How Organizational Agility Promotes Digital Transformation: An Empirical Study
Abstract
:1. Introduction
2. Literature Review
3. Theoretical Analysis and Research Hypothesis
3.1. Theoretical Analysis Framework
3.2. Research Model and Research Hypothesis
- (1)
- Dynamic capabilities and organizational agility
- (2)
- Organizational agility and digital transformation performance
4. Materials and Methods
Variable Selection
5. Results
5.1. Descriptive Statistics
5.2. Test of Validity and Reliability
5.3. Model Test
5.4. Hypothesis Testing
6. Discussion and Implications
6.1. Discussion
6.2. Implications
- (1)
- Implications for theory
- (2)
- Implications for practice
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Agostino, D.; Arnaboldi, M.; Lema, M.D. COVID-19 as an accelerator of digital transformation in public service delivery. Public Money Manag. 2020, 41, 69–72. [Google Scholar] [CrossRef]
- Gabryelczyk, R. Has COVID-19 accelerated digital transformation? Initial lessons learned for public administrations. Inf. Syst. Manag. 2020, 37, 303–309. [Google Scholar] [CrossRef]
- Eom, S.J. Digital government transformation in turbulent times: Responses, challenges, and future direction. Gov. Inf. Q. 2022, 39, 101690. [Google Scholar] [CrossRef] [PubMed]
- Fletcher, G.; Griffiths, M. Digital transformation during a lockdown. Int. J. Inf. Manag. 2020, 55, 102185. [Google Scholar] [CrossRef]
- Mergel, I.; Edelmann, N.; Haug, N. Defining digital transformation: Results from expert interviews. Gov. Inf. Q. 2019, 36, 101385. [Google Scholar] [CrossRef]
- Omar, A.; Weerakkody, V. Digitally enabled service transformation in UK public sector: A case analysis of universal credit. Int. J. Inf. Manag. 2017, 37, 350–356. [Google Scholar] [CrossRef]
- Luna-Reyes, L.F.; Gil-Garcia, J.R. Digital government transformation and internet portals: The co-evolution of technology, organizations, and institutions. Gov. Inf. Q. 2020, 31, 545–555. [Google Scholar] [CrossRef]
- Manny, L.; Duygan, M.; Fischer, M.; Rieckermann, J. Barriers to the digital transformation of infrastructure sectors. Policy Sci. 2021, 54, 943–983. [Google Scholar] [CrossRef]
- Xiao, J.; Han, L.; Zhang, H. Exploring Driving Factors of Digital Transformation among Local Governments: Foundations for Smart City Construction in China. Sustainability 2022, 14, 14980. [Google Scholar] [CrossRef]
- Tangi, L.; Janssen, M.; Benedetti, M.; Noci, G. Digital government transformation: A structural equation modelling analysis of driving and impeding factors. Int. J. Inf. Manag. 2021, 60, 102356. [Google Scholar] [CrossRef]
- Troise, C.; Corvello, V.; Ghobadian, A.; O’Regan, N. How can SMEs successfully navigate VUCA environment: The role of agility in the digital transformation era. Technol. Forecast. Soc. Chang. 2022, 174, 121227. [Google Scholar] [CrossRef]
- Mazzucato, M.; Kattel, R. COVID-19 and public-sector capacity. Oxf. Rev. Econ. Policy 2020, 36, 256–269. [Google Scholar] [CrossRef]
- Pool, H. The Chief Digital Officer: Building Dynamic Capabilities for Digital Transformation. Available online: https://repository.up.ac.za/handle/2263/80503 (accessed on 21 February 2023).
