Advanced Biological Oxidation of Domestic Sewage with the Use of Compost Beds in a Natural Treatment System for Wastewater
Abstract
:1. Introduction
- The oxygen supply in the compost beds, which is responsible for the complete oxidation of organic matter and ammonia nitrogen,
- The successful removal of microbiological contamination,
- The production of good-quality compost.
2. Materials and Methods
2.1. Description of the NTSW Pilot Plant
2.2. Sampling and Quality Assessment
2.3. Wastewater Treatment Process
- In traditional composters, living organisms decompose various solid wastes and produce compost (natural fertilizer). In the compost beds of this pilot plant, the living microorganisms decompose mostly dissolved organic matter that flows into the compost beds from the septic tank.
- The compost beds are continuously fed with organic matter every hour, while in traditional composters, this happens occasionally.
- The compost beds are filled with wood chips, while the traditional composters are filled with various solid wastes.
- In traditional composters, oxygen is used primarily for decomposition of organic matter, while in compost beds, it is used primarily for nitrification and, to a lesser extent, for decomposition of organic matter contained in wastewater.
- In compost beds, the filling material becomes valuable compost only after at least three years of use, while in traditional composters, it becomes valuable after one season (a few months).
3. Results
3.1. Oxygen Demand
3.21 mg O2/mg NH4+-N,
1.11 mgO2/mg NO2-N,
3.2. Microbiological Contamination
3.3. Nutrient Content of Compost
4. Discussion
A—0.07 m3/m2 | B—0.1 m3/m2 | C—0.13 m3/m2 | |||||
---|---|---|---|---|---|---|---|
BOD | NH4-N | BOD | NH4-N | BOD | NH4-N | ||
Influent | (g O2/m3) | 232.1 | 135.9 | 232.1 | 135.9 | 232.1 | 135.9 |
SD | 91.9 | 52.9 | 91.9 | 52.9 | 91.9 | 52.9 | |
CV | 40.0 | 38.9 | 40.0 | 38.9 | 40.0 | 38.9 | |
Effluent | (g O2/m3) | 4.0 | 2.0 | 5.4 | 4.3 | 7.2 | 4.2 |
SD | 1.8 | 1.4 | 2.9 | 4.9 | 4.9 | 2.7 | |
CV | 44.2 | 66.6 | 53.7 | 113.2 | 71.3 | 65.1 | |
Reduction | (%) | 98.3 | 98.5 | 97.7 | 96.8 | 96.9 | 96.8 |
Parameter | Unit | Treatment Plant Size (Number of Inhabitants) | |||
---|---|---|---|---|---|
<2000 | 2000–9999 | 10,000–14,999 | 15,000–99,999 | ||
BOD | g O2/m3 (% reduction) | 40 (N/A) | 25 (75–90) | 25 (70–90) | 15 (90) |
COD | g O2/m3 | 150 | 125 | 125 | 125 |
Total Nitrogen | g O2/m3 (% reduction) | 30 (N/A) | 15 (N/A) | 15 (70–80) | 15 (70–80) |
Quality Parameter (g O2/m3) | Plant Location | ||||||
---|---|---|---|---|---|---|---|
Long Beach | Los Coyotes | Pomona | Dublin San Ramon | Livermore | Simi Valley CSD | This Study | |
BOD | 5.0 | 9.0 | 4.0 | 2.0 | 3.0 | 4.0 | 5.5 |
NH4-N | 3.3 | 13.6 | 11.4 | 0.1 | 1.0 | 16.6 | 3.5 |
5. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Food and Agriculture Organization of the United Nations. The Global Framework on Water Scarcity in Agriculture. Available online: https://www.fao.org/3/i5604e/i5604e.pdf (accessed on 17 July 2023).
- United Nations. Water Scarcity. Available online: https://www.unwater.org/sites/default/files/app/uploads/2018/10/WaterFacts_water-scarcity_sep2018.pdf (accessed on 17 July 2023).
