, D.; Harrison, I.J.; Pacheco, P.; Ndhlovu, B. Evaluating the Global State of Ecosystems and Natural Resources: Within and Beyond the SDGs. Sustainability 2020, 12, 7381. [Google Scholar] [CrossRef]
- Qiu, H.; Hu, B.; Zhang, Z. Impacts of Land Use Change on Ecosystem Service Value Based on SDGs Report--Taking Guangxi as an Example. Ecol. Indic. 2021, 133, 108366. [Google Scholar] [CrossRef]
- Adhikari, B.; Prescott, G.W.; Urbach, D.; Chettri, N.; Fischer, M. Nature’s Contributions to People and the Sustainable Development Goals in Nepal. Environ. Res. Lett. 2022, 17, 093007. [Google Scholar] [CrossRef]
- Thorlakson, T.; de Zegher, J.F.; Lambin, E.F. Companies’ Contribution to Sustainability through Global Supply Chains. Proc. Natl. Acad. Sci. USA 2018, 115, 2072–2077. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yanow, D.; Schwartz-Shea, P. Empirical Research Methods and the Interpretive Turn, 2nd ed.; Routledge: New York, NY, USA, 2015; ISBN 978-1-315-70327-5. [Google Scholar]
- Dingwerth, K.; Eichinger, M. Tamed Transparency: How Information Disclosure under the Global Reporting Initiative Fails to Empower. Glob. Environ. Politics 2010, 10, 74–96. [Google Scholar] [CrossRef]
- Joint Research Centre (European Commission). Barbero Vignola, G.; Acs, S.; Borchardt, S.; Sala, S.; Giuntoli, J.; Smits, P.; Marelli, L. In Modelling for Sustainable Development Goals (SDGs): Overview of JRC Models; Publications Office of the European Union: Luxembourg, 2020; ISBN 978-92-76-25326-6. [Google Scholar]
- Aven, T. Risk Assessment and Risk Management: Review of Recent Advances on Their Foundation. Eur. J. Oper. Res. 2016, 253, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Holloway, J.; Mengersen, K. Statistical Machine Learning Methods and Remote Sensing for Sustainable Development Goals: A Review. Remote Sens. 2018, 10, 1365. [Google Scholar] [CrossRef] [Green Version]
- Diaz-Sarachaga, J.M.; Jato-Espino, D.; Castro-Fresno, D. Is the Sustainable Development Goals (SDG) Index an Adequate Framework to Measure the Progress of the 2030 Agenda? Sustain. Dev. 2018, 26, 663–671. [Google Scholar] [CrossRef]
- Katila, P. Sustainable Development Goals: Their Impacts on Forests and People. 654. Available online: https://www.cifor.org/knowledge/publication/7465/ (accessed on 25 April 2023).
- Barbier, E.B.; Burgess, J.C. Sustainable Development Goal Indicators: Analyzing Trade-Offs and Complementarities. World Dev. 2019, 122, 295–305. [Google Scholar] [CrossRef]
- Ekins, P.; Dresner, S.; Dahlström, K. The Four-Capital Method of Sustainable Development Evaluation. Eur. Environ. 2008, 18, 63–80. [Google Scholar] [CrossRef]
- Vaismoradi, M.; Turunen, H.; Bondas, T. Content Analysis and Thematic Analysis: Implications for Conducting a Qualitative Descriptive Study: Qualitative Descriptive Study. Nurs. Health Sci. 2013, 15, 398–405. [Google Scholar] [CrossRef]
- Stebbins, R. Exploratory Research in the Social Sciences; SAGE Publications, Inc.: Thousand Oaks, CA, USA, 2001; ISBN 978-0-7619-2399-2. [Google Scholar]
- Huan, Y.; Li, H.; Liang, T. A New Method for the Quantitative Assessment of Sustainable Development Goals (SDGs) and a Case Study on Central Asia. Sustainability 2019, 11, 3504. [Google Scholar] [CrossRef] [Green Version]
- Fatimah, Y.A.; Govindan, K.; Murniningsih, R.; Setiawan, A. Industry 4.0 Based Sustainable Circular Economy Approach for Smart Waste Management System to Achieve Sustainable Development Goals: A Case Study of Indonesia. J. Clean. Prod. 2020, 269, 122263. [Google Scholar] [CrossRef]
