Geospatial Artificial Intelligence (GeoAI) and Satellite Imagery Fusion for Soil Physical Property Predicting
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil Samples
2.3. Environmental Parameters
2.3.1. RS Parameters
2.3.2. Topographic Parameters
2.3.3. Climatic Parameters
2.4. Prediction Models
2.4.1. RF Algorithm
2.4.2. CNN
2.4.3. CNN-RF
2.5. Models Evaluation
2.6. K-Fold Cross-Validation
2.7. Workflow for Soil Texture Prediction
3. Results
3.1. Correlation Analysis
3.2. Feature Importance
3.3. Model Development
3.4. Comparison of Prediction Models
3.5. Spatial Prediction of Soil Properties
4. Discussion
4.1. Analysis of Parameters Affecting Soil Texture
4.2. Model Comparison and Analysis
4.3. Strengths and Weaknesses
5. Conclusions and Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Elramady, H.; Brevik, E.C.; Elsakhawy, T.; Omara, A.E.-D.; Amer, M.M.; Abowaly, M.; El-Henawy, A.; Prokisch, J. Soil and Humans: A Comparative and A Pictorial Mini-Review. Egypt. J. Soil Sci. 2022, 62, 101–122. [Google Scholar] [CrossRef]
- Tahat, M.M.; Alananbeh, K.M.; Othman, Y.A.; Leskovar, D.I. Soil health and sustainable agriculture. Sustainability 2020, 12, 4859. [Google Scholar] [CrossRef]
- Polakowski, C.; Ryżak, M.; Sochan, A.; Beczek, M.; Mazur, R.; Bieganowski, A. Particle size distribution of various soil materials measured by laser diffraction—The problem of reproducibility. Minerals 2021, 11, 465. [Google Scholar] [CrossRef]
- Liakos, L.; Panagos, P. Challenges in the Geo-Processing of Big Soil Spatial Data. Land 2022, 11, 2287. [Google Scholar] [CrossRef]
- Shanmugapriya, P.; Rathika, S.; Ramesh, T.; Janaki, P. Applications of remote sensing in agriculture—A Review. Int. J. Curr. Microbiol. Appl. Sci 2019, 8, 2270–2283. [Google Scholar] [CrossRef]
- Shafapour Tehrany, M.; Shabani, F.; Neamah Jebur, M.; Hong, H.; Chen, W.; Xie, X. GIS-based spatial prediction of flood prone areas using standalone frequency ratio, logistic regression, weight of evidence and their ensemble techniques. Geomat. Nat. Hazards Risk 2017, 8, 1538–1561. [Google Scholar] [CrossRef]
- Mousavi, S.Z.; Kavian, A.; Soleimani, K.; Mousavi, S.R.; Shirzadi, A. GIS-based spatial prediction of landslide susceptibility using logistic regression model. Geomat. Nat. Hazards Risk 2011, 2, 33–50. [Google Scholar] [CrossRef]
- Zeraatpisheh, M.; Garosi, Y.; Owliaie, H.R.; Ayoubi, S.; Taghizadeh-Mehrjardi, R.; Scholten, T.; Xu, M. Improving the spatial prediction of soil organic carbon using environmental covariates selection: A comparison of a group of environmental covariates. Catena 2022, 208, 105723. [Google Scholar] [CrossRef]
- Ye, C.-M.; Wei, R.-L.; Ge, Y.-G.; Li, Y.; Junior, J.M.; Li, J. GIS-based spatial prediction of landslide using road factors and random forest for Sichuan-Tibet Highway. J. Mt. Sci. 2022, 19, 461–476. [Google Scholar] [CrossRef]
- Dobarco, M.R.; Orton, T.G.; Arrouays, D.; Lemercier, B.; Paroissien, J.-B.; Walter, C.; Saby, N.P. Prediction of soil texture using descriptive statistics and area-to-point kriging in Region Centre (France). Geoderma Reg. 2016, 7, 279–292. [Google Scholar] [CrossRef]
- Liao, K.; Xu, S.; Wu, J.; Zhu, Q. Spatial estimation of surface soil texture using remote sensing data. Soil Sci. Plant Nutr. 2013, 59, 488–500. [Google Scholar] [CrossRef]
