Drought Analysis Based on Standardized Precipitation Evapotranspiration Index and Standardized Precipitation Index in Sarawak, Malaysia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Precipitation Data Analysis
2.3. Drought Indices
2.4. Standardized Precipitation Index (SPI)
- = recorded rainfall at the station,
- = mean of rainfall,
- = standard deviation.
2.5. Standardized Precipitation Evaporation Index (SPEI)
2.6. Trend Analysis of Drought
3. Results
3.1. Rainfall Trend Analysis
3.2. Variability of SPI and SPEI Timeseries
3.3. Comparison of SPI and SPEI
3.4. Correlation Analysis of SPI and SPEI
3.5. Sen’s Slope Estimation Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tirivarombo, S.; Osupile, D.; Eliasson, P. Drought Monitoring and Analysis: Standardised Precipitation Evapotranspiration Index (SPEI) and Standardised Precipitation Index (SPI). Phys. Chem. Earth Parts A B C 2018, 106, 1–10. [Google Scholar] [CrossRef]
- Mondol, M.A.H.; Zhu, X.; Dunkerley, D.; Henley, B.J. Observed Meteorological Drought Trends in Bangladesh Identified with the Effective Drought Index (EDI). Agric. Water Manag. 2021, 255, 107001. [Google Scholar] [CrossRef]
- Malik, A.; Kumar, A.; Kisi, O.; Khan, N.; Salih, S.Q.; Yaseen, Z.M. Analysis of Dry and Wet Climate Characteristics at Uttarakhand (India) Using Effective Drought Index. Nat. Hazards 2021, 105, 1643–1662. [Google Scholar] [CrossRef]
- Xu, X.; Wang, L.; Sun, M.; Fu, C.; Bai, Y.; Li, C.; Zhang, L. Climate Change Vulnerability Assessment for Smallholder Farmers in China: An Extended Framework. J. Environ. Manag. 2020, 276, 111315. [Google Scholar] [CrossRef] [PubMed]
- Alam, A.S.A.F.; Begum, H.; Masud, M.M.; Al-Amin, A.Q.; Filho, W.L. Agriculture Insurance for Disaster Risk Reduction: A Case Study of Malaysia. Int. J. Disaster Risk Reduct. 2020, 47, 101626. [Google Scholar] [CrossRef]
- Leal Filho, W.; Azeiteiro, U.M.; Balogun, A.-L.; Setti, A.F.F.; Mucova, S.A.R.; Ayal, D.; Totin, E.; Lydia, A.M.; Kalaba, F.K.; Oguge, N.O. The Influence of Ecosystems Services Depletion to Climate Change Adaptation Efforts in Africa. Sci. Total Environ. 2021, 779, 146414. [Google Scholar] [CrossRef]
- Rahman, H.A. Climate Change Scenarios in Malaysia: Engaging the Public. Int. J. Malay-Nusant. Stud. 2018, 1, 55–77. [Google Scholar]
- Kumar, D.; Kumar Bhattacharjya, R. Study of Integrated Social Vulnerability Index SoVI int of Hilly Region of Uttarakhand, India. Environ. Clim. Technol. 2020, 24, 105–122. [Google Scholar] [CrossRef] [Green Version]
- Grigorescu, I.; Mocanu, I.; Mitrică, B.; Dumitraşcu, M.; Dumitrică, C.; Dragotă, C.-S. Socio-Economic and Environmental Vulnerability to Heat-Related Phenomena in Bucharest Metropolitan Area. Environ. Res. 2021, 192, 110268. [Google Scholar] [CrossRef]
- Maharjan, A.K.; Wong, D.R.E.; Rubiyatno, R. Level and Distribution of Heavy Metals in Miri River, Malaysia. Trop. Aqua. Soil Pollut. 2021, 1, 74–86. [Google Scholar] [CrossRef]
- Aksha, S.K.; Juran, L.; Resler, L.M.; Zhang, Y. An Analysis of Social Vulnerability to Natural Hazards in Nepal Using a Modified Social Vulnerability Index. Int. J. Disaster Risk Sci. 2019, 10, 103–116. [Google Scholar] [CrossRef]
