Toward Economically Efficient Carbon Reduction: Contrasting Greening Plastic Supply Chains with Alternative Energy Policy Approaches
Abstract
:1. Introduction
2. Literature Review
2.1. Feed-in Tariffs and Premiums
2.2. Emissions Trading Schemes, Carbon Taxes and Credits
2.3. Energy System Reform
2.4. Transport Sector Policy Intervention
2.5. International Plastic Supply-Chain Greening
3. Methodology
4. Results
4.1. Costs of Existing and Under-Consideration Carbon-Reduction Regime
4.2. Plastic LCA and the Economic and Environmental Assessment of CO2-Reduction Options
4.3. Multicriteria Analysis for Plastic Selection
5. Discussion and Policy Implications
- Bio-HDPE, a drop-in replacement for virgin HDPE, performs well in a number of scenarios,
- Bio-POM is only considered viable under a scenario with low priority for GWP, where cost is not an issue, an unlikely situation without significant incentives.
- ABS and PC perform well in scenarios with priority on recyclability, and ABS scores well at high recycled content levels and as a bio-alternative where GWP reduction is a priority.
- Bio-PP struggles to achieve high scores due to limitations in recyclability and perceived quality.
- PMMA scores well for virgin and recycled blends in a number of scenarios, except where recycled content is high and quality is perceived as a priority.
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Plastic Type | GWP (Kg CO2/Kg Plastic; Virgin [77], Recycled [85,86,87] and Bio [90,91,92,93]) | Cost (JPY/Kg; Virgin [78,79], Recycled and Bio [88,89]) | Quality (Qualitative, Based on Perceived Quality of Recycled Blend) | Recyclability (Ease of Recycling, Times Material Able to be Recycled; Virgin and Recycled [80,81,82,83,84], Bio [94,95]) |
---|---|---|---|---|
HDPE | 1.82 | 285 | 10 | 10 |
PC | 3.41 | 425 | 10 | 7 |
ABS | 2.97 | 325 | 10 | 7 |
POM | 2.98 | 426 | 10 | 9 |
PP | 1.66 | 300 | 10 | 5 |
PMMA | 3.51 | 293 | 10 | 7 |
R10-HDPE | 1.692 | 276.735 | 9 | 5 |
R10-PC | 3.129 | 418.625 | 9 | 7 |
R10-ABS | 2.72943 | 310.375 | 9 | 7 |
R10-POM | 2.8906 | 395.5 | 9 | 8 |
R10-PP | 1.542 | 290.7 | 9 | 3 |
R10-PMMA | 3.359 | 280.5 | 9 | 7 |
R20-HDPE | 1.564 | 268.47 | 8 | 5 |
R20-PC | 2.848 | 412.25 | 8 | 7 |
R20-ABS | 2.48886 | 295.75 | 8 | 7 |
R20-POM | 2.8012 | 365 | 8 | 8 |
R20-PP | 1.424 | 281.4 | 8 | 3 |
R20-PMMA | 3.208 | 268 | 8 | 7 |
R50-HDPE | 1.18 | 243.675 | 5 | 5 |
R50-PC | 2.005 | 393.125 | 5 | 7 |
R50-ABS | 1.76715 | 251.875 | 5 | 7 |
R50-POM | 2.533 | 273.5 | 5 | 8 |
R50-PP | 1.07 | 253.5 | 5 | 3 |
R50-PMMA | 2.755 | 230.5 | 5 | 7 |
Bio-HDPE | 0.9 | 370.5 | 9 | 9 |
Bio-ABS | 1.2771 | 338 | 9 | 1 |
Bio-POM | 1.49 | 1278 | 9 | 1 |
Bio-PP | −0.06 | 380 | 9 | 1 |
References
- Ferrari, M.M.; Pagliari, M.S. No Country Is an Island. International Cooperation and Climate Change. SSRN Electron. J. 2021. [Google Scholar] [CrossRef]
- IEA CO2 Emissions in 2022. IEA Paris. 2023. Available online: https://www.iea.org/reports/co2-emissions-in-2022 (accessed on 5 July 2023).