- Costa, J.J.F.; Giasson, E.; da Silva, E.B.; Coblinski, J.A.; Tiecher, T. Use of color parameters in the grouping of soil samples produces more accurate predictions of soil texture and soil organic carbon. Comput. Electron. Agric. 2020, 177, 105710. [Google Scholar] [CrossRef]
- Wadoux, A.M.-C. Using deep learning for multivariate mapping of soil with quantified uncertainty. Geoderma 2019, 351, 59–70. [Google Scholar] [CrossRef]
- Ließ, M.; Glaser, B.; Huwe, B. Uncertainty in the spatial prediction of soil texture: Comparison of regression tree and Random Forest models. Geoderma 2012, 170, 70–79. [Google Scholar] [CrossRef]
- Gholizadeh, A.; Borůvka, L.; Saberioon, M.; Vašát, R. A memory-based learning approach as compared to other data mining algorithms for the prediction of soil texture using diffuse reflectance spectra. Remote Sens. 2016, 8, 341. [Google Scholar] [CrossRef]
- Curcio, D.; Ciraolo, G.; D’Asaro, F.; Minacapilli, M. Prediction of soil texture distributions using VNIR-SWIR reflectance spectroscopy. Procedia Environ. Sci. 2013, 19, 494–503. [Google Scholar] [CrossRef]
- Wuest, T.; Weimer, D.; Irgens, C.; Thoben, K.-D. Machine learning in manufacturing: Advantages, challenges, and applications. Prod. Manuf. Res. 2016, 4, 23–45. [Google Scholar] [CrossRef]
- Ray, S. A quick review of machine learning algorithms. In Proceedings of the 2019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon), Faridabad, India, 14–16 February 2019; pp. 35–39. [Google Scholar]
- Barzegar, R.; Aalami, M.T.; Adamowski, J. Coupling a hybrid CNN-LSTM deep learning model with a Boundary Corrected Maximal Overlap Discrete Wavelet Transform for multiscale Lake water level forecasting. J. Hydrol. 2021, 598, 126196. [Google Scholar] [CrossRef]
- Zhang, Y.; Le, J.; Liao, X.; Zheng, F.; Li, Y. A novel combination forecasting model for wind power integrating least square support vector machine, deep belief network, singular spectrum analysis and locality-sensitive hashing. Energy 2019, 168, 558–572. [Google Scholar] [CrossRef]
- Alygizakis, N.; Giannakopoulos, T.; Τhomaidis, N.S.; Slobodnik, J. Detecting the sources of chemicals in the Black Sea using non-target screening and deep learning convolutional neural networks. Sci. Total Environ. 2022, 847, 157554. [Google Scholar] [CrossRef]
- Taghizadeh-Mehrjardi, R.; Khademi, H.; Khayamim, F.; Zeraatpisheh, M.; Heung, B.; Scholten, T. A comparison of model averaging techniques to predict the spatial distribution of soil properties. Remote Sens. 2022, 14, 472. [Google Scholar] [CrossRef]
- Feng, D.; Chen, H. A small samples training framework for deep Learning-based automatic information extraction: Case study of construction accident news reports analysis. Adv. Eng. Inform. 2021, 47, 101256. [Google Scholar] [CrossRef]
- Azadnia, R.; Jahanbakhshi, A.; Rashidi, S.; Bazyar, P. Developing an automated monitoring system for fast and accurate prediction of soil texture using an image-based deep learning network and machine vision system. Measurement 2022, 190, 110669. [Google Scholar] [CrossRef]
- Taghizadeh-Mehrjardi, R.; Mahdianpari, M.; Mohammadimanesh, F.; Behrens, T.; Toomanian, N.; Scholten, T.; Schmidt, K. Multi-task convolutional neural networks outperformed random forest for mapping soil particle size fractions in central Iran. Geoderma 2020, 376, 114552. [Google Scholar] [CrossRef]
