Incorporating Social and Policy Drivers into Land-Use and Land-Cover Projection
Abstract
:1. Introduction
2. Background
2.1. Drivers of Land-Use Change in U.S. Urban Areas
2.2. Public Policy Drivers and Constraints on LULC
2.3. Integrating Social, Economic, and Policy Factors into LULC Modeling
3. Study Area
4. Methods
4.1. Land-Use and Land-Cover Projection
4.2. Constraints and Incentives
4.3. Future Land Planning Scenarios
4.4. Baseline
4.5. Urbanization
4.6. Conservation
4.7. Maximum Forest Protection
4.8. Model Validation
5. Results
5.1. Land-Use Transitions
5.2. Validation Results
5.3. Projected LULC 2040
6. Discussion
7. Conclusions
8. Limitations and Uncertainties
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lambin, E.F.; Turner, B.L.; Geist, H.J.; Agbola, S.B.; Angelsen, A.; Bruce, J.W.; Coomes, O.T.; Dirzo, R.; Fischer, G.; Folke, C.; et al. The Causes of Land-Use and Land-Cover Change: Moving beyond the Myths. Glob. Environ. Chang. 2001, 11, 261–269. [Google Scholar] [CrossRef]
- Nabuurs, G.-J.; Mrabet, R.; Abu Hatab, A.; Bustamante, M.; Clark, H.; Havlík, P.; House, J.; Mbow, C.; Ninan, K.N.; Popp, A.; et al. Agriculture, Forestry and Other Land Uses (AFOLU). In Climate Change 2022—Mitigation of Climate Change; Cambridge University Press: Cambridge, UK, 2023; pp. 747–860. [Google Scholar] [CrossRef]
- Sohl, T.L.; Sayler, K.L.; Bouchard, M.A.; Reker, R.R.; Friesz, A.M.; Bennett, S.L.; Sleeter, B.M.; Sleeter, R.R.; Wilson, T.; Soulard, C.; et al. Spatially Explicit Modeling of 1992–2100 Land Cover and Forest Stand Age for the Conterminous United States. Ecol. Appl. 2014, 24, 1015–1036. [Google Scholar] [CrossRef] [PubMed]
- Anley, M.A.; Minale, A.S.; Ayehu, N.H.; Gashaw, T. Assessing the Impacts of Land Use/Cover Changes on Ecosystem Service Values in Rib Watershed, Upper Blue Nile Basin, Ethiopia. Trees For. People 2022, 7, 100212. [Google Scholar] [CrossRef]
- Manley, K.; Nyelele, C.; Egoh, B.N. A Review of Machine Learning and Big Data Applications in Addressing Ecosystem Service Research Gaps. Ecosyst. Serv. 2022, 57, 101478. [Google Scholar] [CrossRef]
- Feng, Y.; Liu, Y. A Heuristic Cellular Automata Approach for Modelling Urban Land-Use Change Based on Simulated Annealing. Int. J. Geogr. Inf. Sci. 2013, 27, 449–466. [Google Scholar] [CrossRef]
- Sun, X.; John, C.C.; Li, F.; Lu, Z.; Dou, X.; Crittenden, J.C.; Li, F.; Lu, Z.; Dou, X. Urban Expansion Simulation and the Spatio-Temporal Changes of Ecosystem Services, a Case Study in Atlanta Metropolitan Area, USA. Sci. Total Environ. 2018, 622–623, 974–987. [Google Scholar] [CrossRef] [PubMed]
- Rahnama, M.R. Forecasting Land-Use Changes in Mashhad Metropolitan Area Using Cellular Automata and Markov Chain Model for 2016–2030. Sustain. Cities Soc. 2021, 64, 102548. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, C.; Allen, J.M.; Li, W.; Boyer, M.A.; Segerson, K.; Silander, J.A. Analysis and Prediction of Land Use Changes Related to Invasive Species and Major Driving Forces in the State of Connecticut. Land 2016, 5, 25. [Google Scholar] [CrossRef]
- Benez-Secanho, F.J.; Dwivedi, P. Analyzing the Impacts of Land Use Policies on Selected Ecosystem Services in the Upper Chattahoochee Watershed, Georgia, United States. Environ. Res. Commun. 2021, 3, 115001. [Google Scholar] [CrossRef]
- Hyandye, C.; Martz, L.W. A Markovian and Cellular Automata Land-Use Change Predictive Model of the Usangu Catchment. Int. J. Remote Sens. 2017, 38, 64–81. [Google Scholar] [CrossRef]
- Sharma, R.; Nehren, U.; Rahman, S.A.; Meyer, M.; Rimal, B.; Seta, G.A.; Baral, H. Modeling Land Use and Land Cover Changes and Their Effects on Biodiversity in Central Kalimantan, Indonesia. Land 2018, 7, 57. [Google Scholar] [CrossRef]
