Moderating the Synergies between Business Intelligence and Strategic Foresight: Navigating Uncertainty for Future Success through Knowledge Management
Abstract
:1. Introduction
Research Problem
2. Theoretical Foundation and Hypothesis Development
2.1. Business Intelligence
2.2. Strategic Foresight
2.3. Impact of Business Intelligence on Strategic Foresight
2.4. Knowledge Management
2.5. The Moderating Role of Knowledge Management on the Relationship of Business Intelligence and Strategic Foresight
3. Methodology
3.1. Population and Sample
3.2. Instrument Development and Design
4. Data Analysis and Results
4.1. Respondents’ Demographics
4.2. Measurement Model
4.3. Hypothesis Testing and Structural Model
5. Discussion
6. Research Contributions and Implications
7. Recommendations and Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pannone, A. Accounting and pricing for the telecommunications industry: An operational approach. Ind. Corp. Change 2001, 10, 453–480. [Google Scholar] [CrossRef]
- Jordan Investment Commission. ICT-BPO Sector. 2015. Available online: http://www.jic.gov.jo/contents/ICT-BPO_Sector.aspx (accessed on 16 March 2016).
- Falatouri, T.; Darbanian, F.; Brandtner, P.; Udokwu, C. Predictive analytics for demand forecasting–a comparison of SARIMA and LSTM in retail SCM. Procedia Comput. Sci. 2022, 200, 993–1003. [Google Scholar] [CrossRef]
- Rohrbeck, R.; Battistella, C.; Huizingh, E. Corporate foresight: An emerging field with a rich tradition. Technol. Forecast. Soc. Change 2015, 101, 1–9. [Google Scholar] [CrossRef]
- Azeroual, O.; Theel, H. The effects of using business intelligence systems on an excellence management and decision-making process by start-up companies: A case study. Int. J. Manag. Sci. Bus. Adm. 2019, 4, 3040. [Google Scholar] [CrossRef]
- Lopes, A.S.; Sargento, A.; Farto, J. Training in Digital Skills—The Perspective of Workers in Public Sector. Sustainability 2023, 15, 10577. [Google Scholar] [CrossRef]
- Sujatha, R.; Krishnaveni, R. Knowledge creating ba as a determinant of work performance of employees: An empirical analysis among pump manufacturing firms in South India. Asia Pac. Manag. Rev. 2018, 23, 45–52. [Google Scholar] [CrossRef]
- Pauget, B.; Dammak, A. The implementation of the Internet of Things: What impact on organizations? Technol. Forecast. Soc. Change 2019, 140, 140–146. [Google Scholar] [CrossRef]
- Migdadi, M.M. Knowledge management processes, innovation capability, and organizational performance. Int. J. Product. Perform. Manag. 2022, 71, 182–210. [Google Scholar] [CrossRef]
- Zighan, S.; Abualqumboz, M.; Dwaikat, N.; Alkalha, Z. The role of entrepreneurial orientation in developing SMEs resilience capabilities throughout COVID-19. Int. J. Entrep. Innov. 2022, 23, 227–239. [Google Scholar] [CrossRef]
- Ode, E.; Ayavoo, R. The mediating role of knowledge application in the relationship between knowledge management practices and firm innovation. J. Innov. Knowl. 2020, 5, 210–218. [Google Scholar] [CrossRef]
- Rafiuddin, A.; Gaytan, J.C.T.; Mohnot, R.; Sisodia, G.S.; Ahmed, G. Growth evaluation of fintech connectedness with innovative thematic indices-an evidence through wavelet analysis. J. Open Innov. Technol. Mark. Complex. 2023, 9, 100023. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, N. Knowledge sharing, innovation, and firm performance. Expert Syst. Appl. 2012, 39, 8899–8908. [Google Scholar] [CrossRef]