- Garajeh, M.K.; Malakyar, F.; Weng, Q.; Feizizadeh, B.; Blaschke, T.; Lakes, T. An automated deep learning convolutional neural network algorithm applied for soil salinity distribution mapping in Lake Urmia, Iran. Sci. Total Environ. 2021, 778, 146253. [Google Scholar] [CrossRef]
- Celik, M.F.; Isik, M.S.; Yuzugullu, O.; Fajraoui, N.; Erten, E. Soil Moisture Prediction from Remote Sensing Images Coupled with Climate, Soil Texture and Topography via Deep Learning. Remote Sens. 2022, 14, 5584. [Google Scholar] [CrossRef]
- Baskakov, D.; Arseniev, D. On the computational complexity of deep learning algorithms. In Proceedings of the International Scientific Conference on Telecommunications, Computing and Control: TELECCON 2019, St. Petersburg, Russia, 18–19 November 2019; pp. 343–356. [Google Scholar]
- Bejani, M.M.; Ghatee, M. A systematic review on overfitting control in shallow and deep neural networks. Artif. Intell. Rev. 2021, 54, 6391–6438. [Google Scholar] [CrossRef]
- Bailly, A.; Blanc, C.; Francis, É.; Guillotin, T.; Jamal, F.; Wakim, B.; Roy, P. Effects of dataset size and interactions on the prediction performance of logistic regression and deep learning models. Comput. Methods Programs Biomed. 2022, 213, 106504. [Google Scholar] [CrossRef]
- Khan, M.; Jan, B.; Farman, H.; Ahmad, J.; Farman, H.; Jan, Z. Deep Learning Methods and Applications; Springer: Berlin/Heidelberg, Germany, 2019; pp. 31–42. [Google Scholar]
- Adhaityar, B.Y.; Sahara, D.P.; Pratama, C.; Wibowo, A.; Heliani, L.S. Multi-Target Regression Using Convolutional Neural Network-Random Forests (CNN-RF) for Early Earthquake Warning System. In Proceedings of the 2021 9th International Conference on Information and Communication Technology (ICoICT), Yogyakarta, Indonesia, 3–5 August 2021; pp. 31–36. [Google Scholar]
- Zhao, X.; Yu, B.; Liu, Y.; Chen, Z.; Li, Q.; Wang, C.; Wu, J. Estimation of poverty using random forest regression with multi-source data: A case study in Bangladesh. Remote Sens. 2019, 11, 375. [Google Scholar] [CrossRef]
- Costache, R.; Arabameri, A.; Moayedi, H.; Pham, Q.B.; Santosh, M.; Nguyen, H.; Pandey, M.; Pham, B.T. Flash-flood potential index estimation using fuzzy logic combined with deep learning neural network, naïve Bayes, XGBoost and classification and regression tree. Geocarto Int. 2022, 37, 6780–6807. [Google Scholar] [CrossRef]
- Fang, Z.; Wang, Y.; Peng, L.; Hong, H. Integration of convolutional neural network and conventional machine learning classifiers for landslide susceptibility mapping. Comput. Geosci. 2020, 139, 104470. [Google Scholar] [CrossRef]
- Zhou, X.; Lu, P.; Zheng, Z.; Tolliver, D.; Keramati, A. Accident prediction accuracy assessment for highway-rail grade crossings using random forest algorithm compared with decision tree. Reliab. Eng. Syst. Saf. 2020, 200, 106931. [Google Scholar] [CrossRef]
- Kwak, G.-H.; Park, C.-W.; Lee, K.-D.; Na, S.-I.; Ahn, H.-Y.; Park, N.-W. Potential of hybrid CNN-RF model for early crop mapping with limited input data. Remote Sens. 2021, 13, 1629. [Google Scholar] [CrossRef]
