Determinants of Rural Households’ Intensity of Flood Adaptation in the Fogera Rice Plain, Ethiopia: Evidence from Generalised Poisson Regression
Abstract
:1. Introduction
2. Data and Methods
2.1. Description of Study Area
2.2. Sampling Technique and Sample Size
2.3. Data Type and Method of Collection
2.4. Methods of Data Analysis
2.4.1. Descriptive Analysis
2.4.2. Empirical Model: Generalised Poisson Model
2.5. Description of Variables
3. Results and Discussion
3.1. Descriptive Analysis
3.1.1. Descriptive Analysis of the Background of Respondents
3.1.2. Descriptive Analysis of Intensity of Flood Adaptation by Households
3.2. Generalized Poisson Regression Result
Pre- and Postestimation Tests
3.3. Constraints to Flood Adaptation in the Study Area
4. Discussion
5. Conclusions and Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alhassan, H. Farm households’ flood adaptation practices, resilience and food security in the Upper East region, Ghana. Heliyon 2020, 6, e04167. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, S.; Movahed, R.G.; Gholamrezaie, S.; Rahimian, M. Assessing the Vulnerability of Rural Households to Floods at Pol-e Dokhtar Region in Iran. Sustainability 2022, 14, 762. [Google Scholar] [CrossRef]
- Skevas, T.; Massey, R.; Grashuis, J. Farmer adoption and intensity of use of extreme weather adaptation and mitigation strategies: Evidence from a sample of Missouri farmers. Clim. Chang. 2022, 174, 1–23. [Google Scholar] [CrossRef]
- Thennakoon, J.; Findlay, C.; Huang, J.; Wang, J. Management adaptation to flood in Guangdong Province in China: Do property rights Matter? World Dev. 2019, 127, 104767. [Google Scholar] [CrossRef]
- WMO. Global Temperatures Set to Reach New Records in Next Five Years; World Meteorological Organization: Geneva, Switzerland, 2023; Available online: https://public.wmo.int/en/media/press-release/global-temperatures-set-reach-new-records-next-five-years (accessed on 29 June 2023).
- UN. Global Temperatures Set to Break Records during Next 5 Years: WMO. UN News: Global Perspective Human Stories. 2023. Available online: https://news.un.org/en/story/2023/05/1136732 (accessed on 29 June 2023).
- Pathak, S. Determinants of flood adaptation: Parametric and semiparametric assessment. J. Flood Risk Manag. 2021, 14, e12699. [Google Scholar] [CrossRef]
- Tabari, H. Climate change impact on flood and extreme precipitation increases with water availability. Sci. Rep. 2020, 10, 13768. [Google Scholar] [CrossRef]
- Liu, Y.; Wen, Y.; Zhao, Y.; Hu, H. Analysis of Drought and Flood Variations on a 200-Year Scale Based on Historical Environmental Information in Western China. Int. J. Environ. Res. Public Health 2022, 19, 2771. [Google Scholar] [CrossRef]
- Allan, R.P.; Barlow, M.; Byrne, M.P.; Cherchi, A.; Douville, H.; Fowler, H.J.; Gan, T.Y.; Pendergrass, A.G.; Rosenfeld, D.; Swann, A.L.S.; et al. Advances in understanding large-scale responses of the water cycle to climate change. Ann. N. Y. Acad. Sci. 2020, 1472, 49–75. [Google Scholar] [CrossRef] [Green Version]
- Hagos, Y.G.; Andualem, T.G.; Yibeltal, M.; Mengie, M.A. Flood hazard assessment and mapping using GIS integrated with multi-criteria decision analysis in upper Awash River basin, Ethiopia. Appl. Water Sci. 2022, 12, 1–18. [Google Scholar] [CrossRef]
- Desalegn, H.; Mulu, A. Mapping flood inundation areas using GIS and HEC-RAS model at Fetam River, Upper Abbay Basin, Ethiopia. Sci. Afr. 2021, 12, e00834. [Google Scholar] [CrossRef]
- Abaya, S.W.; Mandere, N.M.; Ewald, G. Floods and health in Gambella region, Ethiopia: A qualitative assessment of the strengths and weaknesses of coping mechanisms. Glob. Health Action 2009, 2, 2019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmadisharaf, E.; Kalyanapu, A.J.; Chung, E.-S. Sustainability-Based Flood Hazard Mapping of the Swannanoa River Watershed. Sustainability 2017, 9, 1735. [Google Scholar] [CrossRef] [Green Version]
- Dar, M.H.; de Janvry, A.; Emerick, K.; Raitzer, D.; Sadoulet, E. Flood-tolerant rice reduces yield variability and raises expected yield, differentially benefitting socially disadvantaged groups. Sci. Rep. 2013, 3, 3315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- IPCC. TAR AR3 Third Assesment Report-Workgroup II: Impacts, Adaptation & Vulnerability. Available online: https://www.ipcc.ch/report/ar3/syr (accessed on 13 July 2023).