- Burek, P.; Satoh, Y.; Fischer, G.; Kahil, M.T.; Scherzer, A.; Tramberend, S.; Nava Jimenez, L.; Wada, Y.; Eisner, S.; Flörke, M.; et al. Water Futures and Solution—Fast Track Initiative (Final Report); IIASA: Laxenburg, Austria, 2016. [Google Scholar]
- van Vliet, M.T.H.; Jones, E.R.; Flörke, M.; Franssen, W.H.P.; Hanasaki, N.; Wada, Y.; Yearsley, J.R. Global water scarcity including surface water quality and expansions of clean water technologies. Environ. Res. Let. 2021, 16, 024020. [Google Scholar] [CrossRef]
- World Water Quality Alliance. World Water Quality Assessment: First Global Display of a Water Quality Baseline; United Nations Environment Assembly: Nairobi, Kenya, 2021.
- Shah, S. Wastewater Management: New Technologies for Treatment; Water Digest: Gurgaon, India, 2014; pp. 8–13. [Google Scholar]
- Richey, A.S.; Thomas, B.F.; Lo, M.-H.; Reager, J.T.; Famiglietti, J.S.; Voss, K.; Swenson, S.; Rodell, M. Quantifying renewable groundwater stress with GRACE. Water Resour. Res. 2015, 51, 5217–5238. [Google Scholar] [CrossRef] [PubMed]
- Europe’s Groundwater—A Key Resource Under Pressure. Available online: https://www.eea.europa.eu/publications/europes-groundwater (accessed on 17 July 2023).
- Pollution and Barriers Are Key Problems for Europe’s Waters. Available online: https://www.eea.europa.eu/highlights/pollution-and-barriers-are-key (accessed on 17 July 2023).
- Zhou, H.; Smith, D.W. Advanced technologies in water and wastewater treatment. J. Environ. Eng. Sci. 2002, 1, 247–264. [Google Scholar] [CrossRef]
- Høibye, L.; Clauson-Kaas, J.; Wenzel, H.; Larsen, H.F.; Jacobsen, B.N.; Dalgaard, O. Sustainability assessment of advanced wastewater treatment technologies. Water Sci. Technol. 2008, 58, 963–968. [Google Scholar] [CrossRef]
- What is Advanced Wastewater Treatment? Available online: https://www.wwdmag.com/editorial-topical/what-is-articles/article/10939699/what-is-advanced-wastewater-treatment (accessed on 17 July 2023).
- Halicki, W.; Halicki, M. From domestic sewage to potable water quality: New approach in organic matter removal using natural treatment systems for wastewater. Water 2022, 14, 1909. [Google Scholar] [CrossRef]
- Halicki, W.; Halicki, M. Effective removal of biogenic substances using natural treatment systems for wastewater for safer water reuse. Water 2022, 14, 3977. [Google Scholar] [CrossRef]
- Browne, W.; Jenssen, P.D. Exceeding tertiary standards with a pond/reed bed system in Norway. Water Sci. Technol. 2005, 51, 299–306. [Google Scholar] [CrossRef]
- Masi, F. Water reuse and resources recovery: The role of constructed wetlands in the Ecosan approach. Desalination 2009, 246, 27–34. [Google Scholar] [CrossRef]
- Halicki, W. Evolution of Constructed Wetland for Wastewater Treatment, from Field Irrigation to Improved Wetland System. In Wetland: Function, Services, Importance and Threats; Halicki, W., Ed.; Environmental Research Advances; Nova Science Publishers: New York, NY, USA, 2018; pp. 299–340. ISBN 978-1-53613-562-6. [Google Scholar]
- Chen, T.Y.; Kao, C.M.; Yeh, T.Y.; Chien, H.Y.; Chao, A.C. Application of a constructed wetland for industrial wastewater treatment: A pilot-scale study. Chemosphere 2006, 64, 497–502. [Google Scholar] [CrossRef]
- Gholipour, A.; Zahabi, H.; Stefanakis, A.I. A novel pilot and full-scale constructed wetland study for glass industry wastewater treatment. Chemosphere 2020, 247, 125966. [Google Scholar] [CrossRef]
- Mendieta-Pino, C.A.; Pérez-Báez, S.O.; Ramos-Martín, A.; León-Zerpa, F.; Brito-Espino, S. Natural treatment system for wastewater (NTSW) in a livestock farm, with five years of pilot plant management and monitoring. Chemosphere 2021, 285, 131529. [Google Scholar] [CrossRef] [PubMed]
- Msemwa, G.G.; Ibrahim, M.G.; Fujii, M.; Nasr, M. Phytomanagement of textile wastewater for dual biogas and biochar production: A techno-economic and sustainable approach. J. Environ. Manag. 2022, 322, 116097. [Google Scholar] [CrossRef] [PubMed]
- Halicki, W. Ekologia Stosowana w Zrównoważonej Gospodarce Wodno-Ściekowej. Projektowanie i Budowa Naturalnych Systemów Oczyszczania Ścieków (Applied Ecology in Sustainable Water and Wastewater Management. Design and Construction of Natural Wastewater Treatment Systems); Wydawnictwo Instytutowe, Instytut Ekologii Stosowanej: Skórzyn, Poland, 2015; ISBN 9788392227342. [Google Scholar]
- Crites, R.W.; Middlebrooks, E.J.; Bastian, R.K. Natural Wastewater Treatment Systems, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2014; p. 549. ISBN 9781466583269. [Google Scholar]
- Baird, R.; Rice, E.W.; Eaton, A.D.; Bridgewater, L. Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 2017; ISBN 9780875532875.