- Nijhawan, R.; Das, J.; Balasubramanian, R. A hybrid CNN+ random forest approach to delineate debris covered glaciers using deep features. J. Indian Soc. Remote Sens. 2018, 46, 981–989. [Google Scholar] [CrossRef]
- Bouyoucos, G.J. Hydrometer method improved for making particle size analyses of soils 1. Agron. J. 1962, 54, 464–465. [Google Scholar] [CrossRef]
- Fathololoumi, S.; Vaezi, A.R.; Alavipanah, S.K.; Ghorbani, A.; Saurette, D.; Biswas, A. Improved digital soil mapping with multitemporal remotely sensed satellite data fusion: A case study in Iran. Sci. Total Environ. 2020, 721, 137703. [Google Scholar] [CrossRef]
- Shahriari, M.; Delbari, M.; Afrasiab, P.; Pahlavan-Rad, M.R. Predicting regional spatial distribution of soil texture in floodplains using remote sensing data: A case of southeastern Iran. Catena 2019, 182, 104149. [Google Scholar] [CrossRef]
- Khanal, S.; Fulton, J.; Klopfenstein, A.; Douridas, N.; Shearer, S. Integration of high resolution remotely sensed data and machine learning techniques for spatial prediction of soil properties and corn yield. Comput. Electron. Agric. 2018, 153, 213–225. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, X.; Xu, M.; Shao, S.; Wang, X.; Liu, W.; Wu, D.; Ma, Y.; Bao, Y.; Zhang, X. Hyper-temporal remote sensing data in bare soil period and terrain attributes for digital soil mapping in the Black soil regions of China. Catena 2020, 184, 104259. [Google Scholar] [CrossRef]
- Forkuor, G.; Hounkpatin, O.K.; Welp, G.; Thiel, M. High resolution mapping of soil properties using remote sensing variables in south-western Burkina Faso: A comparison of machine learning and multiple linear regression models. PLoS ONE 2017, 12, e0170478. [Google Scholar] [CrossRef]
- Dharumarajan, S.; Hegde, R.; Singh, S. Spatial prediction of major soil properties using Random Forest techniques–A case study in semi-arid tropics of South India. Geoderma Reg. 2017, 10, 154–162. [Google Scholar] [CrossRef]
- Shafizadeh-Moghadam, H.; Minaei, F.; Talebi-khiyavi, H.; Xu, T.; Homaee, M. Synergetic use of multi-temporal Sentinel-1, Sentinel-2, NDVI, and topographic factors for estimating soil organic carbon. Catena 2022, 212, 106077. [Google Scholar] [CrossRef]
- Sahabiev, I.; Smirnova, E.; Giniyatullin, K. Spatial Prediction of Agrochemical Properties on the Scale of a Single Field Using Machine Learning Methods Based on Remote Sensing Data. Agronomy 2021, 11, 2266. [Google Scholar] [CrossRef]
- Razavi-Termeh, S.V.; Seo, M.; Sadeghi-Niaraki, A.; Choi, S.-M. Application of genetic algorithm in optimization parallel ensemble-based machine learning algorithms to flood susceptibility mapping using radar satellite imagery. Sci. Total Environ. 2023, 873, 162285. [Google Scholar] [CrossRef] [PubMed]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Razavi-Termeh, S.V.; Sadeghi-Niaraki, A.; Farhangi, F.; Choi, S.-M. COVID-19 risk mapping with considering socio-economic criteria using machine learning algorithms. Int. J. Environ. Res. Public Health 2021, 18, 9657. [Google Scholar] [CrossRef] [PubMed]
- Sahani, N.; Ghosh, T. GIS-based spatial prediction of recreational trail susceptibility in protected area of Sikkim Himalaya using logistic regression, decision tree and random forest model. Ecol. Inform. 2021, 64, 101352. [Google Scholar] [CrossRef]