- Jallow, B.P.; Magadza, C.; Mirza, M.Q.; Pilifosova, O. Technical Summary Climate Change 2001: Impacts, Adaptation, and Vulnerability. Available online: https://www.ipcc.ch/site/assets/uploads/2018/03/wg2ts-1.pdf (accessed on 29 June 2023).
- Ahmed, F.; Alam Khan, M.S.; Warner, J.; Moors, E.; Van Scheltinga, C.T. Integrated Adaptation Tipping Points (IATPs) for urban flood resilience. Environ. Urban. 2018, 30, 575–596. [Google Scholar] [CrossRef]
- Suhr, F.; Steinert, J.I. Epidemiology of floods in sub-Saharan Africa: A systematic review of health outcomes. BMC Public Health 2022, 22, 1–15. [Google Scholar] [CrossRef]
- Joubert, L.; Dorah, M.; Godwell, N. Climate Governance in Africa. Heinrich Boll Foundation. 2014. Available online: https://www.boell.de/sites/default/files/assets/boell.de/images/download_de/Climate_Governance_in_Africa.pdf (accessed on 29 June 2023).
- Reed, C.; Anderson, W.; Kruczkiewicz, A.; Nakamura, J.; Gallo, D.; Seager, R.; McDermid, S.S. The impact of flooding on food security across Africa. Proc. Natl. Acad. Sci. USA 2022, 119, e2119399119. [Google Scholar] [CrossRef]
- Lesk, C.; Rowhani, P.; Ramankutty, N. Influence of extreme weather disasters on global crop production. Nature 2016, 529, 84–87. [Google Scholar] [CrossRef] [Green Version]
- Damania, R.; Desbureaux, S.; Zaveri, E. Does rainfall matter for economic growth? Evidence from global sub-national data (1990–2014). J. Environ. Econ. Manag. 2020, 102, 102335. [Google Scholar] [CrossRef]
- Sall, M.; Poussin, J.-C.; Bossa, A.Y.; Ndiaye, R.; Cissé, M.; Martin, D.; Bader, J.-C.; Sultan, B.; Ogilvie, A. Water Constraints and Flood-Recession Agriculture in the Senegal River Valley. Atmosphere 2020, 11, 1192. [Google Scholar] [CrossRef]
- Dang, N.M.; Babel, M.S.; Luong, H.T. Evaluation of food risk parameters in the Day River Flood Diversion Area, Red River Delta, Vietnam. Nat. Hazards 2010, 56, 169–194. [Google Scholar] [CrossRef]
- Yang, M.; Qian, X.; Zhang, Y.; Sheng, J.; Shen, D.; Ge, Y. Spatial Multicriteria Decision Analysis of Flood Risks in Aging-Dam Management in China: A Framework and Case Study. Int. J. Environ. Res. Public Health 2011, 8, 1368–1387. [Google Scholar] [CrossRef] [PubMed]
- Merz, B.; Kreibich, H.; Schwarze, R.; Thieken, A. Review article: Assessment of economic flood damage. Nat. Hazards Earth Syst. Sci. 2010, 10, 1697–1724. [Google Scholar] [CrossRef]
- Thornton, P.K.; Ericksen, P.J.; Herrero, M.; Challinor, A.J. Climate variability and vulnerability to climate change: A review. Glob. Chang. Biol. 2014, 20, 3313–3328. [Google Scholar] [CrossRef] [Green Version]
- Mabuku, M.; Senzanje, A.; Mudhara, M.; Jewitt, G.; Mulwafu, W. Strategies for coping and adapting to flooding and their determinants: A comparative study of cases from Namibia and Zambia. Phys. Chem. Earth Parts A/B/C 2019, 111, 20–34. [Google Scholar] [CrossRef]
- Sohail, M.T.; Chen, S. A systematic PLS-SEM approach on assessment of indigenous knowledge in adapting to floods; A way forward to sustainable agriculture. Front. Plant Sci. 2022, 13, 990785. [Google Scholar] [CrossRef]
- Erena, S.H.; Worku, H. Flood risk analysis: Causes and landscape based mitigation strategies in Dire Dawa city, Ethiopia. Geoenviron. Disasters 2018, 5, 16. [Google Scholar] [CrossRef] [Green Version]
- Edamo, M.L.; Ukumo, T.Y.; Lohani, T.K.; Ayana, M.T.; Ayele, M.A.; Mada, Z.M.; Abdi, D.M. A comparative assessment of multi-criteria decision-making analysis and machine learning methods for flood susceptibility mapping and socio-economic impacts on flood risk in Abela-Abaya floodplain of Ethiopia. Environ. Chall. 2022, 9, 100629. [Google Scholar] [CrossRef]