- Yuan, X.; Su, C.W.; Umar, M.; Shao, X.; Lobonţ, O.R. The Race to Zero Emissions: Can Renewable Energy Be the Path to Carbon Neutrality? J. Environ. Manag. 2022, 308, 114648. [Google Scholar] [CrossRef] [PubMed]
- Ritchie, H.; Roser, M. Our World in Data: CO2 Emissions. 2023. Available online: https://ourworldindata.org/co2-and-greenhouse-gas-emissions (accessed on 7 July 2023).
- Hu, J.; Honma, S.; Chang, S. Renewable Energy Generation Efficiency of Japan’s Administrative Regions_ An Application of the Dynamic Slacks-Based Measure. Next Energy 2023, 1, 100029. [Google Scholar] [CrossRef]
- METI Outline of the 6th Strategic Energy Plan. 2021. Available online: https://www.enecho.meti.go.jp/en/category/others/basic_plan/pdf/6th_outline.pdf (accessed on 22 July 2023).
- Nikkei Asia Japan Buys Its Way to Kyoto Success. Nikkei Asia 2014. Available online: https://asia.nikkei.com/NAR/Articles/Japan-buys-its-way-to-Kyoto-success3 (accessed on 4 July 2023).
- Nguyen, D.H.; Chapman, A.; Farabi-Asl, H. Nation-Wide Emission Trading Model for Economically Feasible Carbon Reduction in Japan. Appl. Energy 2019, 255, 113869. [Google Scholar] [CrossRef]
- Stegmann, P.; Daioglou, V.; Londo, M.; van Vuuren, D.P.; Junginger, M. Plastic Futures and Their CO2 Emissions. Nature 2022, 612, 272–276. [Google Scholar] [CrossRef]
- Institute for Global Environmental Strategies Plastic Atlas Asia: Japan’s Plastic Waste Management—Challenges and Potential Solutions. 2022. Available online: https://www.iges.or.jp/en/publication_documents/pub/reportchapter/en/12341/PlasticAtlasAsia2022_en_WEB_1.pdf (accessed on 22 July 2023).
- The Japan Research Institute Current Status and New Business Potential of Waste Plastics in Japan. Available online: https://www.jri.co.jp/page.jsp?id=36897 (accessed on 7 July 2023).
- Plastic Waste Management Institute. An Introduction to Plastic Recycling 2022. 2022. Available online: https://www.pwmi.or.jp/ei/plastic_recycling_2022.pdf (accessed on 21 July 2023).
- NEDO Basic Plan for the Development of Innovative Plastic Resource Recycling Process Technology. 2020. Available online: https://www.nedo.go.jp/content/100919126.pdf (accessed on 7 June 2023).
- Pereira da Silva, P.; Dantas, G.; Pereira, G.I.; Câmara, L.; De Castro, N.J. Photovoltaic Distributed Generation—An International Review on Diffusion, Support Policies, and Electricity Sector Regulatory Adaptation. Renew. Sustain. Energy Rev. 2019, 103, 30–39. [Google Scholar] [CrossRef]
- Huenteler, J. International Support for Feed-in Tariffs in Developing Countries—A Review and Analysis of Proposed Mechanisms. Renew. Sustain. Energy Rev. 2014, 39, 857–873. [Google Scholar] [CrossRef]
- Tanaka, Y.; Chapman, A.; Tezuka, T.; Sakurai, S. Putting the Process into the Policy Mix: Simulating Policy Design for Energy and Electricity Transitions in Japan. Energy Res. Soc. Sci. 2020, 70, 101702. [Google Scholar] [CrossRef]
- Tanaka, Y.; Chapman, A.; Sakurai, S.; Tezuka, T. Feed-in Tariff Pricing and Social Burden in Japan: Evaluating International Learning through a Policy Transfer Approach. Soc. Sci. 2017, 6, 127. [Google Scholar] [CrossRef]
- Ministry of Economy Trade and Industry Renewable Energy Purchase Prices, Surcharge Rate, and Other Details Related to FIT and FIP Schemes from FY2022 Onward to Be Determined. 2022. Available online: https://www.meti.go.jp/english/press/2022/0325_004.html (accessed on 5 July 2023).