- Farhangi, F.; Sadeghi-Niaraki, A.; Razavi-Termeh, S.V.; Choi, S.-M. Evaluation of tree-based machine learning algorithms for accident risk mapping caused by driver lack of alertness at a national scale. Sustainability 2021, 13, 10239. [Google Scholar] [CrossRef]
- Segal, M.R. Machine Learning Benchmarks and Random Forest Regression; Kluwer Academic Publisher: Dordrecht, The Netherlands, 2004. [Google Scholar]
- Gu, J.; Wang, Z.; Kuen, J.; Ma, L.; Shahroudy, A.; Shuai, B.; Liu, T.; Wang, X.; Wang, G.; Cai, J. Recent advances in convolutional neural networks. Pattern Recognit. 2018, 77, 354–377. [Google Scholar] [CrossRef]
- Li, Z.; Liu, F.; Yang, W.; Peng, S.; Zhou, J. A survey of convolutional neural networks: Analysis, applications, and prospects. IEEE Trans. Neural Netw. Learn. Syst. 2021, 33, 6999–7019. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Fang, Z.; Hong, H. Comparison of convolutional neural networks for landslide susceptibility mapping in Yanshan County, China. Sci. Total Environ. 2019, 666, 975–993. [Google Scholar] [CrossRef] [PubMed]
- Ng, W.; Minasny, B.; McBratney, A. Convolutional neural network for soil microplastic contamination screening using infrared spectroscopy. Sci. Total Environ. 2020, 702, 134723. [Google Scholar] [CrossRef]
- Zhang, Z.; Tian, J.; Huang, W.; Yin, L.; Zheng, W.; Liu, S. A haze prediction method based on one-dimensional convolutional neural network. Atmosphere 2021, 12, 1327. [Google Scholar] [CrossRef]
- Elbaz, K.; Shaban, W.M.; Zhou, A.; Shen, S.-L. Real time image-based air quality forecasts using a 3D-CNN approach with an attention mechanism. Chemosphere 2023, 333, 138867. [Google Scholar] [CrossRef]
- Razavi-Termeh, S.V.; Sadeghi-Niaraki, A.; Choi, S.-M. Spatial modeling of asthma-prone areas using remote sensing and ensemble machine learning algorithms. Remote Sens. 2021, 13, 3222. [Google Scholar] [CrossRef]
- Farahani, M.; Razavi-Termeh, S.V.; Sadeghi-Niaraki, A. A spatially based machine learning algorithm for potential mapping of the hearing senses in an urban environment. Sustain. Cities Soc. 2022, 80, 103675. [Google Scholar] [CrossRef]
- Taylor, K.E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. Atmos. 2001, 106, 7183–7192. [Google Scholar] [CrossRef]
- Potter, K.; Hagen, H.; Kerren, A.; Dannenmann, P. Methods for presenting statistical information: The box plot. In Proceedings of the VLUDS, 2006. pp. 97–106. Available online: https://sci.utah.edu/~kpotter/publications/potter-2006-MPSI.pdf (accessed on 20 July 2023).
- Lopez-del Rio, A.; Nonell-Canals, A.; Vidal, D.; Perera-Lluna, A. Evaluation of cross-validation strategies in sequence-based binding prediction using deep learning. J. Chem. Inf. Model. 2019, 59, 1645–1657. [Google Scholar] [CrossRef] [PubMed]
- Gallant, J.C.; Dowling, T.I. A multiresolution index of valley bottom flatness for mapping depositional areas. Water Resour. Res. 2003, 39, 1347. [Google Scholar] [CrossRef]
- Jones, E.J.; Filippi, P.; Wittig, R.; Fajardo, M.; Pino, V.; McBratney, A.B. Mapping soil slaking index and assessing the impact of management in a mixed agricultural landscape. Soil 2021, 7, 33–46. [Google Scholar] [CrossRef]
- Zhao, W.; Li, Z.-L. Sensitivity study of soil moisture on the temporal evolution of surface temperature over bare surfaces. Int. J. Remote Sens. 2013, 34, 3314–3331. [Google Scholar] [CrossRef]
