Accurate and Efficient Energy Management System of Fuel Cell/Battery/Supercapacitor/AC and DC Generators Hybrid Electric Vehicles
Abstract
:1. Introduction
2. Description of the Proposed Models
3. Power Hybrid Electric Vehicle Modeling
3.1. Fuel Cell (FC)
3.2. Li-Ion ESS
3.3. DC Generator
3.4. AC Generator
3.5. Supercapacitor (SC)
3.6. DC–DC Bi-Directional Converter
3.7. DC–DC Boost Converter
4. Sensorless ANFIS DTC SVM
4.1. Space Vector Modulation (SVM)
4.2. ANFIS Controller
4.3. Electromagnetic Torque and Flux Estimators
4.4. MRAS Estimator-Based Rotor Flux
4.5. Electronics Differential (ED)
5. SM-Based EMS
6. Simulation Results and Discussion
Key Performance Indexes (KPIs)
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, Q.; Wang, T.; Li, S.; Chen, W.; Liu, H.; Breaz, E.; Gao, F. Online Extremum Seeking-Based Optimized Energy Management Strategy for Hybrid Electric Tram Considering Fuel Cell Degradation. Appl. Energy 2021, 285, 116505. [Google Scholar] [CrossRef]
- Mayyas, A.; Omar, M.; Pisu, P.; Mayyas, A.; Alahmer, A.; Montes, C. Thermal Modeling of an On-board Nickel-metal Hydride Pack in a Power-split Hybrid Configuration Using a Cell-based Resistance–Capacitance, Electro-thermal Model. Int. J. Energy Res. 2013, 37, 331–346. [Google Scholar] [CrossRef]
- Song, K.; Lan, Y.; Zhang, X.; Jiang, J.; Sun, C.; Yang, G.; Yang, F.; Lan, H. A Review on Interoperability of Wireless Charging Systems for Electric Vehicles. Energies 2023, 16, 1653. [Google Scholar] [CrossRef]
- Min, D.; Song, Z.; Chen, H.; Wang, T.; Zhang, T. Genetic Algorithm Optimized Neural Network Based Fuel Cell Hybrid Electric Vehicle Energy Management Strategy under Start-Stop Condition. Appl. Energy 2022, 306, 118036. [Google Scholar] [CrossRef]
- Mayyas, A.R.; Omar, M.; Pisu, P.; Al-Ahmer, A.; Mayyas, A.; Montes, C.; Dongri, S. Comprehensive Thermal Modeling of a Power-Split Hybrid Powertrain Using Battery Cell Model. J. Power Sources 2011, 196, 6588–6594. [Google Scholar] [CrossRef]
- Xu, D.; Cui, Y.; Ye, J.; Cha, S.W.; Li, A.; Zheng, C. A Soft Actor-Critic-Based Energy Management Strategy for Electric Vehicles with Hybrid Energy Storage Systems. J. Power Sources 2022, 524, 231099. [Google Scholar] [CrossRef]
- Sidharthan Panaparambil, V.; Kashyap, Y.; Vijay Castelino, R. A Review on Hybrid Source Energy Management Strategies for Electric Vehicle. Int. J. Energy Res. 2021, 45, 19819–19850. [Google Scholar] [CrossRef]
- Ahmadi, P.; Torabi, S.H.; Afsaneh, H.; Sadegheih, Y.; Ganjehsarabi, H.; Ashjaee, M. The Effects of Driving Patterns and PEM Fuel Cell Degradation on the Lifecycle Assessment of Hydrogen Fuel Cell Vehicles. Int. J. Hydrog. Energy 2020, 45, 3595–3608. [Google Scholar] [CrossRef]
- Changizian, S.; Ahmadi, P.; Raeesi, M.; Javani, N. Performance Optimization of Hybrid Hydrogen Fuel Cell-Electric Vehicles in Real Driving Cycles. Int. J. Hydrog. Energy 2020, 45, 35180–35197. [Google Scholar] [CrossRef]
- Amjad, S.; Neelakrishnan, S.; Rudramoorthy, R. Review of Design Considerations and Technological Challenges for Successful Development and Deployment of Plug-in Hybrid Electric Vehicles. Renew. Sustain. Energy Rev. 2010, 14, 1104–1110. [Google Scholar] [CrossRef]