- Sa’adi, Z.; Shahid, S.; Ismail, T.; Chung, E.-S.; Wang, X.-J. Trends Analysis of Rainfall and Rainfall Extremes in Sarawak, Malaysia Using Modified Mann–Kendall Test. Meteorol. Atmos. Phys. 2019, 131, 263–277. [Google Scholar] [CrossRef]
- Frichot, J.J.H.; Rubiyatno; Talukdar, G. Water Quality Assessment of Roof-Collected Rainwater in Miri, Malaysia. Trop. Aqua. Soil Pollut. 2021, 1, 87–97. [Google Scholar] [CrossRef]
- Kemarau, R.A.; Eboy, O.V. The Impact of El Niño–Southern Oscillation (ENSO) on Temperature: A Case Study in Kuching, Sarawak. MJSSH 2021, 6, 289–297. [Google Scholar] [CrossRef]
- Tang, K.H.D. Climate Change in Malaysia: Trends, Contributors, Impacts, Mitigation and Adaptations. Sci. Total Environ. 2019, 650, 1858–1871. [Google Scholar] [CrossRef] [PubMed]
- Sobral, B.S.; de Oliveira-Júnior, J.F.; de Gois, G.; Pereira-Júnior, E.R.; Terassi, P.M.D.B.; Muniz-Júnior, J.G.R.; Lyra, G.B.; Zeri, M. Drought Characterization for the State of Rio de Janeiro Based on the Annual SPI Index: Trends, Statistical Tests and Its Relation with ENSO. Atmos. Res. 2019, 220, 141–154. [Google Scholar] [CrossRef]
- Bera, B.; Shit, P.K.; Sengupta, N.; Saha, S.; Bhattacharjee, S. Trends and Variability of Drought in the Extended Part of Chhota Nagpur Plateau (Singbhum Protocontinent), India Applying SPI and SPEI Indices. Environ. Chall. 2021, 5, 100310. [Google Scholar] [CrossRef]
- Qaisrani, Z.N.; Nuthammachot, N.; Techato, K. Asadullah Drought Monitoring Based on Standardized Precipitation Index and Standardized Precipitation Evapotranspiration Index in the Arid Zone of Balochistan Province, Pakistan. Arab. J. Geosci. 2021, 14, 1–13. [Google Scholar] [CrossRef]
- McKee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology, Anaheim, CA, USA; 1993; Volume 17, pp. 179–183. [Google Scholar]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef] [Green Version]
- Sarkar, M.S.K.; Begum, R.A.; Pereira, J.J.; Jaafar, A.H.; Saari, M.Y. Impacts of and Adaptations to Sea Level Rise in Malaysia. Asian J. Water Environ. Pollut. 2014, 11, 29–36. [Google Scholar]
- Tan, M.L.; Juneng, L.; Tangang, F.T.; Chung, J.X.; Radin Firdaus, R.B. Changes in Temperature Extremes and Their Relationship with ENSO in Malaysia from 1985 to 2018. Int. J. Clim. 2021, 41, E2564–E2580. [Google Scholar] [CrossRef]
- Rosly, M.H.; Mohamad, H.M.; Bolong, N.; Harith, N.S.H. An Overview: Relationship of Geological Condition and Rainfall with Landslide Events at East Malaysia. Trends Sci. 2022, 19, 3464. [Google Scholar] [CrossRef]
- Sa’adi, Z.; Shahid, S.; Ismail, T.; Chung, E.-S.; Wang, X.-J. Distributional Changes in Rainfall and River Flow in Sarawak, Malaysia. Asia-Pac. J. Atmos. Sci. 2017, 53, 489–500. [Google Scholar] [CrossRef]
- Jones, S.E.; Barton, H.; Hunt, C.O.; Janowski, M.; Lloyd-Smith, L.; Barker, G. The Cultural Antiquity of Rainforests: Human–Plant Associations during the Mid-Late Holocene in the Interior Highlands of Sarawak, Malaysian Borneo. Quat. Int. 2016, 416, 80–94. [Google Scholar] [CrossRef]