- Weldegebriel, Z.B.; Amphune, B.E. Livelihood resilience in the face of recurring floods: An empirical evidence from Northwest Ethiopia. Geoenviron. Disasters 2017, 4, 10. [Google Scholar] [CrossRef] [Green Version]
- Billi, P.; Alemu, Y.T.; Ciampalini, R. Increased frequency of flash floods in Dire Dawa, Ethiopia: Change in rainfall intensity or human impact? Nat. Hazards 2014, 76, 1373–1394. [Google Scholar] [CrossRef]
- Nguyen, C.V.; Pham, N.M. The impact of natural disasters on children’s education: Comparative evidence from Ethiopia, India, Peru, and Vietnam. Rev. Dev. Econ. 2018, 22, 1561–1589. [Google Scholar] [CrossRef]
- Yigzaw, G.S.; Abitew, E.B. Causes and impacts of internal displacement in Ethiopia. Afr. J. Soc. Work 2019, 9, 32–41. [Google Scholar]
- Cherinet, A.; Tadesse, C.; Abebe, T. Drought and Flood Extreme Events and Management Strategies in Ethiopia. J. Geogr. Nat. Disasters 2022, 12, 248. [Google Scholar] [CrossRef]
- Baylie, M.M.; Fogarassy, C. Decision Analysis of the Adaptation of Households to Extreme Floods Using an Extended Protection Motivation. Land 2022, 11, 1755. [Google Scholar] [CrossRef]
- Du, S.; Scussolini, P.; Ward, P.J.; Zhang, M.; Wen, J.; Wang, L.; Koks, E.; Diaz-Loaiza, A.; Gao, J.; Ke, Q.; et al. Hard or soft flood adaptation? Advantages of a hybrid strategy for Shanghai. Glob. Environ. Chang. 2020, 61, 102037. [Google Scholar] [CrossRef]
- Kundzewicz, Z.W.; Hegger, D.L.T.; Matczak, P.; Driessen, P.P.J. Flood-risk reduction: Structural measures and diverse strategies. Proc. Natl. Acad. Sci. USA 2018, 115, 12321–12325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nigusse, A.G.; Adhanom, O.G. Flood Hazard and Flood Risk Vulnerability Mapping Using Geo-Spatial and MCDA around Adigrat, Tigray Region, Northern Ethiopia. Momona Ethiop. J. Sci. 2019, 11, 90. [Google Scholar] [CrossRef]
- Francesch-Huidobro, M.; Dabrowski, M.; Tai, Y.; Chan, F.; Stead, D. Governance challenges of flood-prone delta cities: Integrating flood risk management and climate change in spatial planning. Prog. Plan. 2017, 114, 1–27. [Google Scholar] [CrossRef]
- Jonkman, S.N.; Dawson, R.J. Issues and Challenges in Flood Risk Management—Editorial for the Special Issue on Flood Risk Management. Water 2012, 4, 785–792. [Google Scholar] [CrossRef] [Green Version]
- Okaka, F.O.; Odhiambo, B.D. Households’ perception of flood risk and health impact of exposure to flooding in flood-prone informal settlements in the coastal city of Mombasa. Int. J. Clim. Chang. Strat. Manag. 2019, 11, 592–606. [Google Scholar] [CrossRef]
- Muis, S.; Güneralp, B.; Jongman, B.; Aerts, J.C.; Ward, P.J. Flood risk and adaptation strategies under climate change and urban expansion: A probabilistic analysis using global data. Sci. Total Environ. 2015, 538, 445–457. [Google Scholar] [CrossRef]
- Dottori, F.; Mentaschi, L.; Bianchi, A.; Alfieri, L.; Feyen, L. Cost-effective adaptation strategies to rising river flood risk in Europe. Nat. Clim. Chang. 2023, 13, 196–202. [Google Scholar] [CrossRef]
- Kreibich, H.; Bubeck, P.; Van Vliet, M.; de Moel, H. A review of damage-reducing measures to manage fluvial flood risks in a changing climate. Mitig. Adapt. Strat. Glob. Chang. 2015, 20, 967–989. [Google Scholar] [CrossRef] [Green Version]
- Thieken, A.H.; Cammerer, H.; Dobler, C.; Lammel, J.; Schöberl, F. Estimating changes in flood risks and benefits of non-structural adaptation strategies—A case study from Tyrol, Austria. Mitig. Adapt. Strat. Glob. Chang. 2014, 21, 343–376. [Google Scholar] [CrossRef] [Green Version]