- Hartani, M.A.; Rezk, H.; Benhammou, A.; Hamouda, M.; Abdelkhalek, O.; Mekhilef, S.; Olabi, A.G. Proposed Frequency Decoupling-Based Fuzzy Logic Control for Power Allocation and State-of-Charge Recovery of Hybrid Energy Storage Systems Adopting Multi-Level Energy Management for Multi-DC-Microgrids. Energy 2023, 278, 127703. [Google Scholar] [CrossRef]
- Kandidayeni, M.; Trovão, J.P.; Soleymani, M.; Boulon, L. Towards Health-Aware Energy Management Strategies in Fuel Cell Hybrid Electric Vehicles: A Review. Int. J. Hydrog. Energy 2022, 47, 10021–10043. [Google Scholar] [CrossRef]
- Xiao, B.; Ruan, J.; Yang, W.; Walker, P.D.; Zhang, N. A Review of Pivotal Energy Management Strategies for Extended Range Electric Vehicles. Renew. Sustain. Energy Rev. 2021, 149, 111194. [Google Scholar] [CrossRef]
- Lü, X.; Qu, Y.; Wang, Y.; Qin, C.; Liu, G. A Comprehensive Review on Hybrid Power System for PEMFC-HEV: Issues and Strategies. Energy Convers. Manag. 2018, 171, 1273–1291. [Google Scholar] [CrossRef]
- Garcia, P.; Fernandez, L.M.; Garcia, C.A.; Jurado, F. Energy Management System of Fuel-Cell-Battery Hybrid Tramway. IEEE Trans. Ind. Electron. 2009, 57, 4013–4023. [Google Scholar] [CrossRef]
- Khalid, M. A Review on the Selected Applications of Battery-Supercapacitor Hybrid Energy Storage Systems for Microgrids. Energies 2019, 12, 4559. [Google Scholar] [CrossRef] [Green Version]
- Suberu, M.Y.; Mustafa, M.W.; Bashir, N. Energy Storage Systems for Renewable Energy Power Sector Integration and Mitigation of Intermittency. Renew. Sustain. Energy Rev. 2014, 35, 499–514. [Google Scholar] [CrossRef]
- Wegmann, R.; Döge, V.; Sauer, D.U. Assessing the Potential of a Hybrid Battery System to Reduce Battery Aging in an Electric Vehicle by Studying the Cycle Life of a Graphite∣NCA High Energy and a LTO∣Metal Oxide High Power Battery Cell Considering Realistic Test Profiles. Appl. Energy 2018, 226, 197–212. [Google Scholar] [CrossRef]
- Hannan, M.A.; Azidin, F.A.; Mohamed, A. Hybrid Electric Vehicles and Their Challenges: A Review. Renew. Sustain. Energy Rev. 2014, 29, 135–150. [Google Scholar] [CrossRef]
- Naseri, F.; Barbu, C.; Sarikurt, T. Optimal Sizing of Hybrid High-Energy/High-Power Battery Energy Storage Systems to Improve Battery Cycle Life and Charging Power in Electric Vehicle Applications. J. Energy Storage 2022, 55, 105768. [Google Scholar] [CrossRef]
- Sankarkumar, R.S.; Natarajan, R. Energy Management Techniques and Topologies Suitable for Hybrid Energy Storage System Powered Electric Vehicles: An Overview. Int. Trans. Electr. Energy Syst. 2021, 31, e12819. [Google Scholar] [CrossRef]
- Fu, Z.; Li, Z.; Si, P.; Tao, F. A Hierarchical Energy Management Strategy for Fuel Cell/Battery/Supercapacitor Hybrid Electric Vehicles. Int. J. Hydrog. Energy 2019, 44, 22146–22159. [Google Scholar] [CrossRef]
- Benhammou, A.; Hartani, M.A.; Tedjini, H.; Rezk, H.; Al-Dhaifallah, M. Improvement of Autonomy, Efficiency, and Stress of Fuel Cell Hybrid Electric Vehicle System Using Robust Controller. Sustainability 2023, 15, 5657. [Google Scholar] [CrossRef]
- Li, Q.; Chen, W.; Liu, Z.; Li, M.; Ma, L. Development of Energy Management System Based on a Power Sharing Strategy for a Fuel Cell-Battery-Supercapacitor Hybrid Tramway. J. Power Sources 2015, 279, 267–280. [Google Scholar] [CrossRef]