- Chirumalla, K. Building digitally-enabled process innovation in the process industries: A dynamic capabilities approach. Technovation 2021, 105, 102256. [Google Scholar] [CrossRef]
- Lee, C.; Lee, J.M.; Liu, Y. Catalysing innovation and digital transformation in combating the Covid-19 pandemic: Whole-of government collaborations in ICT, R&D, and business digitization in Singapore. Public Money Manag. 2021, 43, 340–348. [Google Scholar] [CrossRef]
- Ahn, M.J.; Chen, Y.C. Digital transformation toward AI-augmented public administration: The perception of government employees and the willingness to use AI in government. Gov. Inf. Q. 2022, 39, 101664. [Google Scholar] [CrossRef]
- Barrutia, J.M.; Echebarria, C. Effect of the COVID-19 pandemic on public managers’ attitudes toward digital transformation. Technol. Soc. 2021, 67, 101776. [Google Scholar] [CrossRef]
- Newman, J.; Mintrom, M.; O’Neill, D. Digital technologies, artificial intelligence, and bureaucratic transformation. Futures 2022, 136, 102886. [Google Scholar] [CrossRef]
- Pittaway, J.J.; Montazemi, A.R. Know-how to lead digital transformation: The case of local governments. Gov. Inf. Q. 2020, 37, 101474. [Google Scholar] [CrossRef]
- Moore, S. Digital government, public participation and service transformation: The impact of virtual courts. Policy Politics 2019, 47, 495–509. [Google Scholar] [CrossRef]
- Curtis, S. Digital transformation—The silver bullet to public service improvement? Public Money Manag. 2019, 39, 322–324. [Google Scholar] [CrossRef]
- Simmonds, H.; Gazley, A.; Kaartemo, V.; Renton, M.; Hooper, V. Mechanisms of service ecosystem emergence: Exploring the case of public sector digital transformation. J. Bus. Res. 2021, 137, 100–115. [Google Scholar] [CrossRef]
- Gong, Y.; Yang, J.; Shi, X. Towards a comprehensive understanding of digital transformation in government: Analysis of flexibility and enterprise architecture. Gov. Inf. Q. 2020, 37, 101487. [Google Scholar] [CrossRef]
- Ali, O.; Soar, J.; Shrestha, A. Perceived potential for value creation from cloud computing: A study of the Australian regional government sector. Behav. Inf. Technol. 2018, 37, 1157–1176. [Google Scholar] [CrossRef]
- Androutsopoulou, A.; Karacapilidis, N.; Loukis, E.; Charalabidis, Y. Transforming the communication between citizens and government through AI-guided chatbots. Gov. Inf. Q. 2019, 36, 358–367. [Google Scholar] [CrossRef]
- Styrin, E.; Mossberger, K.; Zhulin, A. Government as a platform: Intergovernmental participation for public services in the Russian Federation. Gov. Inf. Q. 2022, 39, 101627. [Google Scholar] [CrossRef]
- Fleischer, J.; Carstens, N. Policy labs as arenas for boundary spanning: Inside the digital transformation in Germany. Public Manag. Rev. 2021, 24, 1208–1225. [Google Scholar] [CrossRef]
- Bogumil-Uçan, S.; Klenk, T. Varieties of health care digitalization: Comparing advocacy coalitions in Austria and Germany. Rev. Policy Res. 2021, 38, 478–503. [Google Scholar] [CrossRef]
- Janssen, M.; Hartog, M.; Matheus, R.; Ding, A.Y.; Kuk, G. Will algorithms blind people? The effect of explainable AI and decision-makers’ experience on AI-supported decision-making in government. Soc. Sci. Comput. Rev. 2022, 4, 478–493. [Google Scholar] [CrossRef]