- Jongman, B. Effective adaptation to rising flood risk. Nat. Commun. 2018, 9, 9–11. [Google Scholar] [CrossRef] [Green Version]
- Shah, A.A.; Ye, J.; Abid, M.; Ullah, R. Determinants of flood risk mitigation strategies at household level: A case of Khyber Pakhtunkhwa (KP) province, Pakistan. Nat. Hazards 2017, 88, 415–430. [Google Scholar] [CrossRef]
- Padhan, N.; Madheswaran, S. Determinants of farm-level adaptation strategies to flood: Insights from a farm household-level survey in coastal districts of Odisha. Water Policy 2022, 24, 450–469. [Google Scholar] [CrossRef]
- Bahinipati, C.S. Determinants of farm-level adaptation diversity to cyclone and flood: Insights from a farm household-level survey in Eastern India. Water Policy 2014, 17, 742–761. [Google Scholar] [CrossRef]
- Faruk, O.; Maharjan, K.L. Factors Affecting Farmers’ Adoption of Flood Adaptation Strategies Using Structural Equation Modeling. Water 2022, 14, 3080. [Google Scholar] [CrossRef]
- Green, J.A. Too many zeros and/or highly skewed? A tutorial on modelling health behaviour as count data with Poisson and negative binomial regression. Health Psychol. Behav. Med. 2021, 9, 436–455. [Google Scholar] [CrossRef]
- Coxe, S.; West, S.G.; Aiken, L.S. The Analysis of Count Data: A Gentle Introduction to Poisson Regression and Its Alternatives. J. Pers. Assess. 2009, 91, 121–136. [Google Scholar] [CrossRef]
- Warton, D.I.; Lyonsy, M.; Stoklosa, J.; Ivesz, A.R. Three points to consider when choosing a LM or GLM test for count data. Methods Ecol. Evol. 2016, 7, 882–890. [Google Scholar] [CrossRef] [Green Version]
- Shah, A.A.; Ajiang, C.; Khan, N.A.; Alotaibi, B.A.; Tariq, M.A.U.R. Flood Risk Perception and Its Attributes among Rural Households under Developing Country Conditions: The Case of Pakistan. Water 2022, 14, 992. [Google Scholar] [CrossRef]
- Delalay, M.; Ziegler, A.D.; Shrestha, M.S.; Wasson, R.J.; Sudmeier-Rieux, K.; McAdoo, B.G.; Kochhar, I. Towards improved flood disaster governance in Nepal: A case study in Sindhupalchok District. Int. J. Disaster Risk Reduct. 2018, 31, 354–366. [Google Scholar] [CrossRef]
- Kassaw, H.M.; Birhane, Z.; Alemayehu, G. Determinants of market outlet choice decision of tomato producers in Fogera woreda, South Gonder zone, Ethiopia. Cogent Food Agric. 2019, 5, 1709394. [Google Scholar] [CrossRef]
- Hagos, A.; Zemedu, L. Determinants of Improved Rice Varieties Adoption in Fogera District of Ethiopia. Sci. Technol. Arts Res. J. 2015, 4, 221. [Google Scholar] [CrossRef]
- Desta, M.A.; Zeleke, G.; Payne, W.A.; Shenkoru, T.; Dile, Y. The impacts of rice cultivation on an indigenous Fogera cattle population at the eastern shore of Lake Tana, Ethiopia. Ecol. Process. 2019, 8, 19. [Google Scholar] [CrossRef] [Green Version]
- Ayenew, A.; Dejene, T.; Worede, F. Traits Interrelationships in Lowland Rice Genotypes under Rain-fed Condition of Fogera. North West. Ethiop. 2019, 9, 13–23. [Google Scholar]
- Setegn, S.G.; Rayner, D.; Melesse, A.M.; Dargahi, B.; Srinivasan, R.; Wörman, A. Nile River Basin; Springer: Berlin/Heidelberg, Germany, 2014; Volume 2011. [Google Scholar] [CrossRef]
- Anjulo, A.; Mezgebu, A. Determinants of Agroforestry Practicing at Fogera District, Northwestern Ethiopia. J. Agric. Ecol. Res. Int. 2016, 9, 1–14. [Google Scholar] [CrossRef]
- Alemu, D.; Tesfaye, A.; Assaye, A.; Addis, D.; Tadesse, T.; Thompson, J. A historical analysis of rice commercialization in Ethiopia: Working paper. Agric. Policy Res. Afr. 2018, 18, ISBN: 978-1-78118-504-9. Available online: https://opendocs.ids.ac.uk/opendocs/bitstream/handle/20.500.12413/14283/APRA_WP18_Historical_analysis_of_rice_in_Ethiopia_FINAL.pdf (accessed on 18 May 2023).