- Nikkei Newspaper Renewable Energy Surcharge Reduced to 1.40 Yen, the First Ever Reduction. Average Household Bills to Fall by 820 Yen per Month. Available online: https://www.nikkei.com/article/DGXZQOUA240S60U3A320C2000000/ (accessed on 5 July 2023).
- Chu, L.; Takeuchi, K. The Non-Operating Solar Projects: Examining the Impact of the Feed-in Tariff Amendment in Japan. Energy Policy 2022, 160, 112712. [Google Scholar] [CrossRef]
- International Carbon Action Partnership. International Carbon Action Partnership Status Report 2022. 2022. Available online: https://icapcarbonaction.com/system/files/document/220408_icap_report_rz_web.pdf (accessed on 21 July 2023).
- World Bank. Putting a Price on Carbon with an ETS. 2012. Available online: https://www.worldbank.org/content/dam/Worldbank/document/Climate/background-note_ets.pdf (accessed on 7 July 2023).
- Abdallah, T.; Diabat, A.; Simchi-Levi, D. A Carbon Sensitive Supply Chain Network Problem with Green Procurement. In Proceedings of the 40th International Conference on Computers & Indutrial Engineering, Awaji, Japan, 25–28 July 2010. [Google Scholar] [CrossRef]
- Giarola, S.; Shah, N.; Bezzo, F. A Comprehensive Approach to the Design of Ethanol Supply Chains Including Carbon Trading Effects. Bioresour. Technol. 2012, 107, 175–185. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Chen, Y.; Ji, J. Cooperation Modes of Operations and Financing in a Low-Carbon Supply Chain. Sustainability 2018, 10, 821. [Google Scholar] [CrossRef]
- World Bank. Carbon Pricing Dashboard: ETS Prices. Available online: https://carbonpricingdashboard.worldbank.org/map_data (accessed on 7 May 2023).
- Fahimnia, B.; Sarkis, J.; Boland, J.; Reisi, M.; Goh, M. Policy Insights from a Green Supply Chain Optimisation Model. Int. J. Prod. Res. 2015, 53, 6522–6533. [Google Scholar] [CrossRef]
- Hammami, R.; Nouira, I.; Frein, Y. Carbon Emissions in a Multi-Echelon Production-Inventory Model with Lead Time Constraints. Int. J. Prod. Econ. 2015, 164, 292–307. [Google Scholar] [CrossRef]
- Chan, Y.T.; Zhao, H. Optimal Carbon Tax Rates in a Dynamic Stochastic General Equilibrium Model with a Supply Chain. Econ. Model. 2023, 119, 106109. [Google Scholar] [CrossRef]
- Liu, Z.; Lang, L.; Hu, B.; Shi, L.; Huang, B.; Zhao, Y. Emission Reduction Decision of Agricultural Supply Chain Considering Carbon Tax and Investment Cooperation. J. Clean. Prod. 2021, 294, 126305. [Google Scholar] [CrossRef]
- Halat, K.; Hafezalkotob, A.; Sayadi, M.K. Cooperative Inventory Games in Multi-Echelon Supply Chains under Carbon Tax Policy: Vertical or Horizontal? Appl. Math. Model. 2021, 99, 166–203. [Google Scholar] [CrossRef]
- Ouhader, H.; El Kyal, M. The Impact of Horizontal Collaboration on CO2 Emissions Due to Road Transportation. In Proceedings of the International Conference on Industrial Engineering and Operations Management, Rabat, Morocco, 11–13 April 2017. [Google Scholar]
- Soysal, M.; Bloemhof-Ruwaard, J.M.; Haijema, R.; van der Vorst, J.G.A.J. Modeling a Green Inventory Routing Problem for Perishable Products with Horizontal Collaboration. Comput. Oper. Res. 2018, 89, 168–182. [Google Scholar] [CrossRef]
- Yang, H.; Chen, W. Retailer-Driven Carbon Emission Abatement with Consumer Environmental Awareness and Carbon Tax: Revenue-Sharing versus Cost-Sharing. Omega 2018, 78, 179–191. [Google Scholar] [CrossRef]
- World Bank. Carbon Pricing Dashboard: Carbon Tax Prices. Available online: https://carbonpricingdashboard.worldbank.org/map_data (accessed on 7 May 2023).