- Sallos, M.P.; Garcia-Perez, A.; Bedford, D.; Orlando, B. Strategy and organizational cybersecurity: A knowledge-problem perspective. J. Intellect. Cap. 2019, 20, 581–597. [Google Scholar] [CrossRef]
- Boe-Lillegraven, S.; Monterde, S. Exploring the cognitive value of technology foresight: The case of the Cisco Technology Radar. Technol. Forecast. Soc. Change 2015, 101, 62–82. [Google Scholar] [CrossRef]
- Bouaoula, W.; Belgoum, F.; Shaikh, A.; Taleb-Berrouane, M.; Bazan, C. The impact of business intelligence through knowledge management. Bus. Inf. Rev. 2019, 36, 130–140. [Google Scholar] [CrossRef]
- Trieu, V.H.; Burton-Jones, A.; Green, P.; Cockcroft, S. Applying and extending the theory of effective use in a business intelligence context. MIS Q. Manag. Inf. Syst. 2022, 46, 645–678. [Google Scholar] [CrossRef]
- Rehman, S.U.; Bresciani, S.; Ashfaq, K.; Alam, G.M. Intellectual capital, knowledge management, and competitive advantage: A resource orchestration perspective. J. Knowl. Manag. 2022, 26, 1705–1731. [Google Scholar] [CrossRef]
- Canongia, C. Synergy between competitive intelligence, knowledge management, and technological foresight as a strategic model of prospecting—The use of biotechnology in the development of drugs against breast cancer. Biotechnol. Adv. 2007, 25, 57–74. [Google Scholar] [CrossRef]
- Venkitachalam, K.; Willmott, H. Strategic knowledge management Insights and pitfalls. Int. J. Inf. Manag. 2017, 37, 313–316. [Google Scholar] [CrossRef]
- Cammarano, A.; Varriale, V.; Michelino, F.; Caputo, M. Employing online big data and patent statistics to examine the relationship between the end Product’s perceived quality and components’ technological features. Technol. Soc. 2023, 73, 102231. [Google Scholar] [CrossRef]
- Al-Gasawneh, J.A.; Al Khoja, B.; Al-Qeed, M.A.; Nusairat, N.M.; Hammouri, Q.; Anuar, M.M. Mobile-customer relationship management and its effect on post-purchase behavior: The moderating of perceived ease of use and perceived usefulness. Int. J. Data Netw. Sci. 2022, 6, 439–448. [Google Scholar] [CrossRef]
- Kaivo-oja, J.; Laureus, T. Corporate knowledge management, foresight tools, primary economically affecting disruptive technologies, corporate technological foresight challenges 2008–2016, and the most important technology trends for the year 2017. In Knowledge Management in Organizations; Communications in Computer and Information Science; Springer: Cham, Switzerland, 2017; Volume 731, pp. 239–253. [Google Scholar]
- Charina, A.; Kurnia, G.; Mulyana, A.; Mizuno, K. Sustainable Education and Open Innovation for Small Industry Sustainability Post COVID-19 Pandemic in Indonesia. J. Open Innov. Technol. Mark. Complex. 2022, 8, 215. [Google Scholar] [CrossRef]
- Nusairat, N.; Al-Gasawneh, J.; Aloqool, A.; Alzubi, K.; Akhorshaideh, A.; Joudeh, J.; Ibrahim, H. The relationship between Internet of things and search engine optimization in Jordanian Tele-Communication Companies: The mediating role of user behavior. Int. J. Data Netw. Sci. 2021, 5, 163–172. [Google Scholar] [CrossRef]
- Mhlanga, D. Artificial intelligence in the industry 4.0, and its impact on poverty, innovation, infrastructure development, and the sustainable development goals: Lessons from emerging economies? Sustainability 2021, 13, 5788. [Google Scholar] [CrossRef]