- Valle-Cruz, D.; Criado, J.I.; Sandoval-Almazán, R.; Ruvalcaba-Gomez, E.A. Assessing the public policy-cycle framework in the age of artificial intelligence: From agenda-setting to policy evaluation. Gov. Inf. Q. 2020, 37, 101509. [Google Scholar] [CrossRef]
- Vogl, T.M.; Seidelin, C.; Ganesh, B.; Bright, J. Smart technology and the emergence of algorithmic bureaucracy: Artificial intelligence in UK local authorities. Public Adm. Rev. 2020, 80, 946–961. [Google Scholar] [CrossRef]
- Giest, S. Big data for policymaking: Fad or fasttrack? Policy Sci. 2017, 50, 367–382. [Google Scholar] [CrossRef] [Green Version]
- Kempeneer, S. A big data state of mind: Epistemological challenges to accountability and transparency in data-driven regulation. Gov. Inf. Q. 2021, 38, 101578. [Google Scholar] [CrossRef]
- McNeely, C.L.; Hahm, J.O. The big (data) bang: Policy, prospects, and challenges. Rev. Policy Res. 2014, 31, 304–310. [Google Scholar] [CrossRef]
- Chatfield, A.T.; Reddick, C.G. A framework for Internet of Things-enabled smart government: A case of IoT cybersecurity policies and use cases in US federal government. Gov. Inf. Q. 2019, 36, 346–357. [Google Scholar] [CrossRef]
- Wirtz, B.W.; Weyerer, J.C.; Schichtel, F.T. An integrative public IoT framework for smart government. Gov. Inf. Q. 2019, 36, 333–345. [Google Scholar] [CrossRef]
- Nanos, I.; Papaioannou, E.; Androutsou, E.; Manthou, V. The role of cloud computing and citizens relationship management in digital government transformation. Int. J. Internet Mark. Advert. 2019, 13, 120–136. [Google Scholar] [CrossRef]
- Rainero, C.; Modarelli, G. Blockchain informative infrastructure: A conceptual reflection on public administrative procedures and a citizen-centred view. Inf. Technol. People 2021, 34, 1252–1284. [Google Scholar] [CrossRef]
- Yfantis, V.; Leligou, H.C.; Ntalianis, K. Blockchain—A revolutionary tool for the public sector. Public Money Manag. 2020, 41, 408–411. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.; Bouwman, H.; Jaiswal, M.P. An open platform centric approach for scalable government service delivery to the poor: The Aadhaar case. Gov. Inf. Q. 2019, 36, 437–448. [Google Scholar] [CrossRef]
- De Sousa, W.G.; Fidelis, R.A.; de Souza Bermejo, P.H.; da Silva Gonçalo, A.G.; de Souza Melo, B. Artificial intelligence and speedy trial in the judiciary: Myth, reality or need? A case study in the Brazilian Supreme Court (STF). Gov. Inf. Q. 2022, 39, 101660. [Google Scholar] [CrossRef]
- Ebbers, W.E.; van de Wijngaert, L.A. Paper beats ping: On the effect of an increasing separation of notification and content due to digitization of government communication. Gov. Inf. Q. 2020, 37, 101396. [Google Scholar] [CrossRef]
- Van den Berg, A.C.; Giest, S.N.; Groeneveld, S.M.; Kraaij, W. Inclusivity in online platforms: Recruitment strategies for improving participation of diverse sociodemographic groups. Public Adm. Rev. 2020, 80, 989–1000. [Google Scholar] [CrossRef]
- Mahmood, M. Enhancing citizens’ trust and confidence in government through digital transformation. Int. J. Electron. Gov. Res. 2016, 12, 99–110. [Google Scholar] [CrossRef] [Green Version]
- Jarmin, R.S.; O’Hara, A.B. Big data and the transformation of public policy analysis. J. Policy Anal. Manag. 2016, 35, 715–721. [Google Scholar] [CrossRef]