- Carbon Offset Guide Carbon Offset Programs. Available online: https://www.offsetguide.org/understanding-carbon-offsets/carbon-offset-programs/ (accessed on 7 May 2023).
- Show, K.Y.; Lee, D.J. Carbon Credit and Emission Trading: Anaerobic Wastewater Treatment. J. Chinese Inst. Chem. Eng. 2008, 39, 557–562. [Google Scholar] [CrossRef]
- Live Carbon Prices Today. Available online: https://carboncredits.com/carbon-prices-today/ (accessed on 9 May 2023).
- Wang, Y.; Wang, F. Effects of the Carbon Credits Buy-Back Policy on Manufacturing/Remanufacturing Decisions of the Capital-Constrained Manufacturer. J. Ind. Manag. Optim. 2023, 19, 594–628. [Google Scholar] [CrossRef]
- J-Credit Scheme Outline of J-Credit Scheme. 2023. Available online: https://japancredit.go.jp/english/pdf/credit_english_001_41.pdf (accessed on 5 July 2023).
- Sadik-Zada, E.R. Political Economy of Green Hydrogen Rollout: A Global Perspective. Sustainability 2021, 13, 13464. [Google Scholar] [CrossRef]
- Chapman, A.; Itaoka, K.; Farabi-Asl, H.; Fujii, Y.; Nakahara, M. Societal Penetration of Hydrogen into the Future Energy System: Impacts of Policy, Technology and Carbon Targets. Int. J. Hydrogen Energy 2020, 45, 3883–3898. [Google Scholar] [CrossRef]
- Chaube, A.; Chapman, A.; Shigetomi, Y.; Huff, K.; Stubbins, J. The Role of Hydrogen in Achieving Long Term Japanese Energy System Goals. Energies 2020, 13, 4539. [Google Scholar] [CrossRef]
- Sugiyama, M.; Fujimori, S.; Wada, K.; Endo, S.; Fujii, Y.; Komiyama, R.; Kato, E.; Kurosawa, A.; Matsuo, Y.; Oshiro, K.; et al. Japan’s Long-Term Climate Mitigation Policy: Multi-Model Assessment and Sectoral Challenges. Energy 2019, 167, 1120–1131. [Google Scholar] [CrossRef]
- Kamiya, S.; Nishimura, M.; Harada, E. Study on Introduction of CO2 Free Energy to Japan with Liquid Hydrogen. Phys. Procedia 2015, 67, 11–19. [Google Scholar] [CrossRef]
- Chapman, A.J.; Fraser, T.; Itaoka, K. Hydrogen Import Pathway Comparison Framework Incorporating Cost and Social Preference: Case Studies from Australia to Japan. Int. J. Energy Res. 2017, 41, 2374–2391. [Google Scholar] [CrossRef]
- Zavarkó, M. The Global ESG Trend and Adaptation Opportunities in the Emerging Hydrogen Economy: A Corporate Governance Perspective. Soc. Econ. 2023. [Google Scholar] [CrossRef]
- Buongiorno, J.; Corradini, M.; Parsons, J.; Petti, D. Nuclear Energy in a Carbon-Constrained World: Big Challenges and Big Opportunities. IEEE Power Energy Mag. 2019, 17, 69–77. [Google Scholar] [CrossRef]
- Bistline, J.; Bragg-Sitton, S.; Cole, W.; Dixon, B.; Eschmann, E.; Ho, J.; Kwon, A.; Martin, L.; Murphy, C.; Namovicz, C.; et al. Modeling Nuclear Energy’s Future Role in Decarbonized Energy Systems. iScience 2023, 26, 105952. [Google Scholar] [CrossRef]
- World Nuclear News. Poll Finds Record Support for Japanese Reactor Restarts. Available online: https://world-nuclear-news.org/Articles/Poll-finds-record-support-for-Japanese-reactor-res (accessed on 19 July 2023).
- The International Council on Clean Transportation Phase out of Light Duty Vehicles. Available online: https://theicct.org/phase-out-map-ldv/ (accessed on 23 June 2023).