- Khew, C.Y.; Koh, C.M.M.; Chen, Y.S.; Sim, S.L.; Augustine Mercer, Z.J. The Current Knowledge of Black Pepper Breeding in Malaysia for Future Crop Improvement. Sci. Hortic. 2022, 300, 111074. [Google Scholar] [CrossRef]
- Nodin, M.N.; Mustafa, Z.; Hussain, S.I. Assessing Rice Production Efficiency for Food Security Policy Planning in Malaysia: A Non-Parametric Bootstrap Data Envelopment Analysis Approach. Food Policy 2022, 107, 102208. [Google Scholar] [CrossRef]
- Olaniyi, O.N.; Szulczyk, K.R. Estimating the Economic Impact of the White Root Rot Disease on the Malaysian Rubber Plantations. For. Policy Econ. 2022, 138, 102707. [Google Scholar] [CrossRef]
- Yerdelen, C.; Abdelkader, M.; Eris, E. Assessment of Drought in SPI Series Using Continuous Wavelet Analysis for Gediz Basin, Turkey. Atmos. Res. 2021, 260, 105687. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Beguería, S.; Lorenzo-Lacruz, J.; Camarero, J.J.; López-Moreno, J.I.; Azorin-Molina, C.; Revuelto, J.; Morán-Tejeda, E.; Sanchez-Lorenzo, A. Performance of Drought Indices for Ecological, Agricultural, and Hydrological Applications. Earth Interact. 2012, 16, 1–27. [Google Scholar] [CrossRef] [Green Version]
- Wable, P.S.; Jha, M.K.; Shekhar, A. Comparison of Drought Indices in a Semi-Arid River Basin of India. Water Resour. Manag. 2019, 33, 75–102. [Google Scholar] [CrossRef]
- Hernandez, E.A.; Uddameri, V. Standardized Precipitation Evaporation Index (SPEI)-Based Drought Assessment in Semi-Arid South Texas. Environ. Earth Sci. 2014, 71, 2491–2501. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, Y.; Shao, M.; Jia, X.; Li, X. Spatiotemporal Analysis of Multiscalar Drought Characteristics across the Loess Plateau of China. J. Hydrol. 2016, 534, 281–299. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Gadedjisso-Tossou, A.; Adjegan, K.I.; Kablan, A.K.M. Rainfall and Temperature Trend Analysis by Mann–Kendall Test and Significance for Rainfed Cereal Yields in Northern Togo. Sci 2021, 3, 17. [Google Scholar] [CrossRef]
- Wahab, N.; Kamarudin, M.; Toriman, M.; Juahir, H.; Gasim, M.; Rizman, Z.; Adiana, G.; Saudi, A.; Sukono, S.; Subartini, B. Climate Changes Impacts towards Sedimentation Rate at Terengganu River, Terengganu, Malaysia. J. Fundam. Appl. Sci. 2018, 10, 33–51. [Google Scholar]
- Hanif, M.F.; Mustafa, M.R.U.; Liaqat, M.U.; Hashim, A.M.; Yusof, K.W. Evaluation of Long-Term Trends of Rainfall in Perak, Malaysia. Climate 2022, 10, 44. [Google Scholar] [CrossRef]
- Danandeh Mehr, A.; Sorman, A.U.; Kahya, E.; Hesami Afshar, M. Climate Change Impacts on Meteorological Drought Using SPI and SPEI: Case Study of Ankara, Turkey. Hydrol. Sci. J. 2020, 65, 254–268. [Google Scholar] [CrossRef]
- Pei, Z.; Fang, S.; Wang, L.; Yang, W. Comparative Analysis of Drought Indicated by the SPI and SPEI at Various Timescales in Inner Mongolia, China. Water 2020, 12, 1925. [Google Scholar] [CrossRef]
- Uddin, M.J.; Hu, J.; Islam, A.R.M.T.; Eibek, K.U.; Nasrin, Z.M. A Comprehensive Statistical Assessment of Drought Indices to Monitor Drought Status in Bangladesh. Arab. J. Geosci. 2020, 13, 1–10. [Google Scholar] [CrossRef]