- Schintler, L.A.; Kulkarni, R. Big data for policy analysis: The good, the bad, and the ugly. Rev. Policy Res. 2014, 31, 343–348. [Google Scholar] [CrossRef]
- Stough, R.; McBride, D. Big data and US public policy. Rev. Policy Res. 2014, 31, 339–342. [Google Scholar] [CrossRef]
- Höchtl, J.; Parycek, P.; Schöllhammer, R. Big data in the policy cycle: Policy decision making in the digital era. J. Organ. Comput. Electron. Commer. 2016, 26, 147–169. [Google Scholar] [CrossRef]
- Xiao, J.; Zhang, H.; Han, L. How digital transformation improve government peformane: The mediating role of partnering agility. IEEE Access 2023, 11, 59274–59285. [Google Scholar] [CrossRef]
- Teece, D.J.; Pisano, G.; Shuen, A. Dynamic capabilities and strategic management. Strateg. Manag. J. 1997, 18, 509–533. [Google Scholar] [CrossRef]
- Teece, D.J. Explicating dynamic capabilities: The nature and micro-foundations of (sustainable) enterprise performance. Strateg. Manag. J. 2007, 28, 1319–1350. [Google Scholar] [CrossRef] [Green Version]
- Bryson, J.M.; Ackermann, F.; Eden, C. Putting the resource-based view of strategy and distinctive competencies to work in public organizations. Public Adm. Rev. 2007, 28, 702–717. [Google Scholar] [CrossRef]
- Piening, E.P. Dynamic capabilities in public organizations: A literature review and research agenda. Public Manag. Rev. 2011, 44, 687–708. [Google Scholar] [CrossRef]
- Hansen, J.R.; Ferlie, E. Applying strategic management theories in public sector organizations: Developing a typology. Public Manag. Rev. 2014, 18, 1–19. [Google Scholar] [CrossRef]
- Chong, M.; Habib, A.; Evangelopoulos, N.; Park, H.W. Dynamic capabilities of a smart city: An innovative approach to discovering urban problems and solutions. Gov. Inf. Q. 2018, 35, 682–692. [Google Scholar] [CrossRef]
- Linde, L.; Sjödin, D.; Parida, V.; Wincent, J. Dynamic capabilities for ecosystem orchestration A capability-based framework for smart city innovation initiatives. Technol. Forecast. Soc. Chang. 2021, 166, 120614. [Google Scholar] [CrossRef]
- Mahama, H.; Elbashir, M.; Sutton, S.; Arnold, V. Enabling enterprise risk management maturity in public sector organizations. Public Money Manag. 2020, 42, 403–407. [Google Scholar] [CrossRef]
- Kattel, R.; Mazzucato, M. Mission-oriented innovation policy and dynamic capabilities in the public sector. Ind. Corp. Chang. 2018, 27, 787–801. [Google Scholar] [CrossRef]
- Ridder, H.G.; Bruns, H.J.; Spier, F. Managing implementation processes: The role of public managers in the implementation of accrual accounting–evidence from six case studies in Germany. Public Manag. Rev. 2007, 8, 87–118. [Google Scholar] [CrossRef]
- Tuan, L.T. Reform in public organizations: The roles of ambidextrous leadership and moderating mechanisms. Public Manag. Rev. 2016, 19, 518–541. [Google Scholar] [CrossRef]
- Trischler, J.; Westman, T.J. Design for experience–a public service design approach in the age of digitalization. Public Manag. Rev. 2021, 24, 1251–1270. [Google Scholar] [CrossRef]
- Klievink, B.; Janssen, M. Realizing joined-up government—Dynamic capabilities and stage models for transformation. Gov. Inf. Q. 2009, 26, 275–284. [Google Scholar] [CrossRef]
- Helfat, C.E.; Raubitschek, R.S. Dynamic and integrative capabilities for profiting from innovation in digital platform-based ecosystems. Res. Policy 2018, 47, 1391–1399. [Google Scholar] [CrossRef]