- Morfeldt, J.; Shoman, W.; Johansson, D.J.A.; Yeh, S.; Karlsson, S. If Electric Cars Are Good for Reducing Emissions, They Could Be Even Better with Electric Roads. Environ. Sci. Technol. 2022, 56, 9593–9603. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Matsumoto, S. Can Subsidy Programs Lead Consumers to Select “Greener” Products?: Evidence from the Eco-Car Program in Japan. Res. Transp. Econ. 2022, 91, 101066. [Google Scholar] [CrossRef]
- Sacchi, R.; Bauer, C.; Cox, B.; Mutel, C. When, Where and How Can the Electrification of Passenger Cars Reduce Greenhouse Gas Emissions? Renew. Sustain. Energy Rev. 2022, 162, 112475. [Google Scholar] [CrossRef]
- Sheldon, R.A. Biocatalysis and Biomass Conversion: Enabling a Circular Economy: Biocatalysis and Biomass Conversion. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2020, 378, 20190274. [Google Scholar] [CrossRef]
- Sun, X.; Xie, M.; Mai, L.; Zeng, E.Y. Biobased Plastic: A Plausible Solution toward Carbon Neutrality in Plastic Industry? J. Hazard. Mater. 2022, 435, 129037. [Google Scholar] [CrossRef]
- Sandberg, E.; Krook-Riekkola, A. Accounting for Carbon Flows into and from (Bio)Plastic in a National Climate Inventory. GCB Bioenergy 2023, 15, 208–223. [Google Scholar] [CrossRef]
- Qureshi, M.S.; Oasmaa, A.; Pihkola, H.; Deviatkin, I.; Tenhunen, A.; Mannila, J.; Minkkinen, H.; Pohjakallio, M.; Laine-Ylijoki, J. Pyrolysis of Plastic Waste: Opportunities and Challenges. J. Anal. Appl. Pyrolysis 2020, 152, 104804. [Google Scholar] [CrossRef]
- Rahim, R.; Abdul Raman, A.A. Carbon Dioxide Emission Reduction through Cleaner Production Strategies in a Recycled Plastic Resins Producing Plant. J. Clean. Prod. 2017, 141, 1067–1073. [Google Scholar] [CrossRef]
- Weldekidan, H.; Mohanty, A.K.; Misra, M. Upcycling of Plastic Wastes and Biomass for Sustainable Graphitic Carbon Production: A Critical Review. ACS Environ. Au 2022, 2, 510–522. [Google Scholar] [CrossRef]
- Zibunas, C.; Meys, R.; Kätelhön, A.; Bardow, A. Cost-Optimal Pathways towards Net-Zero Chemicals and Plastics Based on a Circular Carbon Economy. Comput. Chem. Eng. 2022, 162, 107798. [Google Scholar] [CrossRef]
- ESG Investing Waste and Opportunity: How to Capitalize on Plastics. Available online: https://www.esginvesting.co.uk/waste-and-opportunity-how-to-capitalize-on-plastics/ (accessed on 22 July 2023).
- Renewable Energy Institute Renewable Energy Surcharges to Decrease Significantly with Lower FIT Purchase Prices and Higher Wholesale Market Prices. Available online: https://www.renewable-ei.org/en/activities/column/REupdate/20230627.php (accessed on 4 July 2023).
- The Federation of Electric Power Companies of Japan. 2023. Available online: https://www.fepc.or.jp/english/library/electricity_eview_japan/__icsFiles/afieldfile/2023/04/06/electricity_2023.pdf (accessed on 21 July 2023).
- ICAP. ICAP Status Report 2023. 2023. Available online: https://icapcarbonaction.com/system/files/document/ICAPEmissionsTradingWorldwide2023StatusReport_0.pdf (accessed on 6 July 2023).
- Arimura, T.H.; Abe, T. The Impact of the Tokyo Emissions Trading Scheme on Office Buildings: What Factor Contributed to the Emission Reduction? Environ. Econ. Policy Stud. 2021, 23, 517–533. [Google Scholar] [CrossRef]
- Mizuho Research and Technologies Ltd. About the J-Credit Scheme (Data Collection). 2023. Available online: https://japancredit.go.jp/data/pdf/credit_002.pdf (accessed on 21 July 2023).