- ISO 7899-1:1998; Water Quality—Detection and Enumeration of Intestinal Enterococci—Part 1: Miniaturized Method (Most Probable Number) for Surface and Waste Water. ISO: Geneva, Switzerland, 1998. Available online: https://www.iso.org/standard/14852.html (accessed on 7 September 2023).
- ISO 9308-3:1998; Water Quality—Detection and Enumeration of Escherichia coli and Coliform Bacteria—Part 3: Miniaturized Method (Most Probable Number) for the Detection and Enumeration of E. coli in Surface and Waste Water. ISO: Geneva, Switzerland, 1998. Available online: https://www.iso.org/standard/20878.html (accessed on 7 September 2023).
- PN-EN ISO/IEC 17025:2018-02; Ogólne Wymagania Dotyczące Kompetencji Laboratoriów Badawczych i Wzorcujących. Polish Centre for Accreditation: Warsaw, Poland, 2018. Available online: https://www.pca.gov.pl/akredytowane-laboratoria-wdrazaja-wymagania-normy-pn-en-isoiec (accessed on 7 September 2023).
- Ni’matuzahroh; Affandi, M.; Fatimah; Trikurniadewi, N.; Khiftiyah, A.M.; Sari, S.K.; Abidin, A.Z.; Ibrahim, S.N.M.M. Comparative study of gut microbiota from decomposer fauna in household composter using metataxonomic approach. Arch. Microbiol. 2022, 204, 210. [Google Scholar] [CrossRef]
- Halicki, W.; Ehrnsberger, R. Veränderung der organischen Substanz und der Bodeneigenschaften in einem vertikalen Pflanzenbeet durch Zusammenwirken von Bakterien, Bodentieren und Pflanzen. (Change of organic matter and soil properties in a vertical plant bed by interaction of bacteria, soil animals and plants). GWF Wasser Abwasser 2000, 12, 854–860. [Google Scholar]
- Rheinheimer, G. Stickstoffkreislauf im Wasser: Stickstoffumsetzungen in Natürlichen Gewässern, in der Abwasserreinigung und Wasserversorgung. (Nitrogen Cycle in Water: Nitrogen Transformations in Natural Waters, in Wastewater Treatment and Water Supply); R. Oldenbourg Verlag: Munich, Germany, 1988; ISBN 978-3-486-26296-4. [Google Scholar]
- Directive (EU) 2006/7/EC of the European Parliament and of the Council of 15 February 2006 Concerning the Management of Bathing Water Quality and Repealing Directive 76/160/EEC. Available online: http://data.europa.eu/eli/dir/2006/7/2014-01-01 (accessed on 17 July 2023).
- Average Levels of Compost Nutrients: Organic Materials Management-CalRecycle Home Page. Available online: https://calrecycle.ca.gov/organics/farming/analyses/ (accessed on 17 July 2023).
- Glaze, W.H.; Kang, J.-W.; Chapin, D.H. The chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation. Ozone Sci. Eng. 1987, 9, 335–352. [Google Scholar] [CrossRef]
- Deng, Y.; Zhao, R. Advanced oxidation processes (aops) in wastewater treatment. Curr. Pollut. Rep. 2015, 1, 167–176. [Google Scholar] [CrossRef]
- Huang, M.; Li, Y.; Gu, G. Chemical composition of organic matters in domestic wastewater. Desalination 2010, 262, 36–42. [Google Scholar] [CrossRef]
- Tjandraatmadja, G.; Diaper, C. Sources of Critical Contaminants in Domestic Wastewater—A Literature Review; CSIRO: Water for a Healthy Country National Research Flagship: Canberra, Australia, 2006.