- Porwol, L.; Ojo, A.; Breslin, J.G. Social software infrastructure for e-participation. Gov. Inf. Q. 2018, 35, S88–S98. [Google Scholar] [CrossRef]
- Boin, A.; Ansell, C.; Lodge, M.; Parrado, S.; Wegrich, K.; Xue, L. A time for public administration. Public Adm. 2011, 89, 221–225. [Google Scholar] [CrossRef]
- Sarkar, S. Breaking the chain: Governmental frugal innovation in Kerala to combat the COVID-19 pandemic. Gov. Inf. Q. 2021, 38, 101549. [Google Scholar] [CrossRef]
- Madan, R.; Ashok, M. AI adoption and diffusion in public administration: A systematic literature review and future research agenda. Gov. Inf. Q. 2023, 40, 101774. [Google Scholar] [CrossRef]
- Trivellato, B.; Martini, M.; Cavenago, D. How do organizational capabilities sustain continuous innovation in a public setting? Am. Rev. Public Adm. 2023, 51, 57–71. [Google Scholar] [CrossRef]
- Panagiotopoulos, P.; Klievink, B.; Cordella, A. Public value creation in digital government. Gov. Inf. Q. 2019, 36, 101421. [Google Scholar] [CrossRef]
- Mergel, I.; Kattel, R.; Lember, V.; McBride, K. Citizen-oriented digital transformation in the public sector. In Proceedings of the 19th Annual International Conference on Digital Government Research: Governance in the Data Age, Delft, The Netherlands, 30 May–1 June 2018; pp. 1–3. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Ramamurthy, K. Understanding the link between information technology capability and organizational agility: An empirical examination. MIS Q. 2011, 35, 931–954. [Google Scholar] [CrossRef] [Green Version]
- Tallon, P.P.; Queiroz, M.; Coltman, T.; Sharma, R. Information technology and the search for organizational agility: A systematic review with future research possibilities. J. Strateg. Inf. Syst. 2019, 28, 218–237. [Google Scholar] [CrossRef]
- Walter, A.T. Organizational agility: Ill-defined and somewhat confusing? A systematic literature review and conceptualization. Manag. Rev. Q. 2020, 71, 343–391. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.Z. Towards theory building in agile manufacturing strategies—Case studies of an agility taxonomy. Int. J. Prod. Econ. 2020, 131, 303–312. [Google Scholar] [CrossRef]
- Ilmudeen, A. Leveraging IT-enabled dynamic capabilities to shape business process agility and firm innovative capability: Moderating role of turbulent environment. Rev. Manag. Sci. 2021, 16, 2341–2379. [Google Scholar] [CrossRef]
- Karimi-Alaghehband, F.; Rivard, S. Information technology outsourcing and architecture dynamic capabilities as enablers of organizational agility. J. Inf. Technol. 2019, 34, 129–159. [Google Scholar] [CrossRef]
- Teece, D.; Peteraf, M.; Leih, S. Dynamic capabilities and organizational agility: Risk, uncertainty, and strategy in the innovation economy. Calif. Manag. Rev. 2016, 58, 13–35. [Google Scholar] [CrossRef] [Green Version]
- Chatfield, A.T.; Reddick, C.G. Customer agility and responsiveness through big data analytics for public value creation: A case study of Houston 311 on-demand services. Gov. Inf. Q. 2018, 35, 336–347. [Google Scholar] [CrossRef]
- Hussain, M.; Malik, M. How do dynamic capabilities enable hotels to be agile and resilient? A mediation and moderation analysis. Calif. Manag. Rev. 2022, 106, 103266. [Google Scholar] [CrossRef]