- Byakatonda, J.; Parida, B.P.; Kenabatho, P.K.; Moalafhi, D.B. Modeling Dryness Severity Using Artificial Neural Network at the Okavango Delta, Botswana. Glob. NEST J. 2016, 18, 463–481. [Google Scholar] [CrossRef]
- Payus, C.; Ann Huey, L.; Adnan, F.; Besse Rimba, A.; Mohan, G.; Kumar Chapagain, S.; Roder, G.; Gasparatos, A.; Fukushi, K. Impact of Extreme Drought Climate on Water Security in North Borneo: Case Study of Sabah. Water 2020, 12, 1135. [Google Scholar] [CrossRef]
- Adisa, O.M.; Masinde, M.; Botai, J.O. Assessment of the Dissimilarities of EDI and SPI Measures for Drought Determination in South Africa. Water 2021, 13, 82. [Google Scholar] [CrossRef]
- Bhunia, P.; Das, P.; Maiti, R. Meteorological Drought Study Through SPI in Three Drought Prone Districts of West Bengal, India. Earth Syst. Environ. 2019, 4, 43–55. [Google Scholar] [CrossRef]
- Wilhite, D.A.; Glantz, M.H. Understanding: The Drought Phenomenon: The Role of Definitions. Water Int. 1985, 10, 111–120. [Google Scholar] [CrossRef] [Green Version]
- Fung, K.F.; Huang, Y.F.; Koo, C.H. Assessing Drought Conditions Through Temporal Pattern, Spatial Characteristic and Operational Accuracy Indicated by SPI and SPEI: Case Analysis for Peninsular Malaysia. Nat. Hazards 2020, 103, 2071–2101. [Google Scholar] [CrossRef]
- Tsakiris, G.; Vangelis, H.J.E.W. Establishing a Drought Index Incorporating Evapotranspiration. Eur. Water 2005, 9, 3–11. [Google Scholar]
- Byun, H.R.; Wilhite, D.A. Objective Quantification of Drought Severity and Duration. J. Clim. 1999, 12, 2747–2756. [Google Scholar] [CrossRef]
- Nedealcov, M.; Răileanu, V.; Sîrbu, R.; Cojocari, R. The Use of Standardized Indicators (SPI and SPEI) in Predicting Droughts Over The Republic of Moldova Territory. Present Environ. Sustain. Dev. 2015, 9, 149–158. [Google Scholar] [CrossRef]
- Tan, M.L.; Chua, V.P.; Li, C.; Brindha, K. Spatiotemporal Analysis of Hydro-Meteorological Drought in The Johor River Basin, Malaysia. Theor. Appl. Climatol. 2019, 135, 825–837. [Google Scholar] [CrossRef]
- Liu, X.; Zhu, X.; Pan, Y.; Bai, J.; Li, S. Performance of Different Drought Indices for Agriculture Drought In The North China Plain. J. Arid. Land 2018, 10, 507–516. [Google Scholar] [CrossRef] [Green Version]
- Palmer, W.C. Meteorological Drought; US Department of Commerce, Weather Bureau: Silver Spring, MD, USA, 1965; p. 30.
- Annual 2021 Global Climate Report. Available online: https://www.ncdc.noaa.gov/news/drought-importance-drought-indicators (accessed on 23 January 2022).
- Mayowa, O.O.; Pour, S.H.; Shahid, S.; Mohsenipour, M.; Harun, S.B.; Heryansyah, A.; Ismail, T. Trends in Rainfall and Rainfall-Related Extremes in the East Coast of Peninsular Malaysia. J. Earth Syst. Sci. 2015, 124, 1609–1622. [Google Scholar] [CrossRef] [Green Version]
- Ojha, S.S.; Singh, V.; Roshni, T. Comparison of Meteorological Drought Using SPI and SPEI. Civ. Eng. J. 2021, 7, 2130–2149. [Google Scholar] [CrossRef]
Moisture Categories | SPI or SPEI |
---|---|
Extremely wet | ≥2.0 |
Severe wet | 1.5 to 1.99 |