- Thounthong, P.; Rael, S.; Davat, B. Energy Management of Fuel Cell/Battery/Supercapacitor Hybrid Power Source for Vehicle Applications. J. Power Sources 2009, 193, 376–385. [Google Scholar] [CrossRef]
- Sun, Z.; Wang, Y.; Chen, Z.; Li, X. Min-Max Game Based Energy Management Strategy for Fuel Cell/Supercapacitor Hybrid Electric Vehicles. Appl. Energy 2020, 267, 115086. [Google Scholar] [CrossRef]
- Fathabadi, H. Novel Fuel Cell/Battery/Supercapacitor Hybrid Power Source for Fuel Cell Hybrid Electric Vehicles. Energy 2018, 143, 467–477. [Google Scholar] [CrossRef]
- Jiang, H.; Xu, L.; Li, J.; Hu, Z.; Ouyang, M. Energy Management and Component Sizing for a Fuel Cell/Battery/Supercapacitor Hybrid Powertrain Based on Two-Dimensional Optimization Algorithms. Energy 2019, 177, 386–396. [Google Scholar] [CrossRef]
- Bambang, R.T.; Rohman, A.S.; Dronkers, C.J.; Ortega, R.; Sasongko, A. Energy Management of Fuel Cell/Battery/Supercapacitor Hybrid Power Sources Using Model Predictive Control. IEEE Trans. Ind. Inform. 2014, 10, 1992–2002. [Google Scholar]
- Odeim, F.; Roes, J.; Heinzel, A. Power Management Optimization of an Experimental Fuel Cell/Battery/Supercapacitor Hybrid System. Energies 2015, 8, 6302–6327. [Google Scholar] [CrossRef] [Green Version]
- Ammar, A.; Benakcha, A.; Bourek, A. Closed Loop Torque SVM-DTC Based on Robust Super Twisting Speed Controller for Induction Motor Drive with Efficiency Optimization. Int. J. Hydrog. Energy 2017, 42, 17940–17952. [Google Scholar] [CrossRef]
- Ammar, A.; Bourek, A.; Benakcha, A. Sensorless SVM-Direct Torque Control for Induction Motor Drive Using Sliding Mode Observers. J. Control. Autom. Electr. Syst. 2017, 28, 189–202. [Google Scholar] [CrossRef]
- Ammar, A.; Bourek, A.; Benakcha, A. Efficiency Optimization for Sensorless Induction Motor Controlled by MRAS Based Hybrid FOC-DTC Strategy. In Proceedings of the 2017 International Conference on Control, Automation and Diagnosis (ICCAD), Hammamet, Tunisia, 19–21 January 2017; pp. 152–157. [Google Scholar]
- Fahassa, C.; Akherraz, M.; Zahraoui, Y. ANFIS Speed Controller and Intelligent Dual Observer Based DTC of an Induction Motor. In Proceedings of the 2018 International Symposium on Advanced Electrical and Communication Technologies (ISAECT), Rabat, Morocco, 21–23 November 2018; pp. 1–6. [Google Scholar]
- Ammar, A.; Kheldoun, A.; Metidji, B.; Ameid, T.; Azzoug, Y. Feedback Linearization Based Sensorless Direct Torque Control Using Stator Flux MRAS-Sliding Mode Observer for Induction Motor Drive. ISA Trans. 2020, 98, 382–392. [Google Scholar] [CrossRef]
- Soumeur, M.A.; Gasbaoui, B.; Abdelkhalek, O.; Ghouili, J.; Toumi, T.; Chakar, A. Comparative Study of Energy Management Strategies for Hybrid Proton Exchange Membrane Fuel Cell Four Wheel Drive Electric Vehicle. J. Power Sources 2020, 462, 228167. [Google Scholar] [CrossRef]
- Chen, M.; Zhao, C.; Sun, F.; Fan, J.; Li, H.; Wang, H. Research Progress of Catalyst Layer and Interlayer Interface Structures in Membrane Electrode Assembly (MEA) for Proton Exchange Membrane Fuel Cell (PEMFC) System. ETransportation 2020, 5, 100075. [Google Scholar] [CrossRef]
- Sun, C.; Zhang, H. Investigation of Nafion Series Membranes on the Performance of Iron-chromium Redox Flow Battery. Int. J. Energy Res. 2019, 43, 8739–8752. [Google Scholar] [CrossRef]