- Mikalef, P.; Pateli, A. Information technology-enabled dynamic capabilities and their indirect effect on competitive performance: Findings from PLS-SEM and fsQCA. J. Bus. Res. 2017, 70, 1–16. [Google Scholar] [CrossRef]
- Lee OK, D.; Xu, P.; Kuilboer, J.P.; Ashrafi, N. Idiosyncratic values of IT-enabled agility at the operation and strategic levels. Commun. Assoc. Inf. Syst. 2016, 39, 13. [Google Scholar] [CrossRef] [Green Version]
- Haider, S.A.; Tehseen, S.; Khan, S.; Mata, M.N.; Martins, J.M.; Abreu, A. A literature review on agility-is there a need to develop a new instrument? Int. J. Entrep. 2021, 25, 1–14. [Google Scholar]
- Li, L.; Tong, Y.; Wei, L.; Yang, S. Digital technology-enabled dynamic capabilities and their impacts on firm performance: Evidence from the COVID-19 pandemic. Inf. Manag. 2022, 59, 103689. [Google Scholar] [CrossRef]
- Warner, K.S.; Wäger, M. Building dynamic capabilities for digital transformation: An ongoing process of strategic renewal. Long Range Plan. 2019, 52, 326–349. [Google Scholar] [CrossRef]
- Zahoor, N.; Golgeci, I.; Haapanen, L.; Ali, I.; Arslan, A. The role of dynamic capabilities and strategic agility of B2B high-tech small and medium-sized enterprises during COVID-19 pandemic: Exploratory case studies from Finland. Ind. Mark. Manag. 2022, 105, 502–514. [Google Scholar] [CrossRef]
- Chakravarty, A.; Grewal, R.; Sambamurthy, V. Information technology competencies, organizational agility, and firm performance: Enabling and facilitating roles. Inf. Syst. Res. 2013, 24, 976–997. [Google Scholar] [CrossRef]
- Mergel, I.; Ganapati, S.; Whitford, A.B. Agile: A new way of governing. Public Adm. Rev. 2020, 81, 161–165. [Google Scholar] [CrossRef]
- Soe, R.M.; Drechsler, W. Agile local governments: Experimentation before implementation. Gov. Inf. Q. 2018, 35, 323–335. [Google Scholar] [CrossRef]
- Eggers, W.D.; Bellman, J. The Journey to Government’s Digital Transformation. Available online: https://www2.deloitte.com/uk/en/pages/public-sector/articles/the-journey-to-governments-digital-transformation.html (accessed on 21 February 2023).
- AlNuaimi, B.K.; Singh, S.K.; Ren, S.; Budhwar, P.; Vorobyev, D. Mastering digital transformation: The nexus between leadership, agility, and digital strategy. J. Bus. Res. 2022, 145, 636–648. [Google Scholar] [CrossRef]
- Faro, B.; Abedin, B.; Cetindamar, D. Hybrid organizational forms in public sector’s digital transformation: A technology enactment approach. J. Enterp. Inf. Manag. 2021, 35, 1742–1763. [Google Scholar] [CrossRef]
- Wilden, R.; Gudergan, S.P.; Nielsen, B.B.; Lan, L. Dynamic capabilities and performance:strategy, structure and environment. Long Range Plan. 2013, 46, 72–96. [Google Scholar] [CrossRef] [Green Version]
- Miroshnychenko, I.; Strobl, A.; Matzler, K.; De Massis, A. Absorptive capacity, strategic flexibility, and business model innovation: Empirical evidence from Italian SMEs. J. Bus. Res. 2021, 130, 670–682. [Google Scholar] [CrossRef]
- Shen, L.; Zhang, X.; Liu, H. Digital technology adoption, digital dynamic capability, and digital transformation performance of textile industry: Moderating role of digital innovation orientation. Manag. Decis. Econ. 2021, 43, 2038–2054. [Google Scholar] [CrossRef]