- Small, R.A.; Lewis, D.J. Forest Land Conversion, Ecosystem Services, and Economic Issues for Policy: A Review. In Forest Fragmentation and Land Conversion: Analysis of Select Issues; Nova Science Publishers, Inc.: New York, NY, USA, 2010; pp. 1–44. [Google Scholar]
- Metzger, M.J.; Rounsevell, M.D.A.; Acosta-Michlik, L.; Leemans, R.; Schröter, D. The Vulnerability of Ecosystem Services to Land Use Change. Agric. Ecosyst. Environ. 2006, 114, 69–85. [Google Scholar] [CrossRef]
- Nowak, D.J.; Greenfield, E.J.; Hoehn, R.E.; Lapoint, E. Carbon Storage and Sequestration by Trees in Urban and Community Areas of the United States. Environ. Pollut. 2013, 178, 229–236. [Google Scholar] [CrossRef] [PubMed]
- Van Meijl, H.; Van Rheenen, T.; Tabeau, A.; Eickhout, B. The Impact of Different Policy Environments on Agricultural Land Use in Europe. Agric. Ecosyst. Environ. 2006, 114, 21–38. [Google Scholar] [CrossRef]
- Turner, M.G.; Gardner, R.H. Landscape Ecology in Theory and Practice; Springer: New York, NY, USA, 2015; Volume 117. [Google Scholar] [CrossRef]
- Levins, R. The Strategy of Model Building in Population Biology. Am. Sci. 1966, 54, 421–431. [Google Scholar]
- Barrington-Leigh, C.; Millard-Ball, A. A Century of Sprawl in the United States. Proc. Natl. Acad. Sci. USA 2015, 112, 8244–8249. [Google Scholar] [CrossRef]
- Carpenter, A.; Peponis, J. Poverty and Connectitvity. J. Space Syntax 2010, 1, 108–120. [Google Scholar]
- Woodruff, S.C.; BenDor, T.K. Ecosystem Services in Urban Planning: Comparative Paradigms and Guidelines for High Quality Plans. Landsc. Urban Plan. 2016, 152, 90–100. [Google Scholar] [CrossRef]
- Worboys, G.L.; Lockwood, M.; Kothari, A.; Feary, S.; Crawhall, N. Protected Area Governance and Management; Worboys, G.L., Lockwood, M., Kothari, A., Feary, S., Pulsford, I., Eds.; ANU Press: Canberra, Australia, 2015. [Google Scholar]
- Oliver, C.D.; Nassar, N.T.; Lippke, B.R.; McCarter, J.B. Carbon, Fossil Fuel, and Biodiversity Mitigation With Wood and Forests. J. Sustain. For. 2014, 33, 248–275. [Google Scholar] [CrossRef]
- Jones, J.; Almeida, A.; Cisneros, F.; Iroumé, A.; Jobbágy, E.; Lara, A.; de Paula Lima, W.; Little, C.; Llerena, C.; Silveira, L.; et al. Forests and Water in South America. Hydrol. Process. 2017, 31, 972–980. [Google Scholar] [CrossRef]
- Moore, R.; Williams, T.; Rodriguez, E. Hepinstall-Cymmerman. Quantifying the Value of Non-Timber Ecosystem Services from Georgia’s Private Forests; Georgia Forestry Foundation: Forsyth, GA, USA, 2011. [Google Scholar]
- Deal, R.L.; Cochran, B.; LaRocco, G. Bundling of Ecosystem Services to Increase Forestland Value and Enhance Sustainable Forest Management. For. Policy Econ. 2012, 17, 69–76. [Google Scholar] [CrossRef]
- Sohl, T.L.; Wimberly, M.C.; Radeloff, V.C.; Theobald, D.M.; Sleeter, B.M. Divergent Projections of Future Land Use in the United States Arising from Different Models and Scenarios. Ecol. Modell. 2016, 337, 281–297. [Google Scholar] [CrossRef]
- Wang, P.; Poe, G.L.; Wolf, S.A. Payments for Ecosystem Services and Wealth Distribution. Ecol. Econ. 2017, 132, 63–68. [Google Scholar] [CrossRef]
- Abram, N.K.; Meijaard, E.; Ancrenaz, M.; Runting, R.K.; Wells, J.A.; Gaveau, D.; Pellier, A.S.; Mengersen, K. Spatially Explicit Perceptions of Ecosystem Services and Land Cover Change in Forested Regions of Borneo. Ecosyst. Serv. 2014, 7, 116–127. [Google Scholar] [CrossRef]
- Dadashpoor, H.; Azizi, P.; Moghadasi, M. Land Use Change, Urbanization, and Change in Landscape Pattern in a Metropolitan Area. Sci. Total Environ. 2019, 655, 707–719. [Google Scholar] [CrossRef]
- Deng, X.; Li, Z.; Gibson, J. A Review on Trade-off Analysis of Ecosystem Services for Sustainable Land-Use Management. J. Geogr. Sci. 2016, 26, 953–968. [Google Scholar] [CrossRef]