- Olabi, A.G.; Wilberforce, T.; Abdelkareem, M.A. Fuel Cell Application in the Automotive Industry and Future Perspective. Energy 2021, 214, 118955. [Google Scholar] [CrossRef]
- Aissa, B.; Hamza, T.; Yacine, G.; Mohamed, N. Impact of Sensorless Neural Direct Torque Control in a Fuel Cell Traction System. Int. J. Electr. Comput. Eng. 2021, 11, 2725–2732. [Google Scholar] [CrossRef]
- Haxhiu, A.; Kyyrä, J.; Chan, R.; Kanerva, S. Improved Variable DC Approach to Minimize Drivetrain Losses in Fuel Cell Marine Power Systems. IEEE Trans. Ind. Appl. 2020, 57, 882–893. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, Z.; Chen, Z. Energy Management Strategy for Battery/Supercapacitor/Fuel Cell Hybrid Source Vehicles Based on Finite State Machine. Appl. Energy 2019, 254, 113707. [Google Scholar] [CrossRef]
- Martins, R.; Hesse, H.C.; Jungbauer, J.; Vorbuchner, T.; Musilek, P. Optimal Component Sizing for Peak Shaving in Battery Energy Storage System for Industrial Applications. Energies 2018, 11, 2048. [Google Scholar] [CrossRef] [Green Version]
- Yu, X.; Sandhu, N.S.; Yang, Z.; Zheng, M. Suitability of Energy Sources for Automotive Application—A Review. Appl. Energy 2020, 271, 115169. [Google Scholar] [CrossRef]
- Zhu, T.; Wills, R.G.A.; Lot, R.; Kong, X.; Yan, X. Optimal Sizing and Sensitivity Analysis of a Battery-Supercapacitor Energy Storage System for Electric Vehicles. Energy 2021, 221, 119851. [Google Scholar] [CrossRef]
- Mohamad, F.; Teh, J.; Lai, C.-M.; Chen, L.-R. Development of Energy Storage Systems for Power Network Reliability: A Review. Energies 2018, 11, 2278. [Google Scholar] [CrossRef] [Green Version]
- Brisset, S.; Radulescu, M. Design of a Brushless DC Permanent-Magnet Generator for Use in Micro-Wind Turbine Applications. Int. J. Appl. Electromagn. Mech. 2018, 56, 3–15. [Google Scholar]
- Cunanan, C.; Tran, M.-K.; Lee, Y.; Kwok, S.; Leung, V.; Fowler, M. A Review of Heavy-Duty Vehicle Powertrain Technologies: Diesel Engine Vehicles, Battery Electric Vehicles, and Hydrogen Fuel Cell Electric Vehicles. Clean Technol. 2021, 3, 474–489. [Google Scholar] [CrossRef]
- Nanos, E.M.; Bottasso, C.L.; Campagnolo, F.; Mühle, F.; Letizia, S.; Iungo, G.V.; Rotea, M.A. Design, Steady Performance and Wake Characterization of a Scaled Wind Turbine with Pitch, Torque and Yaw Actuation. Wind Energy Sci. 2022, 7, 1263–1287. [Google Scholar] [CrossRef]
- O’Donnell, R.; Schofield, N.; Smith, A.C.; Cullen, J. Design Concepts for High-Voltage Variable-Capacitance DC Generators. IEEE Trans. Ind. Appl. 2009, 45, 1778–1784. [Google Scholar] [CrossRef]
- Ding, D.; He, F.; Yuan, L.; Pan, Z.; Wang, L.; Ros, M. The First Step towards Intelligent Wire Arc Additive Manufacturing: An Automatic Bead Modelling System Using Machine Learning through Industrial Information Integration. J. Ind. Inf. Integr. 2021, 23, 100218. [Google Scholar] [CrossRef]
- Rodriguez, G.G.; e Silva, A.S.; Zeni, N. Identification of Synchronous Machine Parameters from Field Flashing and Load Rejection Tests with Field Voltage Variations. Electr. Power Syst. Res. 2017, 143, 813–824. [Google Scholar] [CrossRef]
- Chen, J.; O’Donnell, T. Parameter Constraints for Virtual Synchronous Generator Considering Stability. IEEE Trans. Power Syst. 2019, 34, 2479–2481. [Google Scholar] [CrossRef]