- Koul, B.; Yadav, D.; Singh, S.; Kumar, M.; Song, M. Insights into the Domestic Wastewater Treatment (DWWT) Regimes: A Review. Water 2022, 14, 3542. [Google Scholar] [CrossRef]
- Libhaber, M.; Orozco-Jaramillo, Á. Sustainable Treatment and Reuse of Municipal Wastewater: For Decision Makers and Practicing Engineers; IWA Publishing: London, UK, 2012; ISBN 9781780400631. [Google Scholar]
- Regulation of the Minister of Maritime Economy and Inland Navigation of 12 July 2019 on Substances Particularly Harmful to the Aquatic Environment and the Conditions to Be Met When Discharging Sewage into Waters or Soil, as Well as When Discharging Rainwater or Meltwater into Waters or into Water Appliances. Polish Journal of Laws 2019.1311. Available online: https://isap.sejm.gov.pl/isap.nsf/download.xsp/WDU20190001311/O/D20191311.pdf (accessed on 17 July 2023).
- Pescod, M.B. Wastewater treatment and use in agriculture. In FAO Irrigation and Drainage Paper Number 47; Food and Agricultural Organization (FAO): Rome, Italy; Available online: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=485b98390bde8a174215fa74de7a46bdd7e58728 (accessed on 17 July 2023).
- Regulation (EU) 2020/741 of the European Parliament and of the Council of 25 May 2020 on Minimum Requirements for Water Reuse. Available online: https://eur-lex.europa.eu/eli/reg/2020/741/oj (accessed on 17 July 2023).
- EPA, US. State Regulatory Programs for Water Reuse. In Guidelines for Water Reuse; US Environmental Protection Agency: Washington, DC, USA, 2012. Available online: Epa.gov/sites/default/files/2019-08/documents/2012-guidelines-water-reuse.pdf (accessed on 17 July 2023).
- Canadian Minister of Health. Canadian Guidelines for Domestic Reclaimed Water for Use in Toilet and Urinal Flushing; Canadian Minister of Health: Ottawa, ON, Canada, 2010. Available online: https://www.canada.ca/content/dam/canada/health-canada/migration/healthy-canadians/publications/healthy-living-vie-saine/water-reclaimed-recyclee-eau/alt/reclaimed-water-eaux-recyclees-eng.pdf (accessed on 17 July 2023).
- Spietz, R.L.; Williams, C.M.; Rocap, G.; Horner-Devine, M.C. A dissolved oxygen threshold for shifts in bacterial community structure in a seasonally hypoxic estuary. PLoS ONE 2015, 10, e0135731. [Google Scholar] [CrossRef]
- egulation of the Minister of Maritime Economy and Inland Navigation of 11 October 2019 on the Classification of Ecological Status, Ecological Potential and Chemical Status and the Method of Classification of the State of Surface Water Bodies, as Well as Environmental Quality Standards for Priority Substances. Polish Journal of Laws 2019.2149. Available online: https://isap.sejm.gov.pl/isap.nsf/download.xsp/WDU20190002149/O/D20192149.pdf (accessed on 17 July 2023).
- Hydraulic Residence Time Calculator. Available online: https://www.omnicalculator.com/chemistry/hydraulic-retention-time (accessed on 17 July 2023).
- Qin, J.; Oo, M.; Tao, G.; Kekre, K. Feasibility study on petrochemical wastewater treatment and reuse using submerged MBR. J. Memb. Sci. 2007, 293, 161–166. [Google Scholar] [CrossRef]
- López, A.; Rodríguez-Chueca, J.; Mosteo, R.; Gómez, J.; Rubio, E.; Goñi, P.; Ormad, M.P. How does urban wastewater treatment affect the microbial quality of treated wastewater? Process Saf. Environ. Prot. 2019, 130, 22–30. [Google Scholar] [CrossRef]
- Collivignarelli, M.; Abbà, A.; Benigna, I.; Sorlini, S.; Torretta, V. Overview of the main disinfection processes for wastewater and drinking water treatment plants. Sustainability 2017, 10, 86. [Google Scholar] [CrossRef]
- Brown, C. Available Nutrients and Value for Manure from Various Livestock Types; Queen’s Printer for Ontario: Toronto, ON, Canada, 2013. Available online: https://fieldcropnews.com/wp-content/uploads/2015/03/Nutrient-Value-of-Manure.pdf (accessed on 17 July 2023).