- Fornell, C.; Larcker, D.F. Evaluating structural equation models with unobservable variables and measurement error. J. Mark. Res. 1981, 18, 39–50. [Google Scholar] [CrossRef]
- Nunnally, J.C. Psychometric Theory; McGraw-Hill: New York, NY, USA, 1978. [Google Scholar]
- Chen, J.; Wang, D.; Chen, J. Understanding organizational agility development for a government: A process model of resource configuration. Front. Bus. Res. China 2013, 8, 73–97. [Google Scholar] [CrossRef]
Demographic Variable | Classification Item | Frequency | Percentage (%) | Cumulative Percentage (%) |
---|---|---|---|---|
Gender | Male | 144 | 46.01 | 46.01 |
Female | 169 | 53.99 | 100 | |
Age | 18–25 years | 88 | 28.12 | 28.12 |
26–30 years | 141 | 45.05 | 73.17 | |
31–40 years | 72 | 23.00 | 96.17 | |
Over 41 years old | 12 | 3.83 | 100 | |
Education | High school and below | 4 | 1.28 | 1.28 |
College and undergraduate | 232 | 74.12 | 75.40 | |
Postgraduate | 77 | 24.60 | 100 | |
Years of service | Less than three years | 242 | 77.32 | 77.32 |
Three years and above | 71 | 22.68 | 100 |
Variables | Loading | CR | AVE |
---|---|---|---|
SNC 1 | 0.794 *** | 0.828 | 0.617 |
SNC 2 | 0.797 *** | ||
SNC 3 | 0.765 *** | ||
SIC 1 | 0.851 *** | 0.843 | 0.642 |
SIC 2 | 0.782 *** | ||
SIC 3 | 0.769 *** | ||
RC 1 | 0.757 *** | 0.807 | 0.582 |
RC 2 | 0.745 *** | ||
RC 3 | 0.787 *** | ||
OAA 1 | 0.845 *** | 0.892 | 0.734 |
OAA 2 | 0.873 *** | ||
OAA 3 | 0.852 *** | ||
SA 1 | 0.852 *** | 0.912 | 0.721 |
SA 2 | 0.866 *** | ||
SA 3 | 0.841 *** | ||
SA 4 | 0.836 *** | ||
DTP 1 | 0.815 *** | 0.839 | 0.635 |
DTP 2 | 0.788 *** | ||
DTP 3 | 0.788 *** |
Construct | AVE | Factor Correlation | |||||
---|---|---|---|---|---|---|---|
SNC | SIC | RC | OAA | SA | DTP | ||
SNC | 0.617 | 0.785 | |||||
SIC | 0.642 | 0.671 | 0.801 | ||||
RC | 0.582 | 0.379 | 0.342 | 0.763 | |||
OAA | 0.721 | 0.395 | 0.391 | 0.333 | 0.849 | ||
SA | 0.734 | 0.407 | 0.412 | 0.290 | 0.481 | 0.857 | |
DTP | 0.635 | 0.315 | 0.260 | 0.459 | 0.417 | 0.474 | 0.797 |
Model-Fit Indices | χ2/df | NFI | GFI | CFI | RMSEA |
---|---|---|---|---|---|
Recommended value | <3 | >0.9 | >0.9 | >0.9 | <0.1 |
Results | 1.457 | 0.939 | 0.937 | 0.98 | 0.038 |
Research Hypothesis | T-Value | p | β | R2 |
---|---|---|---|---|
SNC—OAA | 2.513 | * | 0.211 | 0.236 |
SIC—OAA | 2.352 | * | 0.227 | |
RC—OAA | 2.244 | * | 0.160 | |
SNC—SA | 2.268 | * | 0.196 | 0.235 |
SIC—SA | 3.090 | * | 0.200 | |
RC—SA | 2.136 | ** | 0.209 | |
OAA—DTP | 5.821 | *** | 0.371 | 0.255 |
SA—DTP | 4.340 | *** | 0.267 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Ding, H.; Xiao, J. How Organizational Agility Promotes Digital Transformation: An Empirical Study. Sustainability 2023, 15, 11304. https://doi.org/10.3390/su151411304
Zhang H, Ding H, Xiao J. How Organizational Agility Promotes Digital Transformation: An Empirical Study. Sustainability. 2023; 15(14):11304. https://doi.org/10.3390/su151411304
Chicago/Turabian StyleZhang, Hui, Huiying Ding, and Jianying Xiao. 2023. "How Organizational Agility Promotes Digital Transformation: An Empirical Study" Sustainability 15, no. 14: 11304. https://doi.org/10.3390/su151411304
APA StyleZhang, H., Ding, H., & Xiao, J. (2023). How Organizational Agility Promotes Digital Transformation: An Empirical Study. Sustainability, 15(14), 11304. https://doi.org/10.3390/su151411304