- Meyer, W.B.; Turner, B.L. Changes in Land Use and Land Cover: A Global Perspective; The Press Syndicate of the University of Cambridge: New York, NY, USA; Melbourne, Australia, 1994; Volume GF3. [Google Scholar]
- van Barneveld, K.; Quinlan, M.; Kriesler, P.; Junor, A.; Baum, F.; Chowdhury, A.; Junankar, P.; Clibborn, S.; Flanagan, F.; Wright, C.F.; et al. The COVID-19 Pandemic: Lessons on Building More Equal and Sustainable Societies. Econ. Labour Relat. Rev. 2020, 31, 133–157. [Google Scholar] [CrossRef]
- Mishra, N.P.; Das, S.S.; Yadav, S.; Khan, W.; Afzal, M.; Alarifi, A.; Kenawy, E.R.; Ansari, M.T.; Hasnain, M.S.; Nayak, A.K. Global Impacts of Pre- and Post-COVID-19 Pandemic: Focus on Socio-Economic Consequences. Sens. Int. 2020, 1, 100042. [Google Scholar] [CrossRef]
- U.S. Fish and Wildlife Service Interior Department. Endangered and Threatened Wildlife and Plants; Revision of the Regulations for Listing Species and Designating Critical Habitat; U.S. Fish and Wildlife Service Interior: Washington, DC, USA, 2020; Volume 85, pp. 55398–55407. Available online: https://www.govinfo.gov/content/pkg/FR-2020-09-08/pdf/2020-19577.pdf (accessed on 11 September 2022).
- Aguilar, F.X.; Kelly, M.C. US Family Forest Management Coupling Natural and Human Systems: Role of Markets and Public Policy Instruments. Landsc. Urban Plan. 2019, 188, 43–53. [Google Scholar] [CrossRef]
- Shanafelt, D.W.; Caputo, J.; Abildtrup, J.; Butler, B.J. If A Tree Falls in A Forest, Why Do People Care? An Analysis of Private Family Forest Owners’ Reasons for Owning Forest in the United States National Woodland Owner Survey. Small-Scale For. 2023, 22, 303–321. [Google Scholar] [CrossRef]
- Poudyal, N.C.; Butler, B.J.; Hodges, D.G. Spatial Analysis of Family Forest Landownership in the Southern United States. Landsc. Urban Plan. 2019, 188, 163–170. [Google Scholar] [CrossRef]
- Butler, B.J.; Butler, S.M.; Caputo, J.; Dias, J.; Robillard, A.; Sass, E.M. Family Forest Ownerships of the United States, 2018: Results from the USDA Forest Service, National Woodland Owner Survey; General Technical Report; Northern Research Station: Madison, WI, USA, 2021; Volume 199, 52p. [Google Scholar] [CrossRef]
- Pontius, R.G.; Boersma, W.; Castella, J.-C.C.; Clarke, K.; Nijs, T.; Dietzel, C.; Duan, Z.; Fotsing, E.; Goldstein, N.; Kok, K.; et al. Comparing the Input, Output, and Validation Maps for Several Models of Land Change. Ann. Reg. Sci. 2008, 42, 11–37. [Google Scholar] [CrossRef]
- Lambin, E.F. Modelling and Monitoring Land-Cover Change Processes in Tropical Regions. Prog. Phys. Geogr. 1997, 21, 375–393. [Google Scholar] [CrossRef]
- Radeloff, V.C.; Nelson, E.; Plantinga, A.J.; Lewis, D.J.; Helmers, D.; Lawler, J.J.; Withey, J.C.; Beaudry, F.; Martinuzzi, S.; Butsic, V.; et al. Economic-Based Projections of Future Land Use in the Conterminous United States under Alternative Policy Scenarios. Ecol. Appl. 2012, 22, 1036–1049. [Google Scholar] [CrossRef]
- Dang, A.N.; Kawasaki, A. Integrating Biophysical and Socio-Economic Factors for Land-Use and Land-Cover Change Projection in Agricultural Economic Regions. Ecol. Modell. 2017, 344, 29–37. [Google Scholar] [CrossRef]
- Lamichhane, S.; Shakya, N.M. Land Use Land Cover (LULC) Change Projection in Kathmandu Valley Using the CLUE-S Model. J. Adv. Coll. Eng. Manag. 2021, 6, 221–233. [Google Scholar] [CrossRef]
- Veldkamp, A.; Lambin, E.F. Predicting Land-Use Change. Agric. Ecosyst. Environ. 2001, 85, 1–6. [Google Scholar] [CrossRef]
- United States Census Bureau. American Community Survey. Available online: https://www.census.gov/ (accessed on 8 December 2022).