- Djamel, I.; Camara, M.S.; Camara, M.B.; Dakyo, B.; Gualous, H. Permanent Magnet Synchronous Generators for Large Offshore Wind Farm Connected to Grid-Comparative Study between DC and AC Configurations. Int. J. Renew. Energy Res. 2014, 4, 519–527. [Google Scholar]
- Hartani, M.A.; Hamouda, M.; Abdelkhalek, O.; Mekhilef, S. Impacts Assessment of Random Solar Irradiance and Temperature on the Cooperation of the Energy Management with Power Control of an Isolated Cluster of DC-Microgrids. Sustain. Energy Technol. Assess. 2021, 47, 101484. [Google Scholar] [CrossRef]
- Li, H.; Ravey, A.; N’Diaye, A.; Djerdir, A. A Novel Equivalent Consumption Minimization Strategy for Hybrid Electric Vehicle Powered by Fuel Cell, Battery and Supercapacitor. J. Power Sources 2018, 395, 262–270. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, X.; Liu, C.; Pan, R.; Chen, Z. Multi-Timescale Power and Energy Assessment of Lithium-Ion Battery and Supercapacitor Hybrid System Using Extended Kalman Filter. J. Power Sources 2018, 389, 93–105. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, B.; Manandhar, U.; Gooi, H.B.; Foo, G. A Model Predictive Current Controlled Bidirectional Three-Level DC/DC Converter for Hybrid Energy Storage System in DC Microgrids. IEEE Trans. Power Electron. 2018, 34, 4025–4030. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, H.; Li, J.; Sumner, M.; Xia, C. DC–DC Boost Converter with a Wide Input Range and High Voltage Gain for Fuel Cell Vehicles. IEEE Trans. Power Electron. 2018, 34, 4100–4111. [Google Scholar] [CrossRef]
- Wang, H.; Gaillard, A.; Hissel, D. A Review of DC/DC Converter-Based Electrochemical Impedance Spectroscopy for Fuel Cell Electric Vehicles. Renew. Energy 2019, 141, 124–138. [Google Scholar] [CrossRef]
- Rezk, H.; Olabi, A.G.; Abdelkareem, M.A.; Alahmer, A.; Sayed, E.T. Maximizing Green Hydrogen Production from Water Electrocatalysis: Modeling and Optimization. J. Mar. Sci. Eng. 2023, 11, 617. [Google Scholar] [CrossRef]
- Nassef, A.M.; Rezk, H.; Alahmer, A.; Abdelkareem, M.A. Maximization of CO2 Capture Capacity Using Recent RUNge Kutta Optimizer and Fuzzy Model. Atmosphere 2023, 14, 295. [Google Scholar] [CrossRef]
- Aissa, B.; Hamza, T.; Yacine, G.; Amine, H.M. Impact of Artificial Intelligence in Renewable Energy Management of Hybrid Systems. Phys. Sci. Forum 2023, 6, 5. [Google Scholar]
- Alahmer, H.; Alahmer, A.; Alkhazaleh, R.; Alrbai, M.; Alamayreh, M.I. Applied Intelligent Grey Wolf Optimizer (IGWO) to Improve the Performance of CI Engine Running on Emulsion Diesel Fuel Blends. Fuels 2023, 4, 35–57. [Google Scholar] [CrossRef]
- Alahmer, A.; Ajib, S. Solar Cooling Technologies: State of Art and Perspectives. Energy Convers. Manag. 2020, 214, 112896. [Google Scholar] [CrossRef]
- Benhammou, A.; Tedjini, H.; Guettaf, Y.; Soumeur, M.A.; Hartani, M.A.; Hafsi, O.; Benabdelkader, A. Exploitation of Vehicle’s Kinetic Energy in Power Management of Tow-Wheel Drive Electric Vehicles Based on ANFIS DTC-SVM Comparative Study. Int. J. Hydrog. Energy 2021, 46, 27758–27769. [Google Scholar] [CrossRef]
- Sahu, A.; Mohanty, K.B.; Mishra, R.N. Improved Sector-Based DTC-SVM for Induction Motor Drive Using Hybrid Fuzzy-PI Controller. In Advances in Electrical Control and Signal Systems: Select Proceedings of AECSS 2019; Springer: Singapore, 2020; pp. 415–428. [Google Scholar]