- Government of Japan. Basic Hydrogen Strategy, Ministerial Council on Renewable Energy, Hydrogen and Related Issues. 2017. pp. 1–37. Available online: http://www.meti.go.jp/english/press/2017/pdf/1226_003b.pdf (accessed on 22 July 2023).
- Nagashima, M. Japan’s Hydrogen Strategy and Its Economic and Geopolitical Implications; Etudes de L’Ifri: Paris, France, 2018; ISBN 9782365679183. Available online: https://www.ifri.org/sites/default/files/atoms/files/nagashima_japan_hydrogen_2018_.pdf (accessed on 27 July 2023).
- World Nuclear Association Comparison of Lifecycle Greenhouse Gas Emissions of Various Electricity Generation Sources. 2011. Available online: https://www.world-nuclear.org/uploadedfiles/org/wna/publications/working_group_reports/comparison_of_lifecycle.pdf (accessed on 24 July 2023).
- Wang, L.; Wei, Y.M.; Brown, M.A. Global Transition to Low-Carbon Electricity: A Bibliometric Analysis. Appl. Energy 2017, 205, 57–68. [Google Scholar] [CrossRef]
- Osawa, J. Portfolio Analysis of Clean Energy Vehicles in Japan Considering Copper Recycling. Sustainability 2023, 15, 2113. [Google Scholar] [CrossRef]
- Kagawa, S.; Goto, Y.; Suh, S.; Nansai, K.; Kudoh, Y. Accounting for Changes in Automobile Gasoline Consumption in Japan: 2000–2007. J. Econ. Struct. 2012, 1, 1–27. [Google Scholar] [CrossRef]
- Renewable Energy Institute EV Uptake Trends and Future Prospects. 2018. Available online: https://www.renewable-ei.org/activities/reports/img/pdf/20180627/REI_EVreport_20180627.pdf (accessed on 25 July 2023).
- Next Generation Vehicle Promotion Center EV Subsidies by Vehicle Type in Japan. Available online: https://www.cev-pc.or.jp/hojo/pdf/R4ho/R4ho_meigaragotojougen.pdf (accessed on 25 July 2023).
- Yang, Z.; Wang, B.; Jiao, K. Life Cycle Assessment of Fuel Cell, Electric and Internal Combustion Engine Vehicles under Different Fuel Scenarios and Driving Mileages in China. Energy 2020, 198, 117365. [Google Scholar] [CrossRef]
- Plastics Europe. Eco-Profiles. 2023. Available online: https://legacy.plasticseurope.org/en/resources/eco-profiles (accessed on 7 May 2023).
- Nikkei Newspaper. Plastics, Resins, Lactates, Cardboard Monthly Prices. 2023. Available online: http://shuyousoubamonthly.sblo.jp/category/4476438-1.html (accessed on 20 July 2023).
- Prototype Factory Watanabe Resin Prices and Heat Resistance. Available online: https://www.watanabe-mfg.co.jp/2016/07/post-1007/staffblog/ (accessed on 20 July 2023).
- RepetCo. Main Types of Plastics by Use and Recycling Tolerance. 2022. Available online: https://www.repetco.com/main-types-of-plastics-by-use-and-recycling-tolerance/ (accessed on 20 July 2023).