- Liu, T.; Yang, X. Monitoring Land Changes in an Urban Area Using Satellite Imagery, GIS and Landscape Metrics. Appl. Geogr. 2015, 56, 42–54. [Google Scholar] [CrossRef]
- Governor’s Office of Planning and Budget. Long-Term Population Projections. Available online: https://opb.georgia.gov/census-data/population-projections (accessed on 21 May 2023).
- Viger, R.J.; Hay, L.E.; Markstrom, S.L.; Jones, J.W.; Buell, G.R. Hydrologic Effects of Urbanization and Climate Change on the Flint River Basin, Georgia. Earth Interact. 2011, 15, 1–25. [Google Scholar] [CrossRef]
- Rugel, K.; Golladay, S.W.; Jackson, C.R.; Rasmussen, T.C. Delineating Groundwater/Surface Water Interaction in a Karst Watershed: Lower Flint River Basin, Southwestern Georgia, USA. J. Hydrol. Reg. Stud. 2016, 5, 1–19. [Google Scholar] [CrossRef]
- Emanuel, B.; Rogers, G. Running Dry: Challenges and Opportunities in Restoring Healthy Flows in Georgia’s Upper Flint River Basin; American Rivers: Washington, DC, USA, 2012. [Google Scholar]
- Georgia Water Planning, U.F.R. at a G. Georgia Water Planning, Upper Flint Region at a Glance. Georgia Water Planning, Upper Flint Region at a Glance. Available online: https://waterplanning.georgia.gov/water-planning-regions/upper-flint-water-planning-region (accessed on 20 August 2023).
- U.S. Geological Survey. Original Product Resolution (OPR) Source Digital Elevation Models (DEMs). Available online: https://pubs.usgs.gov/publication/fs20193032 (accessed on 27 February 2021).
- PRISM Climate Group. PRISM Spatial Climate Datasets for the Conterminous United States. Available online: https://prism.oregonstate.edu/recent/ (accessed on 21 February 2023).
- U.S. Geological Survey. National Land Cover Database (NLCD) 2019 Land Cover Conterminous United States. Available online: https://www.sciencebase.gov/catalog/item/5f21cef582cef313ed940043 (accessed on 27 February 2021).
- Eastman, J.R. TerrSet: Geospatial Monitoring and Modeling Software. 2015. Available online: https://clarklabs.org/wp-content/uploads/2016/10/Terrset-Manual.pdf (accessed on 17 August 2022).