- Anderson, J.C.; Gerbing, D.W. Structural equation modeling in practice: A review and recommended two-step approach. Psychol. Bull. 1988, 103, 411. [Google Scholar] [CrossRef]
- Andreeva, T.; Kianto, A. Knowledge processes, knowledge-intensity, and innovation: A moderated mediation analysis. J. Knowl. Manag. 2011, 15, 1016–1034. [Google Scholar] [CrossRef]
- Chen, Y.; Lin, Z. Business intelligence capabilities and firm performance: A study in China. Int. J. Inf. Manag. 2021, 57, 102232. [Google Scholar] [CrossRef]
- Ratcliffe, J. Property futures—The art and science of strategic foresight. J. Prop. Invest. Financ. 2020, 38, 483–498. [Google Scholar] [CrossRef]
- Chopra, M.; Saini, N.; Kumar, S.; Varma, A.; Mangla, S.K.; Lim, W.M. Past, present, and future of knowledge management for business sustainability. J. Clean. Prod. 2021, 328, 129592. [Google Scholar] [CrossRef]
- Pouru, L.; Dufva, M.; Niinisalo, T. Creating organizational futures knowledge in Finnish companies. Technol. Forecast. Soc. Change 2019, 140, 84–91. [Google Scholar] [CrossRef]
- Habegger, B. Strategic foresight in public policy: Reviewing the experiences of the U.K., Singapore, and the Netherlands. Futures 2010, 42, 49–58. [Google Scholar] [CrossRef]
- Nascimento, L.D.S.; Reichert, F.M.; Janissek-Muniz, R.; Zawislak, P.A. Dynamic interactions among knowledge management, strategic foresight and emerging technologies. J. Knowl. Manag. 2021, 25, 275–297. [Google Scholar] [CrossRef]
- Albrecht, K. Corporate Radar: Tracking the Forces That Are Shaping Your Business; AMACOM: New York, NY, USA, 2000. [Google Scholar]
- Tapinos, E.; Pyper, N. Forward-looking analysis: Investigating how individuals ‘do’ foresight and make sense of the future. Technol. Forecast. Soc. Change 2018, 126, 292–302. [Google Scholar] [CrossRef]
- Burt, G.; Nair, A.K. Rigidities of imagination in scenario planning: Strategic foresight through Unlearning. Technol. Forecast. Soc. Change 2020, 153, 119927. [Google Scholar] [CrossRef]
- Ahmad, A.; Madi, Y.; Abuhashesh, M.; Nusairat, N.M. The knowledge, attitude, and practice of the adoption of green fashion innovation. J. Open Innov. Technol. Mark. Complex. 2020, 6, 107. [Google Scholar] [CrossRef]
- Fleisher, C.S.; Bensoussan, B.E. Strategic and Competitive Analysis: Methods and Techniques for Analyzing Business Competition; Prentice Hall: Hoboken, NJ, USA, 2003. [Google Scholar]
- Wu, Y.; Huang, H.; Wu, N.; Wang, Y.; Bhuiyan, M.Z.A.; Wang, T. An incentive-based protection and recovery strategy for secure big data in social networks. Inf. Sci. 2020, 508, 79–91. [Google Scholar] [CrossRef]
- Hunt, S.D.; Madhavaram, S. Adaptive marketing capabilities, dynamic capabilities, and renewal competences: The “outside vs. inside” and “static vs. dynamic” controversies in strategy. Ind. Mark. Manag. 2020, 89, 129–139. [Google Scholar] [CrossRef]
- Sánchez Ruiz, L.M.; Moll-López, S.; Moraño-Fernández, J.A.; Llobregat-Gómez, N. B-learning and technology: Enablers for university education resilience. An experience case under COVID-19 in Spain. Sustainability 2021, 13, 3532. [Google Scholar] [CrossRef]
- Yaseen, Z.M.; Jaafar, O.; Deo, R.C.; Kisi, O.; Adamowski, J.; Quilty, J.; El-Shafie, A. Stream-flow forecasting using extreme learning machines: A case study in a semi-arid region in Iraq. J. Hydrol. 2016, 542, 603–614. [Google Scholar] [CrossRef]