- Alemu, D.; Thompson, J.; Assaye, A. Rice Commercialisation, Agrarian Change and Livelihood Trajectories: Transformations on the Fogera Plain of Ethiopia; Future Agricultures Consortium: Brighton, UK, 2021. [Google Scholar] [CrossRef]
- Nanjundeswaraswamy, T.S.; Divakar, S. Determination of sample size and sampling methods in applied research. Proc. Eng. Sci. 2021, 3, 25–32. [Google Scholar] [CrossRef]
- Khattak, M.W.; Pirdavani, A.; De Winne, P.; Brijs, T.; De Backer, H. Estimation of safety performance functions for urban intersections using various functional forms of the negative binomial regression model and a generalized Poisson regression model. Accid. Anal. Prev. 2021, 151, 105964. [Google Scholar] [CrossRef]
- del Castillo, J.; Pérez-Casany, M. Overdispersed and underdispersed Poisson generalizations. J. Stat. Plan. Inference 2005, 134, 486–500. [Google Scholar] [CrossRef]
- Dietz, E.; Böhning, D. On estimation of the Poisson parameter in zero-modified Poisson models. Comput. Stat. Data Anal. 2000, 34, 441–459. [Google Scholar] [CrossRef]
- Forthmann, B.; Doebler, P. Reliability of researcher capacity estimates and count data dispersion: A comparison of Poisson, negative binomial, and Conway-Maxwell-Poisson models. Scientometrics 2021, 126, 3337–3354. [Google Scholar] [CrossRef]
- Sellers, K.F.; Borle, S.; Shmueli, G. The COM-Poisson model for count data: A survey of methods and applications. Appl. Stoch. Model. Bus. Ind. 2011, 28, 104–116. [Google Scholar] [CrossRef]
- Berkhout, P.; Plug, E. A bivariate Poisson count data model using conditional probabilities. Stat. Neerl. 2004, 58, 349–364. [Google Scholar] [CrossRef]
- Famoye, F. A new bivariate generalized Poisson distribution. Stat. Neerl. 2010, 64, 112–124. [Google Scholar] [CrossRef]
- Winkelmann, R.; Zimmermann, K.F. Recent developments in count data modelling: Theory and application. J. Econ. Surv. 1995, 9, 1–24. [Google Scholar] [CrossRef]
- Harris, T.; Yang, Z.; Hardin, J.W. Modeling Underdispersed Count Data with Generalized Poisson Regression. Stata J. Promot. Commun. Stat. Stata 2012, 12, 736–747. [Google Scholar] [CrossRef] [Green Version]
- Weaver, C.G.; Ravani, P.; Oliver, M.J.; Austin, P.C.; Quinn, R.R. Analyzing hospitalization data: Potential limitations of Poisson regression. Nephrol. Dial. Transplant. 2015, 30, 1244–1249. [Google Scholar] [CrossRef] [Green Version]
- Hayat, M.J.; Higgins, M. Understanding Poisson Regression. J. Nurs. Educ. 2014, 53, 207–215. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Kim, D.-Y.; Zhu, J. On the Generalized Poisson Regression Mixture Model for Mapping Quantitative Trait Loci With Count Data. Genetics 2006, 174, 2159–2172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Consul, P.C.; Famoye, F. Communications in Statistics—Theory and Methods Generalized poisson regression model. Commun. Stat. Theory Methods 1992, 926, 37–41. [Google Scholar] [CrossRef]
- Yadav, B.; Jeyaseelan, L.; Jeyaseelan, V.; Durairaj, J.; George, S.; Selvaraj, K.; Bangdiwala, S.I. Can Generalized Poisson model replace any other count data models? An evaluation. Clin. Epidemiol. Glob. Health 2021, 11, 100774. [Google Scholar] [CrossRef]
- Joe, H.; Zhu, R. Generalized Poisson Distribution: The Property of Mixture of Poisson and Comparison with Negative Binomial Distribution. Biom. J. 2005, 47, 219–229. [Google Scholar] [CrossRef]
- Famoye, F. Count data modeling: Choice between generalized Poisson model and negative binomial model. J. Appl. Stat. Sci. 2005, 14, 99–106. [Google Scholar]
- Melliana, A.; Setyorini, Y.; Eko, H.; Al, E. The Comparison of Generalized Poisson Regression and Negative Binomial Reression Methods in Overcoming Overdispersion. Int. J. Sci. Technol. Res. 2013, 2, 255–258. Available online: www.ijstr.org (accessed on 8 May 2023).
- Famoye, F. On the Generalized Poisson Regression Model with an Application to Accident Data. J. Data Sci. 2004, 2, 287–295. [Google Scholar] [CrossRef]
- Blackburn, M.L. The Relative Performance of Poisson and Negative Binomial Regression Estimators. Oxf. Bull. Econ. Stat. 2014, 77, 605–616. [Google Scholar] [CrossRef]