- Naderi Kalali, E.; Lotfian, S.; Entezar Shabestari, M.; Khayatzadeh, S.; Zhao, C.; Yazdani Nezhad, H. A Critical Review of the Current Progress of Plastic Waste Recycling Technology in Structural Materials. Curr. Opin. Green Sustain. Chem. 2023, 40, 100763. [Google Scholar] [CrossRef]
- Tan, M.H.; Chiong, M.S.; Chun, Y.Y.; Tsukahara, K.; Tahara, K. An Analysis of Practices and Challenges for Plastic Recycling Industry in Malaysia. Int. J. Autom. Technol. 2022, 16, 831–837. [Google Scholar] [CrossRef]
- Tsuchimoto, I.; Kajikawa, Y. Recycling of Plastic Waste: A Systematic Review Using Bibliometric Analysis. Sustainability 2022, 14, 16340. [Google Scholar] [CrossRef]
- Costa, A.A.; Martinho, P.G.; Barreiros, F.M. Comparison between the Mechanical Recycling Behaviour of Amorphous and Semicrystalline Polymers: A Case Study. Recycling 2023, 8, 12. [Google Scholar] [CrossRef]
- Zhou, X.; Zhai, Y.; Ren, K.; Cheng, Z.; Shen, X.; Zhang, T.; Bai, Y.; Jia, Y.; Hong, J. Life Cycle Assessment of Polycarbonate Production: Proposed Optimization toward Sustainability. Resour. Conserv. Recycl. 2023, 189, 106765. [Google Scholar] [CrossRef]
- Franklin Associates. Life Cycle Impacts for Postconsumer Recycled Resins: PET, HDPE, and PP. Submitted to The Association of Plastic Recyclers (APR). 2018. Available online: https://plasticsrecycling.org/images/library/2018-APR-LCI-report.pdf (accessed on 4 July 2023).
- The Association of Plastic Recyclers (APR); Franklin Associates. Virgin vs. Recycled Plastic Life Cycle Assessment Energy Profile and Life Cycle Assessment Environmental Burdens. 2020. Available online: https://plasticsrecycling.org/images/library/APR-Recycled-vs-Virgin-May2020.pdf (accessed on 4 July 2023).
- ChemAnalyst Chemical Price List. Available online: https://www.chemanalyst.com/Pricing/Pricingoverview (accessed on 2 July 2023).
- Plasticker Raw Materials & Prices. Available online: https://plasticker.de/preise/preise_monat_single_en.php (accessed on 2 July 2023).
- Siracusa, V.; Blanco, I. Bio-Polyethylene (Bio-PE), Bio-Polypropylene (Bio-PP) and Bio-Poly(Ethylene Terephthalate) (Bio-PET): Recent Developments in Bio-Based Polymers Analogous to Petroleum-Derived Ones for Packaging and Engineering Applications. Polymers 2020, 12, 5029. [Google Scholar] [CrossRef]
- Ma, Z.; Weersink, A.; Vadori, R.; Misra, M. Financial Cost Comparison of Acrylonitrile Butadiene Styrene (ABS) and BioABS. J. Biobased Mater. Bioenergy 2015, 9, 244–251. [Google Scholar] [CrossRef]
- Zorko, D.; Demšar, I.; Tavčar, J. An Investigation on the Potential of Bio-Based Polymers for Use in Polymer Gear Transmissions. Polym. Test. 2021, 93, 106994. [Google Scholar] [CrossRef]
- Brizga, J.; Hubacek, K.; Feng, K. The Unintended Side Effects of Bioplastics: Carbon, Land, and Water Footprints. One Earth 2020, 3, 45–53. [Google Scholar] [CrossRef]
- Lamberti, F.M.; Román-Ramírez, L.A.; Wood, J. Recycling of Bioplastics: Routes and Benefits. J. Polym. Environ. 2020, 28, 2551–2571. [Google Scholar] [CrossRef]
- Alaerts, L.; Augustinus, M.; Van Acker, K. Impact of Bio-Based Plastics on Current Recycling of Plastics. Sustainability 2018, 10, 1487. [Google Scholar] [CrossRef]
- ISO Central Secretariat. Environmental Management: The ISO 14000 Family of International Standards. 2009. Available online: https://www.iso.org/files/live/sites/isoorg/files/archive/pdf/en/theiso14000family_2009.pdf (accessed on 30 August 2023).
- Karbasioun, M.; Gholamalipour, A.; Safaie, N.; Shirazizadeh, R.; Amidpour, M. Developing Sustainable Power Systems by Evaluating Techno-Economic, Environmental, and Social Indicators from a System Dynamics Approach. Util. Policy 2023, 82, 101566. [Google Scholar] [CrossRef]
- Government of Japan. Roadmap for Bioplastics Introduction. 2021. Available online: https://www.env.go.jp/recycle/mat21030210_1.pdf (accessed on 5 July 2023).