- Eastman, J.R.; Toledano, J. A Short Presentation of the Land Change Modeler (LCM). In Geomatic Approaches for Modeling Land Change Scenarios; Springer: Cham, Switzerland, 2018; pp. 499–505. [Google Scholar] [CrossRef]
- Gomes, E.; Inácio, M.; Bogdzevič, K.; Kalinauskas, M.; Karnauskaitė, D.; Pereira, P. Future Land-Use Changes and Its Impacts on Terrestrial Ecosystem Services: A Review. Sci. Total Environ. 2021, 781, 146716. [Google Scholar] [CrossRef] [PubMed]
- Kumar, K.S.; Kumari, K.P.; Bhaskar, P.U. Application of Markov Chain & Cellular Automata Based Model for Prediction of Urban Transitions. In 2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT); IEEE: Piscataway, NJ, USA, 2016; pp. 4007–4012. [Google Scholar] [CrossRef]
- Mostafa, E.; Li, X.; Sadek, M. Urbanization Trends Analysis Using Hybrid Modeling of Fuzzy Analytical Hierarchical Process-Cellular Automata-Markov Chain and Investigating Its Impact on Land Surface Temperature over Gharbia City, Egypt. Remote Sens. 2023, 15, 843. [Google Scholar] [CrossRef]
- Ayele, G.; Hayicho, H.; Alemu, M. Land Use Land Cover Change Detection and Deforestation Modeling: In Delomena District of Bale Zone, Ethiopia. J. Environ. Prot. 2019, 10, 532–561. [Google Scholar] [CrossRef]
- Gupta, R.; Sharma, L.K. Efficacy of Spatial Land Change Modeler as a Forecasting Indicator for Anthropogenic Change Dynamics over Five Decades: A Case Study of Shoolpaneshwar Wildlife Sanctuary, Gujarat, India. Ecol. Indic. 2020, 112, 106171. [Google Scholar] [CrossRef]
- Pradhan, R.P.; Arvin, M.B.; Nair, M. Urbanization, Transportation Infrastructure, ICT, and Economic Growth: A Temporal Causal Analysis. Cities 2021, 115, 103213. [Google Scholar] [CrossRef]
- Gaur, S.; Singh, R. A Comprehensive Review on Land Use/Land Cover (LULC) Change Modeling for Urban Development: Current Status and Future Prospects. Sustainability 2023, 15, 903. [Google Scholar] [CrossRef]
- Peterson, G.D.; Beard, T.D., Jr.; Beisner, B.E.; Bennett, E.M.; Carpenter, S.R.; Cumming, G.; Dent, C.L.; Havlicek, T.D. Assessing Future Ecosystem Services: A Case Study of the Northern Highlands Lake District, Wisconsin. Conserv. Ecol. 2003, 7, art1. [Google Scholar] [CrossRef]
- Verburg, P.H.; Eickhout, B.; Meijl, H. A Multi-Scale, Multi-Model Approach for Analyzing the Future Dynamics of European Land Use. Ann. Reg. Sci. 2008, 42, 57–77. [Google Scholar] [CrossRef]
- Nelson, E.; Mendoza, G.; Regetz, J.; Polasky, S.; Tallis, H.; Cameron, D.R.; Chan, K.M.A.; Daily, G.C.; Goldstein, J.; Kareiva, P.M.; et al. Modeling Multiple Ecosystem Services, Biodiversity Conservation, Commodity Production, and Tradeoffs at Landscape Scales. Front. Ecol. Environ. 2009, 7, 4–11. [Google Scholar] [CrossRef]
- Gomes, L.C.; Bianchi, F.J.J.A.; Cardoso, I.M.; Schulte, R.P.O.; Arts, B.J.M.; Fernandes Filho, E.I. Land Use and Land Cover Scenarios: An Interdisciplinary Approach Integrating Local Conditions and the Global Shared Socioeconomic Pathways. Land Use Policy 2020, 97, 104723. [Google Scholar] [CrossRef]
- Hulme, M.; Mitchell, J.; Ingram, W.; Lowe, J.; Johns, T.; New, M.; Viner, D. Climate Change Scenarios for Global Impacts Studies. Glob. Environ. Chang. 1999, 9 (Suppl. S1), S3–S19. [Google Scholar] [CrossRef]
- Pontius, R.G.; Millones, M. Death to Kappa: Birth of Quantity Disagreement and Allocation Disagreement for Accuracy Assessment. Int. J. Remote Sens. 2011, 32, 4407–4429. [Google Scholar] [CrossRef]
- Pontius, R.G. Quantification Error versus Location Error in Comparison of Categorical Maps. Photogramm. Eng. Remote Sens. 2000, 66, 1011–1016. [Google Scholar]
- Brovelli, M.A.; Molinari, M.E.; Hussein, E.; Chen, J.; Li, R. The First Comprehensive Accuracy Assessment of Globel and 30 at a National Level: Methodology and Results. Remote Sens. 2015, 7, 4191–4212. [Google Scholar] [CrossRef]
- Pickard, B.; Gray, J.; Meentemeyer, R. Comparing Quantity, Allocation and Configuration Accuracy of Multiple Land Change Models. Land 2017, 6, 52. [Google Scholar] [CrossRef]
- Warrens, M.J. Properties of the Quantity Disagreement and the Allocation Disagreement. Int. J. Remote Sens. 2015, 36, 1439–1446. [Google Scholar] [CrossRef]
- Jin, S.; Homer, C.; Yang, L.; Danielson, P.; Dewitz, J.; Li, C.; Zhu, Z.; Xian, G.; Howard, D. Overall Methodology Design for the United States National Land Cover Database 2016 Products. Remote Sens. 2019, 11, 2971. [Google Scholar] [CrossRef]