- Mahama, A.; Awuni, J.A.; Mabe, F.N.; Azumah, S.B. Modelling adoption intensity of improved soybean production technologies in Ghana—A Generalized Poisson approach. Heliyon 2020, 6, e03543. [Google Scholar] [CrossRef]
- Durmuş, B.; Güneri, O.İ. An Application of the Generalized Poisson Model for Over Dispersion Data on The Number of Strikes Between 1984 and 2017. Alphanumeric J. 2020, 8, 249–260. [Google Scholar] [CrossRef]
- Islam, M.M.; Alam, M.; Tariquzaman; Kabir, M.A.; Pervin, R.; Begum, M.; Khan, M.H. Predictors of the number of under-five malnourished children in Bangladesh: Application of the generalized poisson regression model. BMC Public Health 2013, 13, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Payne, E.H.; Gebregziabher, M.; Hardin, J.W.; Ramakrishnan, V.; Egede, L.E. An empirical approach to determine a threshold for assessing overdispersion in Poisson and negative binomial models for count data. Commun. Stat. Simul. Comput. 2018, 47, 1722–1738. [Google Scholar] [CrossRef]
- Prahutama, A.; Ispriyanti, D.; Warsito, B. Modelling Generalized Poisson Regression in the Number of Dengue Hemorrhagic Fever (DHF) in East Nusa Tenggara. E3S Web Conf. 2020, 202, 12017. [Google Scholar] [CrossRef]
- Daoud, J.I. Multicollinearity and Regression Analysis. J. Phys. Conf. Ser. 2017, 949, 012009. [Google Scholar] [CrossRef]
- Lavery, M.R.; Acharya, P.; Sivo, S.A.; Xu, L. Number of predictors and multicollinearity: What are their effects on error and bias in regression? Commun. Stat. Simul. Comput. 2017, 48, 27–38. [Google Scholar] [CrossRef]
- Measham, T.G.; Preston, B.L.; Smith, T.F.; Brooke, C.; Gorddard, R.; Withycombe, G.; Morrison, C. Adapting to climate change through local municipal planning: Barriers and challenges. Mitig. Adapt. Strat. Glob. Chang. 2011, 16, 889–909. [Google Scholar] [CrossRef] [Green Version]
- Husby, T.; de Groot, H.L.F.; Hofkes, M.W.; Filatova, T. Flood protection and endogenous sorting of households: The role of credit constraints. Mitig. Adapt. Strat. Glob. Chang. 2015, 23, 147–168. [Google Scholar] [CrossRef] [Green Version]
- Mansur, A.V.; Brondizio, E.S.; Roy, S.; de Miranda Araújo Soares, P.P.; Newton, A. Adapting to urban challenges in the Amazon: Flood risk and infrastructure deficiencies in Belém, Brazil. Reg. Environ. Chang. 2017, 18, 1411–1426. [Google Scholar] [CrossRef]
- Mashi, S.A.; Inkani, A.I.; Obaro, O.; Asanarimam, A.S. Community perception, response and adaptation strategies towards flood risk in a traditional African city. Nat. Hazards 2020, 103, 1727–1759. [Google Scholar] [CrossRef]
- Lamond, J.E.; Proverbs, D.G. Resilience to flooding: Lessons from international comparison. Proc. Inst. Civ. Eng. Urban Des. Plan. 2009, 162, 63–70. [Google Scholar] [CrossRef]
- Peck, A.; Adams, S.; Armstrong, A.; Bartlett, A.; Bortman, M.; Branco, A.; Brown, M.; Donohue, J.; Kodis, M.; McCann, M.; et al. A new framework for flood adaptation: Introducing the Flood Adaptation Hierarchy. Ecol. Soc. 2022, 27, 5. [Google Scholar] [CrossRef]
- Wilby, R.L.; Keenan, R. Adapting to flood risk under climate change. Prog. Phys. Geogr. Earth Environ. 2012, 36, 348–378. [Google Scholar] [CrossRef]
- Grothmann, T.; Patt, A. Adaptive capacity and human cognition: The process of individual adaptation to climate change. Glob. Environ. Chang. 2005, 15, 199–213. [Google Scholar] [CrossRef]
- Frumkin, H.; Fried, L.; Moody, R. Aging, Climate Change, and Legacy Thinking. Am. J. Public Health 2012, 102, 1434–1438. [Google Scholar] [CrossRef]
- Ahmad, D.; Afzal, M. Flood hazards and factors influencing household flood perception and mitigation strategies in Pakistan. Environ. Sci. Pollut. Res. 2020, 27, 15375–15387. [Google Scholar] [CrossRef]
- Sakyi-Nyarko, C.; Ahmad, A.H.; Green, C.J. The Gender-Differential Effect of Financial Inclusion on Household Financial Resilience. J. Dev. Stud. 2022, 58, 692–712. [Google Scholar] [CrossRef]
- Uduji, J.I.; Okolo-Obasi, E.N. Adoption of improved crop varieties by involving farmers in the e-wallet program in Nigeria. J. Crop. Improv. 2018, 32, 717–737. [Google Scholar] [CrossRef] [Green Version]
- Amare, A.; Simane, B. Determinants of smallholder farmers’ decision to adopt adaptation options to climate change and variability in the Muger Sub basin of the Upper Blue Nile basin of Ethiopia. Agric. Food Secur. 2017, 6, 64. [Google Scholar] [CrossRef] [Green Version]