Moderately wet | 1.0 to 1.49 |
Normal | −0.99 to 0.99 |
Moderately drought | −1.00 to −1.49 |
Severe drought | −1.50 to −1.99 |
Extremely drought | ≤−2.00 |
Station ID | Station Name | Region | Latitude | Longitude |
---|---|---|---|---|
1897016 | Sematan | Southern | 1°48′36.5″ N | 109°46′19.7″ E |
1401005 | Bau | Southern | 1°25′5.60″ N | 110°08′58.4″ E |
1503012 | Kampung Nelayan | Southern | 1°32′36.4″ N | 110°23′27.40″ E |
1102002 | Aman 5 Bridge | Southern | 1°10′56.900″ N | 110°15′22.200″ E |
1503014 | Padungan | Southern | 1°33′18.1″ N | 110°21′57.00″ E |
1105027 | Serian | Southern | 1°09′37.2″ N | 110°33′58.6″ E |
1611001 | JPS Beladin | Southern | 1°38′17.90″ N | 111°11′57.00″ E |
1214001 | Sri Aman | Southern | 1°14′33.2″ N | 111°27′25.03″ E |
1415001 | Nanga Lubau | Southern | 1°29′46.3″ N | 111°35′14.80″ E |
2115008 | Sarikei DID | Central | 2°07′36″ N | 111°31′43″ E |
2818002 | Dalat Sago Plantation | Central | 2°50′15.55″ N | 111°49′54.982″ E |
2219001 | Sibu New Airport | Central | 2°15′32.1″ N | 111°58′54.2″ E |
2021036 | Kanowit Water Works | Central | 2°5′59.10″ N | 112°9′5.806″ E |
2523001 | Selangau B | Central | 2°31′24.5″ N | 112°19′14.4″ E |
1624001 | Rumah Andau | Central | 1°40′57.1″ N | 112°25′7.4″ E |
1628001 | Upper Sungai Ayat | Central | 1°36′38.4″ N | 112°48′50.5″ E |
2727001 | Ulu Sungai Muang | Central | 2°46′25.7″ N | 112°42′12.2″ E |
3132001 | Sebauh | Central | 3°06′44.47″ N | 113°15′53.23″ E |
2134001 | Nanga Tiau | Central | 2°6′56.7″ N | 113°26′36.8″ E |
1737001 | Nanga Merurung | Central | 1°42′57.20″ N | 113°44′37.50″ E |
2141048 | Long Jawe | Central | 2°7′0.5″ N | 114°11′13.7″ E |
2843001 | Long Jek | Northern | 2°48′33.1″ N | 114°18′56.3″ E |
3342032 | Long Subing | Northern | 3°19′38.3″ N | 114°16′22.2″ E |
3737045 | Sungai Lebai | Northern | 3°43′56.4″ N | 113°47′6.9″ E |
4038006 | Bekenu | Northern | 4°03′24.20″ N | 113°50′30.00″ E |
4440002 | Permai Jaya | Northern | 4°27′11.2″ N | 114°01′46.4″ E |
4043059 | Benawa | Northern | 4°01′13.70″ N | 114°20′46.60″ E |
3950020 | Long Seridan | Northern | 3°58′38.4″ N | 115°3′55.7″ E |
4650023 | Pandaruan | Northern | 4°41′17.5″ N | 115°1′7.5″ E |
4752022 | Trusan | Northern | 4°47′6.6″ N | 115°16′19.1″ E |
4954001 | Kuala Lawas | Northern | 4°57′22.20″ N | 115°25′40.10″ E |
4354001 | Long Merarap | Northern | 4°21′36.5″ N | 115°27′32.2″ E |
3754007 | Bario | Northern | 3°44′12.90″ N | 115°28′32.10″ E |
Total Monthly Rainfall | ||||||
---|---|---|---|---|---|---|
Station ID | Station Name | Region | Kendall’s Tau | S | p-Value (Two-Tailed) | Sen’s Slope (mm/year) |
1897016 | Seaman | Southern | 0.229 | −183 | 0.041 | −9.927 |
1401005 | Bau | Southern | 0.13 | 112 | 0.212 | 7.258 |
1503012 | Kampung Nelayan | Southern | 0.195 | −160 | 0.074 | −9.779 |
1102002 | Aman 5 Bridge | Southern | 0.112 | −92 | 0.307 | −5.881 |
1503014 | Padungan | Southern | 0.228 | −187 | 0.037 | −11.761 |
1105027 | Padungan | Southern | 0.228 | 187 | 0.037 | 11.761 |
1611001 | JPS Beladin | Southern | 0.259 | −212 | 0.018 | −16.286 |
1214001 | Sri Aman | Southern | 0.311 | −255 | 0.004 | −19.073 |