- Costa, B.L.G.; Graciola, C.L.; Angélico, B.A.; Goedtel, A.; Castoldi, M.F.; de Andrade Pereira, W.C. A Practical Framework for Tuning DTC-SVM Drive of Three-Phase Induction Motors. Control Eng. Pract. 2019, 88, 119–127. [Google Scholar] [CrossRef]
- Mahmud, N.; Zahedi, A.; Mahmud, A. A Cooperative Operation of Novel PV Inverter Control Scheme and Storage Energy Management System Based on ANFIS for Voltage Regulation of Grid-Tied PV System. IEEE Trans. Ind. Inform. 2017, 13, 2657–2668. [Google Scholar] [CrossRef]
- Prajapati, S.; Fernandez, E. Performance Evaluation of Membership Function on Fuzzy Logic Model for Solar PV Array. In Proceedings of the 2020 IEEE International Conference on Computing, Power and Communication Technologies (GUCON), Greater Noida, India, 2–4 October 2020; pp. 609–613. [Google Scholar]
- Elsisi, M.; Tran, M.-Q.; Mahmoud, K.; Lehtonen, M.; Darwish, M.M.F. Robust Design of ANFIS-Based Blade Pitch Controller for Wind Energy Conversion Systems against Wind Speed Fluctuations. IEEE Access 2021, 9, 37894–37904. [Google Scholar] [CrossRef]
- Gupta, S.; Garg, R.; Singh, A. ANFIS-Based Control of Multi-Objective Grid Connected Inverter and Energy Management. J. Inst. Eng. Ser. B 2020, 101, 1–14. [Google Scholar] [CrossRef]
- Song, K.; Li, F.; Hu, X.; He, L.; Niu, W.; Lu, S.; Zhang, T. Multi-Mode Energy Management Strategy for Fuel Cell Electric Vehicles Based on Driving Pattern Identification Using Learning Vector Quantization Neural Network Algorithm. J. Power Sources 2018, 389, 230–239. [Google Scholar] [CrossRef]
- Korzonek, M.; Tarchala, G.; Orlowska-Kowalska, T. A Review on MRAS-Type Speed Estimators for Reliable and Efficient Induction Motor Drives. ISA Trans. 2019, 93, 1–13. [Google Scholar] [CrossRef]
- Holakooie, M.H.; Ojaghi, M.; Taheri, A. Modified DTC of a Six-Phase Induction Motor with a Second-Order Sliding-Mode MRAS-Based Speed Estimator. IEEE Trans. Power Electron. 2018, 34, 600–611. [Google Scholar] [CrossRef]
- Korzonek, M.; Tarchala, G.; Orlowska-Kowalska, T. Simple Stability Enhancement Method for Stator Current Error-Based MRAS-Type Speed Estimator for Induction Motor. IEEE Trans. Ind. Electron. 2020, 67, 5854–5866. [Google Scholar] [CrossRef]
- Zhao, W.; Zhang, H. Coupling Control Strategy of Force and Displacement for Electric Differential Power Steering System of Electric Vehicle With Motorized Wheels. IEEE Trans. Veh. Technol. 2018, 67, 8118–8128. [Google Scholar] [CrossRef]
- Yildirim, M.; Kurum, H. Electronic Differential System for an Electric Vehicle with Four In-Wheel PMSM. In Proceedings of the 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring), Antwerp, Belgium, 25–28 May 2020; pp. 1–5. [Google Scholar]
- Ibrahim, A.; Jiang, F. The Electric Vehicle Energy Management: An Overview of the Energy System and Related Modeling and Simulation. Renew. Sustain. Energy Rev. 2021, 144, 111049. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, C.; Pratt, A.; Baggu, M. Design of an Advanced Energy Management System for Microgrid Control Using a State Machine. Appl. Energy 2018, 228, 2407–2421. [Google Scholar] [CrossRef]