- Kabadzhova, M. Attractiveness of the agricultural sector to achieving generational renewal. Bulg. J. Agric. Sci. 2022, 28, 3–9. [Google Scholar]
- Borda, J.; Sárvári, B.; Balogh, J.M. Generation Change in Agriculture: A Systematic Review of the Literature. Economies 2023, 11, 129. [Google Scholar] [CrossRef]
- Coopmans, I.; Dessein, J.; Accatino, F.; Antonioli, F.; Bertolozzi-Caredio, D.; Gavrilescu, C.; Gradziuk, P.; Manevska-Tasevska, G.; Meuwissen, M.; Peneva, M.; et al. Understanding farm generational renewal and its influencing factors in Europe. J. Rural. Stud. 2021, 86, 398–409. [Google Scholar] [CrossRef]
- Żmija, K.; Fortes, A.; Tia, M.N.; Šūmane, S.; Ayambila, S.N.; Żmija, D.; Satoła, Ł.; Sutherland, L.-A. Small farming and generational renewal in the context of food security challenges. Glob. Food Secur. 2020, 26, 100412. [Google Scholar] [CrossRef]
- Bhattacharjee, K.; Behera, B. Determinants of household vulnerability and adaptation to floods: Empirical evidence from the Indian State of West Bengal. Int. J. Disaster Risk Reduct. 2018, 31, 758–769. [Google Scholar] [CrossRef]
- Langyintuo, A.S.; Mungoma, C. The effect of household wealth on the adoption of improved maize varieties in Zambia. Food Policy 2008, 33, 550–559. [Google Scholar] [CrossRef]
- Mondal, S.H.; Murayama, T.; Nishikizawa, S. Examining the determinants of flood risk mitigation measures at the household level in Bangladesh. Int. J. Disaster Risk Reduct. 2021, 64, 102492. [Google Scholar] [CrossRef]
- Shah, A.A.; Ye, J.; Abid, M.; Khan, J.; Amir, S.M. Flood hazards: Household vulnerability and resilience in disaster-prone districts of Khyber Pakhtunkhwa province, Pakistan. Nat. Hazards 2018, 93, 147–165. [Google Scholar] [CrossRef]
- van Doorn-Hoekveld, W.J.; Gilissen, H.K.; Groothuijse, F.A.G.; van Rijswick, H.F.M.W. Adaptation to Climate Change in Dutch Flood Risk Management: Innovative Approaches and Related Challenges. Utrecht Law Rev. 2022, 18, 51–69. [Google Scholar] [CrossRef]
- Osberghaus, D. The determinants of private flood mitigation measures in Germany—Evidence from a nationwide survey. Ecol. Econ. 2015, 110, 36–50. [Google Scholar] [CrossRef] [Green Version]
- McElwee, P.; Nghiem, T.; Le, H.; Vu, H. Flood vulnerability among rural households in the Red River Delta of Vietnam: Implications for future climate change risk and adaptation. Nat. Hazards 2016, 86, 465–492. [Google Scholar] [CrossRef]
- Fenton, A.; Paavola, J.; Tallontire, A. The Role of Microfinance in Household Livelihood Adaptation in Satkhira District, Southwest Bangladesh. World Dev. 2017, 92, 192–202. [Google Scholar] [CrossRef]
- Bahinipati, C.S.; Venkatachalam, L. What drives farmers to adopt farm-level adaptation practices to climate extremes: Empirical evidence from Odisha, India. Int. J. Disaster Risk Reduct. 2015, 14, 347–356. [Google Scholar] [CrossRef]
- Alam, G.M.; Alam, K.; Mushtaq, S. Influence of institutional access and social capital on adaptation decision: Empirical evidence from hazard-prone rural households in Bangladesh. Ecol. Econ. 2016, 130, 243–251. [Google Scholar] [CrossRef]
- Motsholapheko, M.; Kgathi, D.; Vanderpost, C. Rural livelihoods and household adaptation to extreme flooding in the Okavango Delta, Botswana. Phys. Chem. Earth Parts A/B/C 2011, 36, 984–995. [Google Scholar] [CrossRef]
- Richter, P. Empowering Rural Communities through Financial Inclusion. ILO Rural Policy Briefs, 30 June 2011. [Google Scholar]
- Ao, Y.; Tan, L.; Feng, Q.; Tan, L.; Li, H.; Wang, Y.; Wang, T.; Chen, Y. Livelihood Capital Effects on Famers’ Strategy Choices in Flood-Prone Areas—A Study in Rural China. Int. J. Environ. Res. Public Health 2022, 19, 7535. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Li, Z.; Bai, Y.; Liu, X.; Ye, T. Residents’ Preferences for Rural Housing Disaster Insurance Attributes in Central and Western Tibet. Int. J. Disaster Risk Sci. 2023, 1–15. [Google Scholar] [CrossRef]
- Nepal, A.K.; Neupane, N. Living in the flood plain: Can financial inclusion, productive assets and coping mechanism help reduce food insecurity? Environ. Chall. 2022, 6, 100437. [Google Scholar] [CrossRef]