- Ahmad, N.; Lodhi, M.S.; Zaman, K.; Naseem, I. Knowledge management: A gateway for organizational performance. J. Knowl. Econ. 2017, 8, 859–876. [Google Scholar] [CrossRef]
- Yang, Q.; Lee, Y.-C. What Drives the Digital Customer Experience and Customer Loyalty in Mobile Short-Form Video Shopping? Evidence from Douyin (TikTok). Sustainability 2022, 14, 10890. [Google Scholar] [CrossRef]
- Akroush, M.N.; Al-Mohammad, S.M. The effect of marketing knowledge management on organizational performance: An empirical investigation of the telecommunications organizations in Jordan. Int. J. Emerg. Mark. 2010, 5, 38–77. [Google Scholar] [CrossRef]
- Hanandeh, A.; Altaher, A.; Halim, M.; Rezk, W.; Mahfoudh, N.; Hammouri, Q.; Darawsheh, S. The effects of digital transformation, digital leadership, and entrepreneurial motivation on business decision making and business process performance: Evidence from greater Amman municipality. Int. J. Data Netw. Sci. 2023, 7, 575–582. [Google Scholar] [CrossRef]
- Al-Tit, A.A.; Al-Ayed, S.; Alhammadi, A.; Hunitie, M.; Alsarayreh, A.; Albassam, W. The Impact of Employee Development Practices on Human Capital and Social Capital: The Mediating Contribution of Knowledge Management. J. Open Innov. Technol. Mark. Complex. 2022, 8, 218. [Google Scholar] [CrossRef]
- Salisu, I.; Bin Mohd Sappri, M.; Bin Omar, M.F. The adoption of business intelligence systems in small and medium enterprises in the healthcare sector: A systematic literature review. Cogent Bus. Manag. 2021, 8, 1935663. [Google Scholar] [CrossRef]
- Schmidt, J.M. Policy, planning, intelligence, and foresight in government organizations. Foresight 2015, 17, 489–511. [Google Scholar] [CrossRef]
- Bouhalleb, A.; Tapinos, E. The impact of scenario planning on entrepreneurial orientation. Technol. Forecast. Soc. Change 2023, 187, 122191. [Google Scholar] [CrossRef]
- Chaithanapat, P.; Punnakitikashem, P.; Oo, N.C.K.K.; Rakthin, S. Relationships among knowledge-oriented leadership, customer knowledge management, innovation quality, and firm performance in SMEs. J. Innov. Knowl. 2022, 7, 100162. [Google Scholar] [CrossRef]
- Wagner, M.; Stanbury, P.; Dietrich, T.; Döring, J.; Ewert, J.; Foerster, C.; Freund, M.; Friedel, M.; Kammann, C.; Koch, M.; et al. Developing a Sustainability Vision for the Global Wine Industry. Sustainability 2023, 15, 10487. [Google Scholar] [CrossRef]
- Dufva, M.; Ahlqvist, T. Knowledge creation dynamics in foresight: A knowledge typology and exploratory method to analyse foresight workshops. Technol. Forecast. Soc. Change 2015, 94, 251–268. [Google Scholar] [CrossRef]
- Hitt, M.A.; Keats, B.W.; DeMarie, S.M. Navigating in the new competitive landscape: Building strategic flexibility and competitive advantage in the 21st century. Acad. Manag. Perspect. 1998, 12, 22–42. [Google Scholar] [CrossRef]
- Djuricic, K.; Bootz, J.P. Effectuation and foresight–An exploratory study of the implicit links between the two concepts. Technol. Forecast. Soc. Change 2019, 140, 115–128. [Google Scholar] [CrossRef]
- Amniattalab, A.; Ansari, R. The effect of strategic foresight on competitive advantage with the mediating role of organizational ambidexterity. Int. J. Innov. Manag. 2016, 20, 1650040. [Google Scholar] [CrossRef]