- Homer, C.; Dewitz, J.; Jin, S.; Xian, G.; Costello, C.; Danielson, P.; Gass, L.; Funk, M.; Wickham, J.; Stehman, S.; et al. Conterminous United States Land Cover Change Patterns 2001–2016 from the 2016 National Land Cover Database. ISPRS J. Photogramm. Remote Sens. 2020, 162, 184–199. [Google Scholar] [CrossRef]
- Heris, M.P.; Bagstad, K.J.; Troy, A.R.; O’neil-Dunne, J.P.M. Assessing the Accuracy and Potential for Improvement of the National Land Cover Database’s Tree Canopy Cover Dataset in Urban Areas of the Conterminous United States. Remote Sens. 2022, 14, 1219. [Google Scholar] [CrossRef]
- Wickham, J.; Stehman, S.V.; Sorenson, D.G.; Gass, L.; Dewitz, J.A. Thematic Accuracy Assessment of the NLCD 2016 Land Cover for the Conterminous United States. Remote Sens. Environ. 2021, 257, 112357. [Google Scholar] [CrossRef]
- Puhlick, J.; Woodall, C.; Weiskittel, A. Implications of Land-Use Change on Forest Carbon Stocks in the Eastern United States. Environ. Res. Lett. 2017, 12, 024011. [Google Scholar] [CrossRef]
- Tu, J. Spatial Variations in the Relationships between Land Use and Water Quality across an Urbanization Gradient in the Watersheds of Northern Georgia, USA. Environ. Manag. 2013, 51, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Woodall, C.W.; Walters, B.F.; Coulston, J.W.; D’Amato, A.W.; Domke, G.M.; Russell, M.B.; Sowers, P.A. Monitoring Network Confirms Land Use Change Is a Substantial Component of the Forest Carbon Sink in the Eastern United States. Sci. Rep. 2015, 5, 17028. [Google Scholar] [CrossRef] [PubMed]
- Sleeter, B.M.; Sohl, T.L.; Bouchard, M.A.; Reker, R.R.; Soulard, C.E.; Acevedo, W.; Griffith, G.E.; Sleeter, R.R.; Auch, R.F.; Sayler, K.L.; et al. Scenarios of Land Use and Land Cover Change in the Conterminous United States: Utilizing the Special Report on Emission Scenarios at Ecoregional Scales. Glob. Environ. Chang. 2012, 22, 896–914. [Google Scholar] [CrossRef]
- Fitts, L.A.; Russell, M.B.; Domke, G.M.; Knight, J.K. Modeling Land Use Change and Forest Carbon Stock Changes in Temperate Forests in the United States. Carbon Balance Manag. 2021, 16, 20. [Google Scholar] [CrossRef]
- Wegener, M. Land-Use Transport Interaction Models. In Handbook of Regional Science; Fischer, M.M., Nijkamp, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2021; pp. 229–246. [Google Scholar] [CrossRef]
- Lomax, N.; Smith, A.P.; Archer, L.; Ford, A.; Virgo, J. An Open-Source Model for Projecting Small Area Demographic and Land-Use Change. Geogr. Anal. 2022, 54, 599–622. [Google Scholar] [CrossRef]
- Wear, D.N. Forecasts of County-Level Land Uses under Three Future Scenarios: A Technical Document Supporting the Forest Service 2010 RPA Assessment. Gen. Tech. Rep. 2011, SRS-141, 41. [Google Scholar]
- Jenerette, G.D.; Potere, D. Global Analysis and Simulation of Land-Use Change Associated with Urbanization. Landsc. Ecol. 2010, 25, 657–670. [Google Scholar] [CrossRef]
- Lee, S.-H.H.; Yigitcanlar, T.; Han, J.-H.H.; Leem, Y.-T.T. Ubiquitous Urban Infrastructure: Infrastructure Planning and Development in Korea. Innov. Manag. Policy Pract. 2008, 10, 282–292. [Google Scholar] [CrossRef]
- Butler, B.J.; Caputo, J.; Robillard, A.L.; Sass, E.M.; Sutherland, C. One Size Does Not Fit All: Relationships between Size of Family Forest Holdings and Owner Attitudes and Behaviors. J. For. 2021, 119, 28–44. [Google Scholar] [CrossRef]
- Kilgore, M.A.; Snyder, S.A. Exploring the Relationship between Parcelization Metrics and Natural Resource Managers’ Perceptions of Forest Land Parcelization Intensity. Landsc. Urban Plan. 2016, 149, 43–48. [Google Scholar] [CrossRef]
- Mehmood, S.R.; Zhang, D. Forest Parcelization in the United States, A Study of Contributing Factors. J. For. 2001, 99, 30–34. [Google Scholar]
- Henson, P.; White, R.; Thompson, S.P. Improving Implementation of the Endangered Species Act: Finding Common Ground Through Common Sense. Bioscience 2018, 68, 861–872. [Google Scholar] [CrossRef]
- Rissman, A.R.; Lozier, L.; Comendant, T.; Kareiva, P.; Kiesecker, J.M.; Shaw, M.R.; Merenlender, A.M. Conservation Easements: Biodiversity Protection and Private Use. Conserv. Biol. 2007, 21, 709–718. [Google Scholar] [CrossRef] [PubMed]
- Land Trust Alliance. Available online: https://landtrustalliance.org/take-action/conserve-your-land/how-to-conserve-your-land (accessed on 11 August 2022).