- Kałuża-Haładyn, A.; Jamroz, E.; Bekier, J. Humic substances of differently matured composts produced from municipal solid wastes and biomass of energetic plants. Soil Sci. Ann. 2019, 70, 292–297. [Google Scholar] [CrossRef]
- Favoino, E.; Hogg, D. The potential role of compost in reducing greenhouse gases. Waste Manag. Res. 2008, 26, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Blanco, J.; Muñoz, P.; Antón, A.; Rieradevall, J. Life cycle assessment of the use of compost from municipal organic waste for fertilization of tomato crops. Resour. Conserv. Recycl. 2009, 53, 340–351. [Google Scholar] [CrossRef]
Oxygen Demand (g O2/m3) | Mean | Max. | Min. | SD | CV |
---|---|---|---|---|---|
BOD | 232.1 | 410.0 | 53.1 | 91.9 | 40.0 |
NH4-N | 621.1 | 1453.3 | 301.6 | 241.6 | 38.8 |
Sum | 853.3 | 1863.3 | 354.7 | 275.3 | 32.3 |
Compost Bed | Value | Inflow (g O2/m2) | Outflow (g O2/m2) | Reduction (%) |
---|---|---|---|---|
A 0.07 m3/m2/d | mean | 58.4 | 0.42 | 99.3 |
max. | 130.4 | 1 | 99.2 | |
min. | 24.8 | 0.08 | 99.7 | |
SD | 19.19 | 0.45 | - | |
CV | 32.9 | 107.1 | - | |
B 0.1 m3/m2/d | mean | 85.3 | 0.97 | 98.8 |
max. | 186.3 | 4.4 | 97.7 | |
min. | 35.4 | 0.13 | 99.6 | |
SD | 26.83 | 2.35 | - | |
CV | 31.5 | 242.3 | - | |
C 0.13 m3/m2/d | mean | 110.9 | 1.4 | 98.7 |
max. | 242.2 | 3.6 | 98.5 | |
min. | 46.1 | 0.2 | 99.5 | |
SD | 35.38 | 1.89 | - | |
CV | 31.9 | 135.0 | - |
Parameter | Sample 1 | Sample 2 | Unit | Uncertainty |
---|---|---|---|---|
Dry weight in fresh weight | 31.6 | 34.2 | % | ±5% |
Total nitrogen | 1.11 | 1.20 | % of dry weight | ±10% |
Total phosphorous | 0.16 | 0.20 | % of dry weight | ±15% |
Potassium | <0.10 * | <0.10 * | % of dry weight | ±15% |
Calcium | 6.71 | 6.73 | % of dry weight | ±22% |
Magnesium | 0.17 | 0.20 | % of dry weight | ±15% |
Quality Parameter (mg/dm3) | BOD | COD | NH4-N | NO3 | TN |
---|---|---|---|---|---|
Raw sewage | 232.1 | 407.3 | 135.9 | 0.1 | 130.7 |
Effluent of the compost beds | 5.6 | 73.0 | 3.5 | 132.1 | 42.2 |
Effluent of the water renewal beds | 2.2 | 17.8 | 0.6 | 49.4 | 12.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Halicki, W. Advanced Biological Oxidation of Domestic Sewage with the Use of Compost Beds in a Natural Treatment System for Wastewater. Sustainability 2023, 15, 13555. https://doi.org/10.3390/su151813555
Halicki W. Advanced Biological Oxidation of Domestic Sewage with the Use of Compost Beds in a Natural Treatment System for Wastewater. Sustainability. 2023; 15(18):13555. https://doi.org/10.3390/su151813555
Chicago/Turabian StyleHalicki, Wojciech. 2023. "Advanced Biological Oxidation of Domestic Sewage with the Use of Compost Beds in a Natural Treatment System for Wastewater" Sustainability 15, no. 18: 13555. https://doi.org/10.3390/su151813555