The Impact of the Mining Equipment, Technological Trends, and Natural Resource Demand on Climate Change in Congo
Abstract
:1. Introduction
2. Congo’s Mining Sector
2.1. The Boom in the Mining Sector
2.2. Mining Equipment Technological Trends
2.3. Theoretical Framework and Research Hypotheses
3. Materials and Methods
3.1. Sampling Description
3.2. Data Analysis
- Tests whether there is a causal relationship between the set of latent explanatory variables and the explained latent variables.
- Create and test potential structures for validity and reliability.
4. Results
4.1. Demographic Information of Respondents
4.2. Profile of Companies’ Information and Respondents
4.3. Results of the Measurement Model
4.4. Structural Model
4.5. The Effect Size
4.6. Predictive Relevance
- E = the sum of the squares of the forecast error
- O = the sum of the squares of the error using the mean for the prediction
- D = Omission distance
5. Discussion
6. Conclusions and Policy Recommendations
Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sierpińska, M.; Bak, P. Financial Structure of Mining Sector Companies during an Economic Slowdown. Arch. Min. Sci. 2012, 57, 1089–1100. [Google Scholar] [CrossRef]
- Sierpińska-Sawicz, A.; Bak, P. Costs of Corporate Bond Issue in Coal Mining Companies. Contemp. Econ. 2016, 10, 99–112. [Google Scholar] [CrossRef] [Green Version]
- IPCC. Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty. Headline Statements from the Summary for Policymakers; World Meteorological Organization: Geneva, Switzerland, 2018. [Google Scholar]
- Vitousek, P.M. Beyond Global Warming: Ecology and Global Change. Ecology 1994, 75, 1861–1876. [Google Scholar] [CrossRef]
- Mehmood, I.; Bari, A.; Irshad, S.; Khalid, F.; Liaqat, S.; Anjum, H.; Fahad, S. Carbon Cycle in Response to Global Warming. In Environment, Climate, Plant and Vegetation Growth; Springer: Cham, Switzerland, 2020; pp. 1–15. [Google Scholar] [CrossRef]
- Letcher, T.M. Why Do We Have Global Warming? In Managing Global Warming: An Interface of Technology and Human Issues; Academic Press: Cambridge, MA, USA, 2019; pp. 3–15. [Google Scholar] [CrossRef]
- Jain, P.C. Greenhouse Effect and Climate Change: Scientific Basis and Overview. Renew. Energy 1993, 3, 403–420. [Google Scholar] [CrossRef]
- Hall, R.A.; Knights, P.F.; Daneshmend, L.K. Pareto Analysis and Condition-Based Maintenance of Underground Mining Equipment. Min. Technol. 2013, 109, 14–22. [Google Scholar] [CrossRef]
- Talan, S.; Yadav, D.K.; Rajput, Y.S.; Bhattacharjee, S. Risk Based Maintenance Planning for Loading Equipment in Underground Hard Rock Mine: Case Study. Int. J. Geol. Environ. Eng. 2018, 12, 349–355. [Google Scholar]
- Dhillon, B.S. Mining Equipment Reliability, Maintainability, and Safety; Springer: London, UK, 2008. [Google Scholar] [CrossRef]
- Azadi, M.; Northey, S.A.; Ali, S.H.; Edraki, M. Transparency on Greenhouse Gas Emissions from Mining to Enable Climate Change Mitigation. Nat. Geosci. 2020, 13, 100–104. [Google Scholar] [CrossRef]
- Burgess, T.W.; Evans, J.H.; Peishel, F.L.; Schrock, S.L.; Smith, G.E.; Macdonald, D. Design Guidelines for Remotely Maintained Equipment; Oak Ridge National Lab.: Oak Ridge, TN, USA, 1988. [CrossRef]
- Wadanambi, R.T.; Wandana, L.S.; Chathumini, K.K.G.L.; Dassanayake, N.P.; Preethika, D.D.P.; Arachchige, U.S.P.R. The Effects of Industrialization on Climate Change. J. Res. Technol. Eng. 2020, 1, 86–94. [Google Scholar]
- Beylot, A.; Guyonnet, D.; Muller, S.; Vaxelaire, S.; Villeneuve, J. Mineral Raw Material Requirements and Associated Climate-Change Impacts of the French Energy Transition by 2050. J. Clean. Prod. 2019, 208, 1198–1205. [Google Scholar] [CrossRef]
- Christmann, P. Towards a More Equitable Use of Mineral Resources. Nat. Resour. Res. 2017, 27, 159–177. [Google Scholar] [CrossRef]