- Pietruszka-Ortyl, A.; Ćwiek, M.; Ziębicki, B.; Wójcik-Karpacz, A. Organizational culture as a prerequisite for knowledge transfer among IT professionals: The case of energy companies. Energies 2021, 14, 8139. [Google Scholar] [CrossRef]
- Bootz, J.P.; Durance, P.; Monti, R. Foresight and knowledge management. New developments in theory and practice. Technol. Forecast. Soc. Change 2019, 140, 80–83. [Google Scholar] [CrossRef]
- O’Regan, N.; Ghobadian, A. The importance of capabilities for strategic direction and performance. Manag. Decis. 2004, 42, 292–313. [Google Scholar] [CrossRef]
- Payal, R.; Ahmed, S.; Debnath, R.M. Impact of knowledge management on organizational performance: An application of structural equation modeling. VINE J. Inf. Knowl. Manag. Syst. 2019, 49, 510–530. [Google Scholar] [CrossRef]
- Pu, T.; Huang, C.; Yang, J.; Huang, M. Transcending Time and Space: Survey Methods, Uncertainty, and Development in Human Migration Prediction. Sustainability 2023, 15, 10584. [Google Scholar] [CrossRef]
- Roehrich, J.K.; Davies, A.; Frederiksen, L.; Sergeeeva, N. Management innovation in complex products and systems: The case of integrated project teams. Ind. Mark. Manag. 2019, 79, 84–93. [Google Scholar] [CrossRef]
- Von der Gracht, H.A.; Bañuls, V.A.; Turoff, M.; Skulimowski, A.M.; Gordon, T.J. Foresight support systems: The future role of ICT for foresight. Technol. Forecast. Soc. Change 2015, 97, 1–6. [Google Scholar] [CrossRef]
- Wieder, B.; Ossimitz, M.L. The impact of Business Intelligence on the quality of decision making–a mediation model. ProcediaComput. Sci. 2015, 64, 1163–1171. [Google Scholar] [CrossRef]
- Emami, A.; Welsh, D.H.; Davari, A.; Rezazadeh, A. Examining the relationship between strategic alliances and the performance of small entrepreneurial firms in telecommunications. Int. Entrep. Manag. J. 2022, 18, 637–662. [Google Scholar] [CrossRef]
- Atlam, E.S.; Ewis, A.; Abd El-Raouf, M.M.; Ghoneim, O.; Gad, I. A new approach to identifying the psychological impact of COVID-19 on university students’ academic performance. Alex. Eng. J. 2022, 61, 5223–5233. [Google Scholar] [CrossRef]
- Kuosa, T. Towards Strategic Intelligence: Foresight, Intelligence, and Policy-Making; Dynamic Futures: London, UK, 2014. [Google Scholar]
- Alegre, J.; Sengupta, K.; Lapiedra, R. Knowledge management and innovation performance in a high-tech SMEs industry. Int. Small Bus. J. 2013, 31, 454–470. [Google Scholar] [CrossRef]
- Kutieshat, R.; Farmanesh, P. The impact of new human resource management practices on innovation performance during the COVID-19 crisis: A new perception on enhancing the educational sector. Sustainability 2022, 14, 2872. [Google Scholar] [CrossRef]
- Fink, L.; Yogev, N.; Even, A. Business intelligence and organizational learning: An empirical investigation of value creation processes. Inf. Manag. 2017, 54, 38–56. [Google Scholar] [CrossRef]
- Tamayo-Torres, J.; Roehrich, J.K.; Lewis, M.A. Ambidexterity, performance and environmental dynamism. Int. J. Oper. Prod. Manag. 2017, 37, 282–299. [Google Scholar] [CrossRef]
- Shujahat, M.; Sousa, M.J.; Hussain, S.; Nawaz, F.; Wang, M.; Umer, M. Translating the impact of knowledge management processes into knowledge-based innovation: The neglected and mediating role of knowledge-worker productivity. J. Bus. Res. 2019, 94, 442–450. [Google Scholar] [CrossRef]