- Şekertekin, A.; Kutoglu, Ş.; Kaya, S.; Marangoz, A. Analysing the effects of different land cover types on land surface temperature using satellite data. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, 40, 665–667. [Google Scholar] [CrossRef]
- Przybylek, P. Application of Near-Infrared Spectroscopy to Measure the Water Content in Liquid Dielectrics. Energies 2022, 15, 5907. [Google Scholar] [CrossRef]
- Casa, R.; Castaldi, F.; Pascucci, S.; Palombo, A.; Pignatti, S. A comparison of sensor resolution and calibration strategies for soil texture estimation from hyperspectral remote sensing. Geoderma 2013, 197, 17–26. [Google Scholar] [CrossRef]
- Taghdis, S.; Farpoor, M.H.; Mahmoodabadi, M. Pedological assessments along an arid and semi-arid transect using soil spectral behavior analysis. Catena 2022, 214, 106288. [Google Scholar] [CrossRef]
- Radočaj, D.; Jurišić, M.; Gašparović, M. The role of remote sensing data and methods in a modern approach to fertilization in precision agriculture. Remote Sens. 2022, 14, 778. [Google Scholar] [CrossRef]
- Kalambukattu, J.G.; Kumar, S.; Arya Raj, R. Digital soil mapping in a Himalayan watershed using remote sensing and terrain parameters employing artificial neural network model. Environ. Earth Sci. 2018, 77, 203. [Google Scholar] [CrossRef]
- Fang, Y.; Xu, L.; Wong, A.; Clausi, D.A. Multi-temporal landsat-8 images for retrieval and broad scale mapping of soil copper concentration using empirical models. Remote Sens. 2022, 14, 2311. [Google Scholar] [CrossRef]
- Duan, M.; Guo, Z.; Zhang, X.; Wang, C. Influences of different environmental covariates on county-scale soil type identification using remote sensing images. Ecol. Indic. 2022, 139, 108951. [Google Scholar] [CrossRef]
- Neinavaz, E.; Darvishzadeh, R.; Skidmore, A.K.; Abdullah, H. Integration of Landsat-8 thermal and visible-short wave infrared data for improving prediction accuracy of forest leaf area index. Remote Sens. 2019, 11, 390. [Google Scholar] [CrossRef]
- Kavitha, M.; Gayathri, R.; Polat, K.; Alhudhaif, A.; Alenezi, F. Performance evaluation of deep e-CNN with integrated spatial-spectral features in hyperspectral image classification. Measurement 2022, 191, 110760. [Google Scholar] [CrossRef]
- Yang, S.; Gu, L.; Li, X.; Jiang, T.; Ren, R. Crop classification method based on optimal feature selection and hybrid CNN-RF networks for multi-temporal remote sensing imagery. Remote Sens. 2020, 12, 3119. [Google Scholar] [CrossRef]
- Natras, R.; Soja, B.; Schmidt, M. Ensemble Machine Learning of Random Forest, AdaBoost and XGBoost for Vertical Total Electron Content Forecasting. Remote Sens. 2022, 14, 3547. [Google Scholar] [CrossRef]
- Li, S.; Han, Y.; Yao, X.; Yingchen, S.; Wang, J.; Zhao, Q. Electricity theft detection in power grids with deep learning and random forests. J. Electr. Comput. Eng. 2019, 2019, 4136874. [Google Scholar] [CrossRef]
- Knauer, U.; von Rekowski, C.S.; Stecklina, M.; Krokotsch, T.; Pham Minh, T.; Hauffe, V.; Kilias, D.; Ehrhardt, I.; Sagischewski, H.; Chmara, S. Tree species classification based on hybrid ensembles of a convolutional neural network (CNN) and random forest classifiers. Remote Sens. 2019, 11, 2788. [Google Scholar] [CrossRef]