1415001 | Nanga Lubau | Southern | 0.351 | 118 | 0.001 | 21.375 |
2115008 | Sarikei DID | Central | 0.246 | 202 | 0.024 | 14.768 |
2818002 | Dalat Sago Plantation | Central | 0.427 | −350 | 0 | −28.37 |
2219001 | Sibu New Airport | Central | 0.272 | −223 | 0.013 | −18.677 |
2021036 | Kanowit Water Works | Central | 0.271 | 222 | 0.013 | 18.153 |
2523001 | Selangau B | Central | 0.349 | −268 | 0.001 | −23.136 |
1624001 | Rumah Andau | Central | 0.407 | −334 | 0 | −32.14 |
1628001 | Upper Sungai Ayat | Central | 0.432 | −254 | 0 | −35.821 |
2727001 | Ulu Sungai Muang | Central | 0.354 | −290 | 0.001 | −21.973 |
3132001 | Sebauh | Central | 0.256 | 210 | 0.019 | 17.768 |
2134001 | Nanga Tiau | Central | 0.407 | 334 | 0 | 28.994 |
1737001 | Nanga Merurung | Central | 0.437 | 358 | 0 | 38.099 |
2141048 | Long Jawe | Central | 0.354 | −266 | 0.003 | −21.179 |
2843001 | Long Jek | Northern | 0.145 | 119 | 0.185 | 8.205 |
3342032 | Long Subing | Northern | 0.133 | −109 | 0.225 | −7.703 |
3737045 | Sungai Lebai | Northern | −0.015 | −12 | 0.902 | −0.887 |
4038006 | Bekenu | Northern | 0.049 | −40 | 0.661 | −3.165 |
4440002 | Permai Jaya | Northern | 0.027 | 22 | 0.841 | 2.148 |
4043059 | Benawa | Northern | 0.195 | −160 | 0.074 | −12 |
3950020 | Long Seridan | Northern | 0.181 | −148 | 0.099 | −10.397 |
4650023 | Pandaruan | Northern | 0.243 | −199 | 0.026 | −17.53 |
4752022 | Trusan | Northern | 0.282 | −231 | 0.01 | −22.412 |
4954001 | Kuala Lawas | Northern | 0.254 | −208 | 0.02 | −19.807 |
4354001 | Long Merarap | Northern | 0.251 | −206 | 0.021 | −20.424 |
3754007 | Bario | Northern | 0.171 | 140 | 0.118 | 11.865 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Isia, I.; Hadibarata, T.; Jusoh, M.N.H.; Bhattacharjya, R.K.; Shahedan, N.F.; Bouaissi, A.; Fitriyani, N.L.; Syafrudin, M. Drought Analysis Based on Standardized Precipitation Evapotranspiration Index and Standardized Precipitation Index in Sarawak, Malaysia. Sustainability 2023, 15, 734. https://doi.org/10.3390/su15010734
Isia I, Hadibarata T, Jusoh MNH, Bhattacharjya RK, Shahedan NF, Bouaissi A, Fitriyani NL, Syafrudin M. Drought Analysis Based on Standardized Precipitation Evapotranspiration Index and Standardized Precipitation Index in Sarawak, Malaysia. Sustainability. 2023; 15(1):734. https://doi.org/10.3390/su15010734
Chicago/Turabian StyleIsia, Ismallianto, Tony Hadibarata, Muhammad Noor Hazwan Jusoh, Rajib Kumar Bhattacharjya, Noor Fifinatasha Shahedan, Aissa Bouaissi, Norma Latif Fitriyani, and Muhammad Syafrudin. 2023. "Drought Analysis Based on Standardized Precipitation Evapotranspiration Index and Standardized Precipitation Index in Sarawak, Malaysia" Sustainability 15, no. 1: 734. https://doi.org/10.3390/su15010734
APA StyleIsia, I., Hadibarata, T., Jusoh, M. N. H., Bhattacharjya, R. K., Shahedan, N. F., Bouaissi, A., Fitriyani, N. L., & Syafrudin, M. (2023). Drought Analysis Based on Standardized Precipitation Evapotranspiration Index and Standardized Precipitation Index in Sarawak, Malaysia. Sustainability, 15(1), 734. https://doi.org/10.3390/su15010734