- Gasbaoui, B.; Nasri, A.; Abdelkhalek, O.; Ghouili, J.; Ghezouani, A. Behavior PEM Fuel Cell for 4WD Electric Vehicle under Different Scenario Consideration. Int. J. Hydrog. Energy 2017, 42, 535–543. [Google Scholar] [CrossRef]
- Mantriota, G.; Reina, G. Dual-Motor Planetary Transmission to Improve Efficiency in Electric Vehicles. Machines 2021, 9, 58. [Google Scholar] [CrossRef]
- Ruan, J.; Walker, P.D.; Zhang, N.; Wu, J. An Investigation of Hybrid Energy Storage System in Multi-Speed Electric Vehicle. Energy 2017, 140, 291–306. [Google Scholar] [CrossRef]
- Huma, Z.; Azeem, M.K.; Ahmad, I.; Armghan, H.; Ahmed, S.; Adil, H.M.M. Robust Integral Backstepping Controller for Energy Management in Plugin Hybrid Electric Vehicles. J. Energy Storage 2021, 42, 103079. [Google Scholar] [CrossRef]
Type | Parameters | Value |
---|---|---|
HEV | fr | 0.0133 |
rt (m) | 0.32 | |
cd | 0.32 | |
ρair (kg/m3) | 1.109 | |
A (m2) | 2.61 | |
Drives power (kW) | 30 | |
Fuel cell | voltage (v) | 200 |
MOP and NOP (A, V) | 150,200 and 40,200 | |
Cells number | 285 | |
H2 pressure (bar) | 1.5 | |
Efficiency (%) | 55 | |
Composition: H2O, H2, and O2 (%) | 1–99.95, and 21 | |
DC Generator | Ra (Ω) | 0.8727 |
Power (kW) | 3 | |
La (H) | 0.001882 | |
Tem (N·m) | 4.2 | |
AC Generator | Power (kW) | 3 |
Voltage (V) | 320 | |
Torque (N·m) | 4 | |
Battery pack | Capacity | 20 Ah |
Voltage (V) | 200 | |
Fully charged (V) | 230 | |
SC bank | Rated voltage | 200 |
Resistance (Ω) | 2 × 10−4 | |
Capacitance (F) | 14.6 |
Sector | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
Sa | Tb | Ta | Ta | Tc | Tb | Tc |
Sb | Ta | Tc | Tb | Tb | Tc | Ta |
Sc | Tc | Tb | Tc | Ta | Ta | Tb |
PI Controller Gains | PI-Based-EMS | DC–DC Boost Converter | DC–DC BDCs | DTC-SVM | ||
---|---|---|---|---|---|---|
Outer Voltage Loop | Inner Current Loop | Torque Control | Flux Control | |||
Ki | 10 | 142.8 | 50,000 | 500 | 200 | 4000 |
Kp | 500 | 1.5 | 15,000 | 15,000 | 18 | 250 |
State | Period | Explanation |
---|---|---|
1 | (0,40) | 90 km/h is the HEV reference speed, and the HEV climbed an 11° slope from 20 s to 30 s |
2 | (40,70) | The vehicle’s speed is 60 km/h and detoured to the right at 30° with the same speed. |
3 | (70,90) | The HEV runs at 90 km/h, applying the slope of 12° from 80 s to 90 s. |
4 | (90,125) | The HEV’s Speed dropped to 60 km/h with a ramp of 12° from 100 s to 110 s. |
5 | (125,130) | The vehicle stopped during this period. |
HEV Scenarios | DC Generators | AC Generators | Basic HEV | |
---|---|---|---|---|
Criteria | ||||
DC Bus voltage (V) | ||||
Response time (s) | 0.002 | 0.002 | 0.004 | |
RMSE (%)/MAE (%) | 0.0017/0 | |||
Efficiency (%) | 96.7 | 97 | 97.5 | |
Battery | ||||
BESS stress (%) | 43.4 | 47.5 | 64.9 | |
SoC (%) | 60.1–59.68 | 60.1–59.64 | 60.1–59.56 | |
0.42 | 0.46 | 0.54 | ||
Fuel Cell | ||||
Fuel consumption (IPM)) | 15.6 | 19.3 | 25.85 | |
FC stress (%) | 28.4 | 32.7 | 39 | |
Load power | ||||
Load supply losses | RMSE (W) | 835 | 833 | 817 |
MAE (W) | 316 | 307 | 255 | |
HEV Speed | ||||
Measured speed | RMSE (%) | 0.4 | ||
MAE (%) | 0.17 | |||
Estimated speed | RMSE (%) | 0.48 | ||
MAE (%) | 0.17 | |||
HEV Torque | ||||
Torque | RMSE (%) | 0.59 | ||
MAE (%) | 0.24 |
References | Energy | EMSs | Controller | Analysis Type | Comments | ||
---|---|---|---|---|---|---|---|