- Li, Y.; Wang, W.; Wang, G.; Tan, Q. Actual evapotranspiration estimation over the Tuojiang River Basin based on a hybrid CNN-RF model. J. Hydrol. 2022, 610, 127788. [Google Scholar] [CrossRef]
Soil Texture | Clay (%) | Silt (%) | Sand (%) |
---|---|---|---|
Minimum | 0 | 0 | 0 |
Maximum | 44 | 80 | 58 |
Mean | 22.322 | 64.457 | 12.867 |
Standard deviation | 6.920 | 9.249 | 9.115 |
Soil Texture | Clay (%) | Silt (%) | Sand (%) |
---|---|---|---|
Minimum | 12 | 50 | 4 |
Maximum | 36 | 76 | 26 |
Mean | 22.182 | 65.74 | 11.056 |
Standard deviation | 4.199 | 4.567 | 3.705 |
Soil Texture | Effective Parameters | Number of Parameters |
---|---|---|
Clay | NDVI, Elevation, B7, B5, B1, B2, B3, B4, MRRTF, MRVBF, Rainfall, SI, CI, LST, Temp, Aspect, RI, TWI | 18 |
Silt | NDVI, Elevation, B7, B5, B3, B4, MRRTF, MRVBF, SI, BI, CLI, CI, Slope, EVI, DR, Aspect, RI, TWI | 18 |
Sand | NDVI, Elevation, B7, B5, B1, B2, B3, B4, Rainfall, SI, BI, CLI, MRRTF, MRVBF, CI, Slope, LST, DR | 18 |
Covariate Name | Definition | Reference |
---|---|---|
Coastal aerosol (B1) | 0.43–0.45 µm | [41] |
Blue (B2) | 0.45–0.51 µm | |
Green (B3) | 0.53–0.59 µm | |
Red (B4) | 0.64–0.67 µm | |
Near-infrared (B5) | 0.85–0.88 µm | |
Short-wave infrared-2 (B7) | 2.11–2.29 µm | |
Brightness Index (BI) | [42,43] | |
Clay Index (CLI) | [22] | |
Coloration Index (CI) | [42,44] | |
Enhanced Vegetation Index (EVI) | [45] | |
Land Surface Temperature (LST) | ||
Normalized Difference Vegetation Index (NDVI) | [46] | |
Redness Index (RI) | [44] | |
Saturation Index (SI) | [47] |
Filter/Number of Trees | Filter Size | Activation Function | CNN | RF | CNN-RF | |||
---|---|---|---|---|---|---|---|---|
Layers | L1 | Convolutional | 32 | 3 | ReLU | ✓ | - | ✓ |
L2 | Flatten | - | - | - | ✓ | - | ✓ | |
L3 | Fully connected | 64 | 2 | ReLU | ✓ | - | ✓ | |
L4 | Fully connected | 1 | - | - | ✓ | - | ✓ | |
L5 | RF | 100 | - | - | - | ✓ | ✓ | |
Other parameters | Batch_size | - | - | - | 10 | - | 10 | |
Epochs | - | - | - | 20 | - | 20 | ||
Optimizer | - | - | - | Adam | - | Adam | ||
Loss | - | - | - | MSE | - | MSE | ||
min_samples_split | - | - | - | - | 2 | 2 | ||
max_features | - | - | - | - | ‘auto’ | ‘auto’ | ||
max_depth | - | - | - | - | ‘None’ | ‘None’ | ||
bootstrap | - | - | - | - | ‘True’ | ‘True’ |
Properties | Models | Train | Test | Runtime (s) | ||||
---|---|---|---|---|---|---|---|---|
MSE (%2) | RMSE (%) | MSE (%2) | RMSE (%) | |||||
Clay | CNN | 0.00016 | 0.013 | 0.981 | 0.00038 | 0.019 | 0.966 | 2.67 |
RF | 0.00079 | 0.028 | 0.910 | 0.00407 | 0.064 | 0.636 | 0.23 | |
CNN-RF | 0.00005 | 0.007 | 0.995 | 0.00010 | 0.010 | 0.982 | 0.21 | |
Sand | CNN | 0.00029 | 0.017 | 0.928 | 0.00046 | 0.022 | 0.908 | 1.36 |
RF | 0.00034 | 0.018 | 0.917 | 0.00135 | 0.037 | 0.683 | 0.44 | |
CNN-RF | 0.00003 | 0.006 | 0.992 | 0.00007 | 0.008 | 0.976 | 0.29 | |
Silt | CNN | 0.00024 | 0.016 | 0.920 | 0.00040 | 0.020 | 0.913 | 2.73 |
RF | 0.00022 | 0.015 | 0.935 | 0.00060 | 0.024 | 0.676 | 0.196 | |
CNN-RF | 0.00004 | 0.006 | 0.987 | 0.00009 | 0.010 | 0.980 | 0.215 |
Properties | Models | MSE (%) |
---|---|---|
Clay | CNN | 0.076 |
RF | 0.0679 | |
CNN-RF | 0.1027 | |
Sand | CNN | 0.095 |
RF | 0.094 | |
CNN-RF | 0.078 | |
Silt | CNN | 0.178 |
RF | 0.137 | |
CNN-RF | 0.569 |