- Islam, M.R.; Ingham, V.; Hicks, J.; Kelly, E. From coping to adaptation: Flooding and the role of local knowledge in Bangladesh. Int. J. Disaster Risk Reduct. 2018, 28, 531–538. [Google Scholar] [CrossRef]
- Ghimire, R.; Wen-Chi, H.; Shrestha, R.B. Factors Affecting Adoption of Improved Rice Varieties among Rural Farm Households in Central Nepal. Rice Sci. 2015, 22, 35–43. [Google Scholar] [CrossRef] [Green Version]
- Ndamani, F.; Watanabe, T. Determinants of farmers’ adaptation to climate change: A micro level analysis in Ghana. Sci. Agric. 2016, 73, 201–208. [Google Scholar] [CrossRef] [Green Version]
Variables | Definition | Expected Sign |
---|---|---|
Dependent variable | ||
Intensity of flood adaptation | Number of adaptation actions (count data) | |
Independent variables | ||
Age | Number of years a household head has lived | - |
Gender | Dummy (1 = Male, 0 = Female) | + |
Education Status | Dummy (1 = Literate, 0 = Illiterate) | + |
Marital Status | Dummy (1 = Married, 0 = Otherwise) | + |
Family size | Number of people in a household | + |
Off Farm Income | Dummy (1 = Yes, 0 = No) | + |
Previous flood experience | Dummy (1 = Yes, 0 = No) | + |
Access to credit | Dummy (1 = Yes, 0 = No) | + |
Access to extension | Dummy (1 = Yes, 0 = No) | + |
Early Warning Information | Dummy (1 = Yes, 0 = No) | + |
Variables | Observation | Mean | Min | Max |
---|---|---|---|---|
Age | 337 | 44.13 | 18 | 72 |
Sex | 337 | 0.807 | 0 | 1 |
Education Status | 337 | 0.51 | 0 | 1 |
Marital Status | 337 | 0.896 | 0 | 1 |
Family Size | 337 | 6.14 | 1 | 12 |
Previous Food Experience | 337 | 0.549 | 0 | 1 |
Off-Farm Income | 337 | 0.187 | 0 | 1 |
Access to Credit | 337 | 0.285 | 0 | 1 |
Access to Extension | 337 | 0.587 | 0 | 1 |
Early Warning Information | 337 | 0.071 | 0 | 1 |
Intensity of Adaptation | Frequency | Percentage |
---|---|---|
0 | 95 | 28.19 |
1 | 4 | 1.19 |
2 | 13 | 3.86 |
3 | 28 | 8.31 |
4 | 60 | 17.80 |
5 | 72 | 21.36 |
6 | 35 | 10.39 |
7 | 20 | 5.93 |
8 | 6 | 1.78 |
9 | 4 | 1.19 |
Observation | 337 | 100.00 |
Mean | 3.4 | |
Variance | 6.25 |
Dependent Variable: Intensity of Flood Adaptation | |||
---|---|---|---|
Variables | Marginal Effect (dy/dx) | z-Value | p > |z| |
Age | −0.013 | −3.56 | 0.000 *** |
Sex | 0.077 | 0.95 | 0.340 |
Education status | −0.054 | −0.89 | 0.372 |
Marital status | −0.073 | −0.68 | 0.497 |
Family size | 0.047 | 2.82 | 0.005 *** |
Off-farm income | 0.196 | 2.72 | 0.007 *** |
Previous food experience | 0.941 | 11.88 | 0.000 *** |
Access to credit | 0.126 | 2.02 | 0.044 ** |
Access to extension | 0.296 | 4.14 | 0.000 *** |
Early warning | 0.291 | 3.17 | 0.002 *** |
Constant | 0.614 | 3.18 | 0.001 *** |
Wald chi2(10) | 293.45 | ||
Prob > chi-2 | 0.000 | ||
Pseudo R2 | 0.2056 | ||
AIC | 1376 | ||
BIC | 1422 | ||
Dispersion parameter (phi) | 3.58 (4.55) | ||
Observation | 337 |
Variables | VIF |
---|---|
Age | 1.21 |
Sex | 1.23 |
Education status | 1.11 |
Marital status | 1.26 |
Family size | 1.22 |
Off-farm income | 1.12 |
Previous food experience | 1.23 |
Access to credit | 1.05 |
Access to extension | 1.24 |
Early warning information | 1.05 |
Mean VIF | 1.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ndue, K.; Baylie, M.M.; Goda, P. Determinants of Rural Households’ Intensity of Flood Adaptation in the Fogera Rice Plain, Ethiopia: Evidence from Generalised Poisson Regression. Sustainability 2023, 15, 11025. https://doi.org/10.3390/su151411025
Ndue K, Baylie MM, Goda P. Determinants of Rural Households’ Intensity of Flood Adaptation in the Fogera Rice Plain, Ethiopia: Evidence from Generalised Poisson Regression. Sustainability. 2023; 15(14):11025. https://doi.org/10.3390/su151411025
Chicago/Turabian StyleNdue, Kennedy, Melese Mulu Baylie, and Pál Goda. 2023. "Determinants of Rural Households’ Intensity of Flood Adaptation in the Fogera Rice Plain, Ethiopia: Evidence from Generalised Poisson Regression" Sustainability 15, no. 14: 11025. https://doi.org/10.3390/su151411025
APA StyleNdue, K., Baylie, M. M., & Goda, P. (2023). Determinants of Rural Households’ Intensity of Flood Adaptation in the Fogera Rice Plain, Ethiopia: Evidence from Generalised Poisson Regression. Sustainability, 15(14), 11025. https://doi.org/10.3390/su151411025