- Georgia Department of Community Affairs. Available online: https://www.dca.ga.gov/local-government-assistance/planning/regional-planning/regional-commissions (accessed on 11 August 2022).
- Mertz, O.; Müller, D.; Sikor, T.; Hett, C.; Heinimann, A.; Castella, J.-C.; Lestrelin, G.; Ryan, C.M.; Reay, D.S.; Schmidt-Vogt, D.; et al. The Forgotten D: Challenges of Addressing Forest Degradation in Complex Mosaic Landscapes under REDD+. Geogr. Tidsskr. J. Geogr. 2012, 112, 63–76. [Google Scholar] [CrossRef]
- Abbasnezhad, B.; Abrams, J.B. Testing the Applicability and Credibility of the High Conservation Value Forest (HCVF) Toolkit: A Systematic Global Review. Small-Scale For. 2022, 21, 531–551. [Google Scholar] [CrossRef]
Contributing Factors | Scenarios | ||||
---|---|---|---|---|---|
Business as Usual | Conservation | Urbanization | Maximum Forest Protection | ||
Incentives | Population growth rate | x1 | x1 | x2 | x1 |
Median household income | x1 | x1 | x2 | x1 | |
Regional commission development plan (2040) | x1 | x1 | x1 | x1 | |
Broadband internet coverage | x1 | x1 | x2 | x1 | |
Parcelization | x1 | x1 | x2 | x1 | |
Constraints | Presence of species listed under the Endangered Species Act | x1 | x2 | x1 | 0 |
Wetland and riparian zone protection | x1 | 0 | x1 | 0 | |
Protection of HCVFs | x1 | x2 | x1 | 0 | |
Regional commission conservation plan (2040) | 0 | 0 | x1 | 0 | |
Established conservation easements | 0 | 0 | 0 | 0 |
LULC Class | Loss | Gain | Net Change | Net Change |
---|---|---|---|---|
Area (ha) | Area (ha) | Area (ha) | % | |
Water | −405 | 710 | 305 | 4 |
Urban | −23 | 10,643 | 10,620 | 12 |
Barren | −638 | 1154 | 516 | 18 |
Deciduous/Mixed Forest | −26,176 | 15,884 | −10,292 | −6 |
Evergreen Forest | −36,381 | 31,980 | −4401 | −3 |
Shrubland/Herbaceous | −37,582 | 44,160 | 6578 | 9 |
Hay/Pasture | −8863 | 4198 | −4665 | −6 |
Cultivated Crop | −1215 | 1243 | 28 | 0 |
Woody Wetlands | −488 | 1800 | 1311 | 2 |
Water | Urban | Barren | Deciduous/Mixed Forest | Evergreen Forest | Shrubland/Herbaceous | Hay/Pasture | Cultivated Crop | Woody Wetlands | |
---|---|---|---|---|---|---|---|---|---|
Water | 0 | 3 | −5 | −1 | 0 | −14 | −1 | 0 | −16 |
Urban | −3 | 0 | −17 | −292 | −254 | −169 | −397 | −40 | −7 |
Barren | 5 | 17 | 0 | −6 | −33 | −38 | −2 | −1 | 0 |
Deciduous/Mixed Forest | 1 | 292 | 6 | 0 | 556 | 208 | −45 | 28 | 99 |
Evergreen Forest | 0 | 254 | 33 | −556 | 0 | 829 | −86 | −13 | 27 |
Shrubland/Herbaceous | 14 | 169 | 38 | −208 | −829 | 0 | 19 | 47 | 19 |
Hay/Pasture | 1 | 397 | 2 | 45 | 86 | −19 | 0 | −10 | 16 |
Cultivated Crop | 0 | 40 | 1 | −28 | 13 | −47 | 10 | 0 | 7 |
Woody Wetlands | 16 | 7 | 0 | −99 | −27 | −19 | −16 | −7 | 0 |