- Gilad, B.; Gilad, T. The Business Intelligence System: A New Tool for Competitive Advantage; AMACOM: New York, NY, USA, 1988. [Google Scholar]
- Minghui, Z.; Hanrui, Y.; Yao, P.; Lingling, Z. Literature Review and Practice Comparison of Technology Foresight. Procedia Comput. Sci. 2022, 199, 837–844. [Google Scholar] [CrossRef]
- Haoxiang, W.; Smys, S. Big data analysis and perturbation using data mining algorithm. J. Soft Comput. Paradig. (JSCP) 2021, 3, 19–28. [Google Scholar] [CrossRef]
- Haarhaus, T.; Liening, A. Building dynamic capabilities to cope with environmental uncertainty: The role of strategic foresight. Technol. Forecast. Soc. Change 2020, 155, 120033. [Google Scholar] [CrossRef]
- Cornell, C.; Larcker, D.F. Evaluating structural equation models with unobservable variables and measurement error. J. Mark. Res. 1981, 18, 39–50. [Google Scholar] [CrossRef]
- Kline, R.B. Principles and Practice of Structural Equation Modeling, 2nd ed.; Guilford: New York, NY, USA, 2005. [Google Scholar]
- Hair, J.F.; Black, W.C.; Babin, B.J.; Anderson, R.E.; Tatham, R. Multivariate Data Analysis, 7th ed.; Pearson Publishers: Hoboken, NJ, USA, 2010. [Google Scholar]
- Garvin, D.A.; Edmondson, A.C.; Gino, F. Is yours a learning organization? Harv. Bus. Rev. 2008, 86, 109. [Google Scholar] [PubMed]
- Hayes, A.F. Introduction to Mediation, Moderation, and Conditional Process Analysis: A Regression-Based Approach; Guilford publications: New York, NY, USA, 2017. [Google Scholar]
- Byrne, B.M. Structural Equation Modeling with AMOS: Basic Concepts, Applications, and Programming; Lawrence Erlbaum Associates Publishers: Mahwah, NJ, USA, 2001. [Google Scholar]
Variable | Category | Count | % |
---|---|---|---|
Gender | Female | 120 | 39.1 |
Male | 187 | 60.9 | |
Total | 307 | 100 | |
Age | <30 | 32 | 10.4 |
30–34 | 105 | 34.2 | |
35–39 | 104 | 33.9 | |
40–44 | 54 | 17.6 | |
>45 | 12 | 3.9 | |
Total | 307 | 100 | |
Educational level | Bachelor | 228 | 74.3 |
Diploma | 8 | 2.6 | |
Higher Diploma | 12 | 3.9 | |
Masters | 57 | 18.6 | |
Ph.D. | 2 | 0.7 | |
Total | 307 | 100 | |
Nature of work | Department or unit director | 12 | 3.9 |
Expert in the department | 79 | 25.7 | |
General Manager/Assistant General Manager | 26 | 8.5 | |
Senior of the department | 140 | 45.6 | |
Team leaders of the department | 50 | 16.3 | |
Total | 307 | 100 | |
Experience | <5 years | 97 | 31.6 |
5–9 years | 148 | 48.2 | |
10–14 years | 36 | 11.7 | |
>15 years | 26 | 8.5 | |
Total | 307 | 100 |
Variables | Items | Factor | |||||
---|---|---|---|---|---|---|---|
Code | Mean | Sd | Loadings | CA | CR | AVE | |
Business Intelligence | O1.1 | 4.03 | 0.68 | 0.739 | 0.77 | 0.78 | 0.57 |
O1.2 | 4.13 | 0.64 | 0.829 | ||||
O1.3 | 4.12 | 0.70 | 0.746 | ||||
O1.4 | 4.03 | 0.70 | 0.739 | ||||
O1.5 | 4.09 | 0.66 | 0.708 | ||||
DM.1 | 4.12 | 0.63 | 0.717 | ||||
DM.2 | 4.01 | 0.68 | 0.713 | ||||
DM.3 | 4.06 | 0.65 | 0.886 | ||||
DM.4 | 3.98 | 0.73 | 0.729 | ||||
DM.5 | 3.96 | 0.66 | 0.704 | ||||
DW.1 | 4.06 | 0.62 | 0.844 | ||||
DW.2 | 4.04 | 0.58 | 0.728 | ||||
DW.3 | 4.07 | 0.62 | 0.753 | ||||
DW.4 | 4.06 | 0.65 | 0.760 | ||||
DW.5 | 4.10 | 0.63 | 0.716 | ||||
Knowledge Management | KG.1 | 4.01 | 0.70 | 0.749 | 0.79 | 0.80 | 0.59 |
KG.2 | 3.99 | 0.69 | 0.885 | ||||
KG.3 | 3.96 | 0.66 | 0.751 | ||||
KG.4 | 3.98 | 0.68 | 0.739 | ||||
KG.5 | 3.99 | 0.65 | 0.722 | ||||