- Allen, C.; Nejdawi, R.; El-Baba, J.; Hamati, K.; Metternicht, G.; Wiedmann, T. Indicator-Based Assessments of Progress towards the Sustainable Development Goals (SDGs): A Case Study from the Arab Region. Sustain. Sci. 2017, 12, 975–989. [Google Scholar] [CrossRef]
- Huan, Y.; Liang, T.; Li, H.; Zhang, C. A Systematic Method for Assessing Progress of Achieving Sustainable Development Goals: A Case Study of 15 Countries. Sci. Total Environ. 2021, 752, 141875. [Google Scholar] [CrossRef] [PubMed]
- Cohen-Shacham, E.; Walters, G.; Janzen, C.; Maginnis, S. (Eds.) Nature-Based Solutions to Address Global Societal Challenges; IUCN International Union for Conservation of Nature: Gland, Switzerland, 2016; ISBN 978-2-8317-1812-5. [Google Scholar]
- Nesshöver, C.; Assmuth, T.; Irvine, K.N.; Rusch, G.M.; Waylen, K.A.; Delbaere, B.; Haase, D.; Jones-Walters, L.; Keune, H.; Kovacs, E.; et al. The Science, Policy and Practice of Nature-Based Solutions: An Interdisciplinary Perspective. Sci. Total Environ. 2017, 579, 1215–1227. [Google Scholar] [CrossRef]
- Payraudeau, S.; van der Werf, H.M.G. Environmental Impact Assessment for a Farming Region: A Review of Methods. Agric. Ecosyst. Environ. 2005, 107, 1–19. [Google Scholar] [CrossRef]
- Grainger-Brown, J.; Malekpour, S. Implementing the Sustainable Development Goals: A Review of Strategic Tools and Frameworks Available to Organisations. Sustainability 2019, 11, 1381. [Google Scholar] [CrossRef] [Green Version]
- Costanza, R.; Daly, L.; Fioramonti, L.; Giovannini, E.; Kubiszewski, I.; Mortensen, L.F.; Pickett, K.E.; Ragnarsdottir, K.V.; De Vogli, R.; Wilkinson, R. Modelling and Measuring Sustainable Wellbeing in Connection with the UN Sustainable Development Goals. Ecol. Econ. 2016, 130, 350–355. [Google Scholar] [CrossRef]
- Janoušková, S.; Hák, T.; Moldan, B. Global SDGs Assessments: Helping or Confusing Indicators? Sustainability 2018, 10, 1540. [Google Scholar] [CrossRef] [Green Version]
- Fu, B.; Wang, S.; Zhang, J.; Hou, Z.; Li, J. Unravelling the Complexity in Achieving the 17 Sustainable-Development Goals. Natl. Sci. Rev. 2019, 6, 386–388. [Google Scholar] [CrossRef] [Green Version]
- Broman, G.I.; Robèrt, K.-H. A Framework for Strategic Sustainable Development. J. Clean. Prod. 2017, 140, 17–31. [Google Scholar] [CrossRef]
- United Nations Economic Commission for Europe. Measuring and Monitoring Progress Towards the Sustainable Development Goals; United Nations: New York, NY, USA, 2021; ISBN 978-92-1-005186-6. [Google Scholar]
- Owers, C.J.; Lucas, R.M.; Clewley, D.; Planque, C.; Punalekar, S.; Tissott, B.; Chua, S.M.T.; Bunting, P.; Mueller, N.; Metternicht, G. Living Earth: Implementing National Standardised Land Cover Classification Systems for Earth Observation in Support of Sustainable Development. Big Earth Data 2021, 5, 368–390. [Google Scholar] [CrossRef]
- Singh, R.K.; Murty, H.R.; Gupta, S.K.; Dikshit, A.K. An Overview of Sustainability Assessment Methodologies. Ecol. Indic. 2009, 9, 189–212. [Google Scholar] [CrossRef]
- Malagó, A.; Comero, S.; Bouraoui, F.; Kazezyılmaz-Alhan, C.M.; Gawlik, B.M.; Easton, P.; Laspidou, C. An Analytical Framework to Assess SDG Targets within the Context of WEFE Nexus in the Mediterranean Region. Resour. Con-Servation Recycl. 2021, 164, 105205. [Google Scholar] [CrossRef] [PubMed]
- Mendoza, G.A.; Martins, H. Multi-Criteria Decision Analysis in Natural Resource Management: A Critical Review of Methods and New Modelling Paradigms. For. Ecol. Manag. 2006, 230, 1–22. [Google Scholar] [CrossRef]