Total | 34 | 1180 | 57 | −114,356 | −489 | 731 | −581 | 3 | 146 |
LULC | Kappa | QD | AD | Total Disagreement |
---|---|---|---|---|
Water | 0.99 | 0.00 | 0.01 | 0.01 |
Urban | 0.98 | 0.01 | 0.02 | 0.02 |
Barren | 0.63 | 0.25 | 0.12 | 0.37 |
Deciduous/Mixed Forest | 0.95 | 0.00 | 0.05 | 0.05 |
Evergreen Forest | 0.90 | 0.01 | 0.09 | 0.10 |
Shrubland/Herbaceous | 0.66 | 0.00 | 0.33 | 0.33 |
Hay/Pasture | 0.99 | 0.00 | 0.01 | 0.01 |
Cultivated Crop | 0.99 | 0.00 | 0.01 | 0.01 |
Woody Wetlands | 1.00 | 0.00 | 0.00 | 0.00 |
Total | 0.95 | 0.27 | 0.64 | 0.91 |
LULC | Kappa | QD | AD | Total Disagreement |
---|---|---|---|---|
Water | 0.99 | 0.00 | 0.01 | 0.01 |
Urban | 0.98 | 0.02 | 0.00 | 0.02 |
Barren | 0.63 | 0.30 | 0.07 | 0.37 |
Deciduous/Mixed Forest | 0.97 | 0.00 | 0.03 | 0.03 |
Evergreen Forest | 0.95 | 0.03 | 0.05 | 0.08 |
Shrubland/Herbaceous | 0.74 | 0.05 | 0.20 | 0.25 |
Hay/Pasture | 1.00 | 0.00 | 0.00 | 0.01 |
Cultivated Crop | 1.00 | 0.01 | 0.01 | 0.01 |
Woody Wetlands | 1.00 | 0.00 | 0.00 | 0.00 |
Total | 0.97 | 0.41 | 0.37 | 0.78 |
NLCD 2001 | NLCD 2019 | Projected LULC 2040 | ||||
---|---|---|---|---|---|---|
Business as Usual | Urbanization | Conservation | Maximum Forest Protection | |||
Water | 7552 | 8171 | 8310 | 8310 | 8310 | 8310 |
Urban | 73,393 | 86,548 | 101,039 | 104,202 | 99,334 | 91,805 |
Barren | 2537 | 2862 | 3257 | 3232 | 2875 | 2758 |
Deciduous/Mixed Forest | 191,147 | 181,369 | 171,426 | 170,689 | 173,193 | 175,422 |
Evergreen Forest | 183,350 | 170,777 | 172,109 | 171,067 | 172,621 | 176,177 |
Shrubland/Herbaceous | 51,519 | 70,888 | 74,356 | 73,747 | 74,973 | 75,830 |
Hay/Pasture | 94,288 | 83,108 | 72,528 | 72,278 | 73,176 | 73,176 |
Cultivated Crop | 20,501 | 20,722 | 20,922 | 20,922 | 20,963 | 20,964 |
Woody Wetlands | 56,780 | 56,621 | 56,618 | 56,618 | 56,623 | 56,624 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abbasnezhad, B.; Abrams, J.B.; Hepinstall-Cymerman, J. Incorporating Social and Policy Drivers into Land-Use and Land-Cover Projection. Sustainability 2023, 15, 14270. https://doi.org/10.3390/su151914270
Abbasnezhad B, Abrams JB, Hepinstall-Cymerman J. Incorporating Social and Policy Drivers into Land-Use and Land-Cover Projection. Sustainability. 2023; 15(19):14270. https://doi.org/10.3390/su151914270
Chicago/Turabian StyleAbbasnezhad, Behnoosh, Jesse B. Abrams, and Jeffrey Hepinstall-Cymerman. 2023. "Incorporating Social and Policy Drivers into Land-Use and Land-Cover Projection" Sustainability 15, no. 19: 14270. https://doi.org/10.3390/su151914270
APA StyleAbbasnezhad, B., Abrams, J. B., & Hepinstall-Cymerman, J. (2023). Incorporating Social and Policy Drivers into Land-Use and Land-Cover Projection. Sustainability, 15(19), 14270. https://doi.org/10.3390/su151914270