Resources | Efficiency | Speed | Power | ||||
Soumeur et al. [36], (2020) | -BESS -FC -SC | <85 | -PI-EMS -SM-EMS -FLC-EMS -FD-EMS | DTC-SVM | PIs | Simulation: MATLAB/Simulink | Despite the diverse range of energy management systems, the study’s reliance on only three sources implies limited independence and overall efficiency. |
Gasbaoui et al. [81], (2017) | FC | <75 | / | DTC-SVM | PIs | Simulation: MATLAB/Simulink | “Adopting a single feeding source may reduce the efficiency and independence of the system, but it often results in lower costs compared to multi-source systems.” |
Mantriota et al. [82], (2021) | BESS | <90 | / | Optimization process | optimization process | Simulation: MATLAB/Simulink | The application of optimization systems has a significant impact on the system’s efficiency. Still, the issue of relying solely on a single power source remains one of the challenges in improving electric transportation autonomy. |
Ruan et al. [83], (2017) | -BESS -SC | <86 | / | Multi-speed DCTs | PIs | Simulation: MATLAB/Simulink | Enhancing battery integration with a fast storage system positively impacts system transmission, particularly in transient systems and energy recovery. However, the system’s limitations necessitate including additional energy sources. |
Huma et al. [84], (2021) | BESS SC | <80 | Supervisory control | / | Buckstepping | Simulation: MATLAB/Simulink | Enhancing battery integration with a fast storage system positively impacts system transmission, particularly in transient systems and energy recovery. However, the system’s limitations necessitate including additional energy sources. |
Current study | BESS FC SC AC generators DC generators | >96 | SM-EMS | Sensorless ANFIS DTC-SVM | PIs and MPPT | Simulation: MATLAB/Simulink | Adopting multiple energy sources in the same system has a significant impact on system efficiency. It contributes to enhancing the autonomy of transportation means, particularly when considering the growing challenges in harnessing alternative energy. However, the issue of system cost remains relative. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benhammou, A.; Tedjini, H.; Hartani, M.A.; Ghoniem, R.M.; Alahmer, A. Accurate and Efficient Energy Management System of Fuel Cell/Battery/Supercapacitor/AC and DC Generators Hybrid Electric Vehicles. Sustainability 2023, 15, 10102. https://doi.org/10.3390/su151310102
Benhammou A, Tedjini H, Hartani MA, Ghoniem RM, Alahmer A. Accurate and Efficient Energy Management System of Fuel Cell/Battery/Supercapacitor/AC and DC Generators Hybrid Electric Vehicles. Sustainability. 2023; 15(13):10102. https://doi.org/10.3390/su151310102
Chicago/Turabian StyleBenhammou, Aissa, Hamza Tedjini, Mohammed Amine Hartani, Rania M. Ghoniem, and Ali Alahmer. 2023. "Accurate and Efficient Energy Management System of Fuel Cell/Battery/Supercapacitor/AC and DC Generators Hybrid Electric Vehicles" Sustainability 15, no. 13: 10102. https://doi.org/10.3390/su151310102
APA StyleBenhammou, A., Tedjini, H., Hartani, M. A., Ghoniem, R. M., & Alahmer, A. (2023). Accurate and Efficient Energy Management System of Fuel Cell/Battery/Supercapacitor/AC and DC Generators Hybrid Electric Vehicles. Sustainability, 15(13), 10102. https://doi.org/10.3390/su151310102