Databases | Search Strings | Access Dates |
---|---|---|
Scopus and Web of Science | (Forest* OR Tree* OR Wood* OR “Pulp and Paper*” OR Furniture* OR Timber*) AND (“Sustainable Development Goal*” OR SDG* OR “Agenda 2030” OR “2030 Agenda”) | 5 July 2022 and 10 November 2022 |
Question Element | Definition |
---|---|
Population | Statistical samples or populations of subjects (ecosystem, species, etc.) to which the intervention is applied or exposed to describe conditions. |
Intervention/Exposure | Policy, action, or environmental variables impacting the populations or to which the subject populations are exposed. |
Comparator | What the exposure or intervention is compared to. Either a control with no intervention/exposure, alternative intervention, or counterfactual scenario. |
Outcome | Consequences of the intervention or exposure. All relevant variables that can be reliably measured. |
Periodical Name | Publisher | Number of Articles |
---|---|---|
Sustainability | MDPI | 11 |
Forests | MDPI | 8 |
Forest Policy and Economics | Elsevier | 3 |
Mountain Research and Development | BioOne | 3 |
Remote Sensing | MDPI | 3 |
Current Opinion in Environmental Sustainability | Elsevier | 2 |
Ecological Indicators | Elsevier | 2 |
Int. Journal of Environmental Research and Public Health | MDPI | 2 |
ISPRS International Journal of Geo-Information | MDPI | 2 |
Journal of Cleaner Production | Elsevier | 2 |
Category of Method | Article References | Number of Articles | % |
---|---|---|---|
Content Analysis | [13,14,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50] | 31 | 20.39% |
Personal Perceptions | [14,29,35,37,41,42,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65] | 23 | 15.13% |
Interpretative Analysis | [13,30,43,51,53,58,60,61,62,66,67,68,69,70,71,72,73,74,75] | 21 | 13.82% |
Framework | [29,37,47,52,57,62,65,76,77,78,79,80,81,82,83,84,85,86,87] | 20 | 13.16% |
Model/Flows | [28,35,51,58,70,78,84,88,89,90,91,92,93] | 15 | 9.87% |
Impact Analysis | [28,30,40,54,55,69,73,79,91,94,95,96,97,98] | 14 | 9.21% |
Time Series Data | [42,80,81,87,93,99,100,101,102,103,104] | 14 | 9.21% |
SDG Indicators | [34,35,56,63,80,85,90,91,97,98,101,105,106,107] | 14 | 9.21% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aguayo Lopes da Silva, R.; Cesar Gonçalves Robert, R.; Purfürst, T. How Is the Forest Sector’s Contribution to the Sustainable Development Goals (SDGs) Being Addressed? A Systematic Review of the Methods. Sustainability 2023, 15, 8988. https://doi.org/10.3390/su15118988
Aguayo Lopes da Silva R, Cesar Gonçalves Robert R, Purfürst T. How Is the Forest Sector’s Contribution to the Sustainable Development Goals (SDGs) Being Addressed? A Systematic Review of the Methods. Sustainability. 2023; 15(11):8988. https://doi.org/10.3390/su15118988
Chicago/Turabian StyleAguayo Lopes da Silva, Renata, Renato Cesar Gonçalves Robert, and Thomas Purfürst. 2023. "How Is the Forest Sector’s Contribution to the Sustainable Development Goals (SDGs) Being Addressed? A Systematic Review of the Methods" Sustainability 15, no. 11: 8988. https://doi.org/10.3390/su15118988
APA StyleAguayo Lopes da Silva, R., Cesar Gonçalves Robert, R., & Purfürst, T. (2023). How Is the Forest Sector’s Contribution to the Sustainable Development Goals (SDGs) Being Addressed? A Systematic Review of the Methods. Sustainability, 15(11), 8988. https://doi.org/10.3390/su15118988