KS.1 | 4.03 | 0.68 | 0.753 | ||||
KS.2 | 4.03 | 0.70 | 0.719 | ||||
KS.3 | 3.61 | 0.90 | 0.729 | ||||
KS.4 | 3.65 | 0.98 | 0.730 | ||||
KS.5 | 3.97 | 0.66 | 0.787 | ||||
KD.1 | 3.92 | 0.65 | 0.716 | ||||
KD.2 | 4.01 | 0.63 | 0.748 | ||||
KD.3 | 3.98 | 0.61 | 0.818 | ||||
KD.4 | 3.93 | 0.62 | 0.761 | ||||
KD.5 | 3.85 | 0.74 | 0.724 | ||||
Method Sophistication | MS.1 | 4.02 | 0.71 | 0.819 | 0.74 | 0.75 | 0.59 |
MS.2 | 3.96 | 0.68 | 0.875 | ||||
MS.3 | 3.95 | 0.67 | 0.841 | ||||
MS.4 | 3.97 | 0.69 | 0.748 | ||||
MS.5 | 3.93 | 0.66 | 0.832 | ||||
People and Networks | PN.1 | 4.02 | 0.62 | 0.812 | 0.79 | 0.80 | 0.55 |
PN.2 | 4.09 | 0.70 | 0.819 | ||||
PN.3 | 3.79 | 0.90 | 0.718 | ||||
PN.4 | 3.78 | 0.98 | 0.725 | ||||
PN.5 | 3.65 | 0.66 | 0.767 | ||||
Organization | O.1 | 3.97 | 0.66 | 0.724 | 0.80 | 0.87 | 0.56 |
O.2 | 4.06 | 0.67 | 0.767 | ||||
O.3 | 3.93 | 0.64 | 0.828 | ||||
O.4 | 3.91 | 0.63 | 0.752 | ||||
O.5 | 3.87 | 0.72 | 0.714 |
Variables | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
| 1.00 | ||||
| 0.37 | 1.00 | |||
| 0.46 | 0.35 | 1.00 | ||
| 0.44 | 0.42 | 0.36 | 1.00 | |
| 0.40 | 0.37 | 0.39 | 0.43 | 1.00 |
Variables | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
| 0.57 | ||||
| 0.14 | 0.59 | |||
| 0.21 | 0.12 | 0.59 | ||
| 0.19 | 0.17 | 0.13 | 0.56 | |
| 0.16 | 0.14 | 0.15 | 0.18 | 0.55 |
Chi sq (df) | Chi sq/df | RMSEA | GFI | CFI | NFI | IFI |
---|---|---|---|---|---|---|
52.95 * (28) | 1.76 | 0.058 | 0.942 | 0.941 | 0.902 | 0.952 |
Hypotheses | Impact Direction | Β | p | Hypothesis Result | ||
---|---|---|---|---|---|---|
H1.1 | BI | ---> | Method Sophistication | 0.65 | Supported | |
H1.2 | BI | ---> | People and Networks | 0.58 | Supported | |
H1.3 | BI | ---> | Organization | 0.47 | Supported |
Hypothesis | Indirect (Moderated) Effect | Estimated Coefficients | S.E. | P | R | Hypothesis Result |
---|---|---|---|---|---|---|
H2.1 | Moderated effect (BI - KM) ---> Method Sophistication | 0.658 | 0.21 | 0.000 | 0.305 | Supported |
H2.2 | Moderated effect (BI - KM) ---> People and Networks | 0.469 | 0.32 | 0.000 | 0.305 | Supported |
H2.3 | Moderated effect (BI - KM) ---> Organization | 0.551 | 0.23 | 0.000 | 0.239 | Supported |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hijazin, A.; Tamayo-Torres, J.; Nusairat, N. Moderating the Synergies between Business Intelligence and Strategic Foresight: Navigating Uncertainty for Future Success through Knowledge Management. Sustainability 2023, 15, 14341. https://doi.org/10.3390/su151914341
Hijazin A, Tamayo-Torres J, Nusairat N. Moderating the Synergies between Business Intelligence and Strategic Foresight: Navigating Uncertainty for Future Success through Knowledge Management. Sustainability. 2023; 15(19):14341. https://doi.org/10.3390/su151914341
Chicago/Turabian StyleHijazin, Areej, Javier Tamayo-Torres, and Nawras Nusairat. 2023. "Moderating the Synergies between Business Intelligence and Strategic Foresight: Navigating Uncertainty for Future Success through Knowledge Management" Sustainability 15, no. 19: 14341. https://doi.org/10.3390/su151914341
APA StyleHijazin, A., Tamayo-Torres, J., & Nusairat, N. (2023). Moderating the Synergies between Business Intelligence and Strategic Foresight: Navigating Uncertainty for Future Success through Knowledge Management. Sustainability, 15(19), 14341. https://doi.org/10.3390/su151914341