- Chang, C.; McAleer, M. Modeling Latent Carbon Emission Prices for Japan: Theory and Practice. Energies 2019, 12, 4222. [Google Scholar] [CrossRef]
- Meyer, M.; Löschel, A.; Lutz, C. Carbon Price Dynamics in Ambitious Climate Mitigation Scenarios: An Analysis Based on the Iamc 1.5°c Scenario Explorer. Environ. Res. Commun. 2021, 3, 081007. [Google Scholar] [CrossRef]
- Findrik, E.; Meixner, O. Drivers and Barriers for Consumers Purchasing Bioplastics—A Systematic Literature Review. J. Clean. Prod. 2023, 410, 137311. [Google Scholar] [CrossRef]
- Zwicker, M.V.; Brick, C.; Gruter, G.J.M.; van Harreveld, F. (Not) Doing the Right Things for the Wrong Reasons: An Investigation of Consumer Attitudes, Perceptions, and Willingness to Pay for Bio-Based Plastics. Sustainability 2021, 13, 6819. [Google Scholar] [CrossRef]
- Nature Research. Focal Point on Bioplastics in Japan. 2023. Available online: https://www.nature.com/articles/d42473-023-00020-z (accessed on 7 August 2023).
Carbon-Reduction Regime | Scope | References |
---|---|---|
Japanese FIT | FIT (primarily solar) induced energy cost burdens since program inceptioncognizant of the energy mix of CO2 intensity reductions in the electricity generation sector | [63,64] |
Japanese ETS | Tokyo Cap-and-Trade and Saitama ETS pricing | [35,65,66] |
J-Credit | J-Credit prices post-centralization (2013), cognizant of administrative costs | [67] |
Proposed Japanese Hydrogen Economy | Considering the impacts of introducing a hydrogen economy to aid in the achievement of 2050 carbon neutrality goals—modeled and estimated | [42,68,69] |
Reinvigoration of Nuclear Power | Restarting of nuclear power plants and extension of operating lifetimes; no new builds, cognizant of the energy mix CO2 reductions in the electricity-generation sector | [64,70,71] |
Transition away from ICE | Implications of a shift to EV and FCV passenger vehicle options post-2035 | [72,73,74,75,76] |
Origin | Plastic Type | Factors Considered | References |
---|---|---|---|
Virgin | High-Density Polyethylene (HDPE) |
| [77,78,79,80,81,82,83,84] |
Polycarbonate (PC) | |||
Acrylonitrile Butadiene Styrene (ABS) | |||
Polyoxymethylene (POM) | |||
Polypropylene (PP) | |||
Polymethyl Methacrylate (PMMA) | |||
Recycled | HDPE | [85,86,87,88,89] | |
PC | |||
ABS | |||
POM | |||
PP | |||
PMMA | |||
Bio-Derived | HDPE | [90,91,92,93,94,95] | |
ABS | |||
POM | |||
PP |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoshimoto, Y.; Kishimoto, K.; Sen, K.K.; Mochida, T.; Chapman, A. Toward Economically Efficient Carbon Reduction: Contrasting Greening Plastic Supply Chains with Alternative Energy Policy Approaches. Sustainability 2023, 15, 13229. https://doi.org/10.3390/su151713229
Yoshimoto Y, Kishimoto K, Sen KK, Mochida T, Chapman A. Toward Economically Efficient Carbon Reduction: Contrasting Greening Plastic Supply Chains with Alternative Energy Policy Approaches. Sustainability. 2023; 15(17):13229. https://doi.org/10.3390/su151713229
Chicago/Turabian StyleYoshimoto, Yuuki, Koki Kishimoto, Kanchan Kumar Sen, Takako Mochida, and Andrew Chapman. 2023. "Toward Economically Efficient Carbon Reduction: Contrasting Greening Plastic Supply Chains with Alternative Energy Policy Approaches" Sustainability 15, no. 17: 13229. https://doi.org/10.3390/su151713229
APA StyleYoshimoto, Y., Kishimoto, K., Sen, K. K., Mochida, T., & Chapman, A. (2023). Toward Economically Efficient Carbon Reduction: Contrasting Greening Plastic Supply Chains with Alternative Energy Policy Approaches. Sustainability, 15(17), 13229. https://doi.org/10.3390/su151713229