Agricultural Areas | Forest Land | ||||||||
---|---|---|---|---|---|---|---|---|---|
Properties | Models | Min | Max | Mean | Std | Min | Max | Mean | Std |
Clay | CNN | 0.00 | 47.24 | 32.13 | 2.73 | 0.00 | 41.72 | 31.61 | 2.00 |
RF | 0.00 | 30.06 | 25.52 | 1.42 | 0.00 | 29.02 | 23.10 | 1.04 | |
CNN-RF | 0.00 | 33.80 | 30.99 | 2.19 | 0.00 | 33.80 | 30.77 | 1.69 | |
Sand | CNN | 3.3 | 28.7 | 27.6 | 2.4 | 3.20 | 28.70 | 25.50 | 3.33 |
RF | 0.00 | 17.47 | 11.70 | 0.46 | 0.00 | 18.30 | 10.64 | 0.80 | |
CNN-RF | 0.00 | 22.93 | 5.07 | 1.32 | 0.00 | 23.41 | 4.15 | 0.47 | |
Silt | CNN | 0.00 | 72.21 | 49.26 | 3.71 | 0.00 | 78.80 | 64.72 | 4.31 |
RF | 0.00 | 67.96 | 63.04 | 1.45 | 0.00 | 68.23 | 63.63 | 2.59 | |
CNN-RF | 0.00 | 72.71 | 52.86 | 2.09 | 0.00 | 74.73 | 65.01 | 4.32 |
Residential Areas | Uncovered Plains | ||||||||
---|---|---|---|---|---|---|---|---|---|
Properties | Models | Min | Max | Mean | Std | Min | Max | Mean | Std |
Clay | CNN | 0.00 | 40.11 | 32.51 | 2.37 | 0.00 | 43.90 | 30.64 | 3.18 |
RF | 0.00 | 29.92 | 26.87 | 1.26 | 0.00 | 29.75 | 25.01 | 1.46 | |
CNN-RF | 0.00 | 33.80 | 31.37 | 1.92 | 0.00 | 33.80 | 29.78 | 2.68 | |
Sand | CNN | 3.34 | 28.70 | 26.27 | 2.77 | 3.20 | 28.70 | 24.21 | 2.97 |
RF | 0.00 | 15.77 | 11.68 | 0.36 | 0.00 | 16.72 | 11.65 | 0.57 | |
CNN-RF | 0.00 | 21.26 | 4.47 | 0.83 | 0.00 | 21.25 | 4.88 | 1.11 | |
Silt | CNN | 0.00 | 69.74 | 47.45 | 2.81 | 0.00 | 74.17 | 49.61 | 5.07 |
RF | 0.00 | 66.81 | 62.82 | 0.84 | 0.00 | 67.77 | 63.53 | 1.45 | |
CNN-RF | 0.00 | 69.78 | 52.41 | 1.05 | 0.00 | 72.68 | 53.36 | 2.62 |
Water Bodies | Range Land | ||||||||
---|---|---|---|---|---|---|---|---|---|
Properties | Models | Min | Max | Mean | Std | Min | Max | Mean | Std |
Clay | CNN | 0.00 | 40.70 | 32.67 | 2.47 | 0.00 | 42.78 | 30.04 | 2.92 |
RF | 0.00 | 29.91 | 26.18 | 1.32 | 0.00 | 30.02 | 24.04 | 1.62 | |
CNN-RF | 0.00 | 33.80 | 31.40 | 1.95 | 0.00 | 33.80 | 29.31 | 2.45 | |
Sand | CNN | 5.50 | 28.70 | 28.06 | 1.48 | 3.20 | 24.34 | 22.34 | 4.77 |
RF | 0.00 | 13.40 | 11.68 | 0.37 | 0.00 | 18.21 | 11.03 | 0.99 | |
CNN-RF | 0.00 | 11.84 | 5.76 | 1.82 | 0.00 | 23.33 | 4.44 | 0.88 | |
Silt | CNN | 0.00 | 63.94 | 48.44 | 3.00 | 0.00 | 77.30 | 55.87 | 6.64 |
RF | 0.00 | 66.94 | 62.79 | 1.23 | 0.00 | 68.41 | 64.23 | 1.92 | |
CNN-RF | 0.00 | 63.94 | 52.43 | 1.29 | 0.00 | 75.00 | 57.33 | 5.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hosseini, F.S.; Seo, M.B.; Razavi-Termeh, S.V.; Sadeghi-Niaraki, A.; Jamshidi, M.; Choi, S.-M. Geospatial Artificial Intelligence (GeoAI) and Satellite Imagery Fusion for Soil Physical Property Predicting. Sustainability 2023, 15, 14125. https://doi.org/10.3390/su151914125
Hosseini FS, Seo MB, Razavi-Termeh SV, Sadeghi-Niaraki A, Jamshidi M, Choi S-M. Geospatial Artificial Intelligence (GeoAI) and Satellite Imagery Fusion for Soil Physical Property Predicting. Sustainability. 2023; 15(19):14125. https://doi.org/10.3390/su151914125
Chicago/Turabian StyleHosseini, Fatemeh Sadat, Myoung Bae Seo, Seyed Vahid Razavi-Termeh, Abolghasem Sadeghi-Niaraki, Mohammad Jamshidi, and Soo-Mi Choi. 2023. "Geospatial Artificial Intelligence (GeoAI) and Satellite Imagery Fusion for Soil Physical Property Predicting" Sustainability 15, no. 19: 14125. https://doi.org/10.3390/su151914125