- Kucukvar, M.; Onat, N.C.; Haider, M.A. Material Dependence of National Energy Development Plans: The Case for Turkey and United Kingdom. J. Clean. Prod. 2018, 200, 490–500. [Google Scholar] [CrossRef]
- Hao, C.; Cheng, Y.; Wang, L.; Liu, H.; Shang, Z. A Novel Technology for Enhancing Coalbed Methane Extraction: Hydraulic Cavitating Assisted Fracturing. J. Nat. Gas Sci. Eng. 2019, 72, 103040. [Google Scholar] [CrossRef]
- Norgate, T.; Haque, N. Energy and Greenhouse Gas Impacts of Mining and Mineral Processing Operations. J. Clean. Prod. 2010, 18, 266–274. [Google Scholar] [CrossRef]
- Van Berkel, R. Eco-Efficiency in Primary Metals Production: Context, Perspectives and Methods. Resour. Conserv. Recycl. 2007, 51, 511–540. [Google Scholar] [CrossRef]
- Safaai, N.S.M.; Noor, Z.Z.; Hashim, H.; Ujang, Z.; Talib, J. Projection of CO2 Emissions in Malaysia. Environ. Prog. Sustain. Energy 2011, 30, 658–665. [Google Scholar] [CrossRef]
- Diaz, N.; Redelsheimer, E.; Dornfeld, D. Energy Consumption Characterization and Reduction Strategies for Milling Machine Tool Use. In Glocalized Solutions for Sustainability in Manufacturing; Springer: Berlin/Heidelberg, Germany, 2011; pp. 263–267. [Google Scholar] [CrossRef] [Green Version]
- Mori, M.; Fujishima, M.; Inamasu, Y.; Oda, Y. A Study on Energy Efficiency Improvement for Machine Tools. CIRP Ann. 2011, 60, 145–148. [Google Scholar] [CrossRef]
- Kong, D.; Choi, S.; Yasui, Y.; Pavanaskar, S.; Dornfeld, D.; Wright, P. Software-Based Tool Path Evaluation for Environmental Sustainability. J. Manuf. Syst. 2011, 40, 241–247. [Google Scholar] [CrossRef]
- He, Y.; Liu, F.; Wu, T.; Zhong, F.P.; Peng, B. Analysis and Estimation of Energy Consumption for Numerical Control Machining. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2012, 226, 255–266. [Google Scholar] [CrossRef]
- Fan, W.; Jiang, W.; Chen, J.; Yang, F.; Qian, J.; Ye, H. Exhaust Emission Inventory of Typical Construction Machinery and Its Contribution to Atmospheric Pollutants in Chengdu, China. J. Environ. Sci. 2023, 125, 761–773. [Google Scholar] [CrossRef]
- IEA. Global Energy & CO2 Status Report 2017: The Latest Trends in Energy and Emissions in 2017; IEA: Paris, France, 2018; 15p. [Google Scholar]
- Jiang, X.; Guan, D. Determinants of Global CO2 Emissions Growth. Appl. Energy 2016, 184, 1132–1141. [Google Scholar] [CrossRef] [Green Version]
- Manley, D.; Heller, P.; Davis, W. No Time to Waste: Governing Cobalt Amid the Energy Transition; Natural Resource Governance Institute, 2022; Available online: https://resourcegovernance.org/sites/default/files/documents/no_time_to_waste_governing_cobalt_amid_the_energy_transition.pdf (accessed on 26 July 2022).
- Bahn, O. Politiques Climatiques: L’apport Des Modèles Mathématiques d’aide à La Décision; HEC Montréal: Montréal, QC, Canada, 2016. [Google Scholar]
- Ağbulut, Ü.; Sarıdemir, S. A General View to Converting Fossil Fuels to Cleaner Energy Source by Adding Nanoparticles. Int. J. Ambient. Energy 2021, 42, 1569–1574. [Google Scholar] [CrossRef]
- Commission africaine des droits de l’Homme et des peuples. Étude de Base Sur Le Fonctionnement Du Secteur Des Industries Extractives En Afrique et Ses Impacts Sur La Réalisation Des Droits de l’homme et Des Peuples Dans Le Cadre de La Charte Africaine Des Droits de l’homme et Des Peuples. 2019, p. 75. Available online: https://www.achpr.org/public/Document/file/French/Background%20Study%20on%20the%20Operations%20of%20the%20Extractive%20Industries%20Sector%20in%20Africa_FRE.pdf (accessed on 1 December 2022).
- Aubynn, A. Sustainable Solution or a Marriage of Inconvenience? The Coexistence of Large-Scale Mining and Artisanal and Small-Scale Mining on the Abosso Goldfields Concession in Western Ghana. Resour. Policy 2009, 34, 64–70. [Google Scholar] [CrossRef]
- Holden, W.N. Mining amid Typhoons: Large-Scale Mining and Typhoon Vulnerability in the Philippines. Extr. Ind. Soc. 2015, 2, 445–461. [Google Scholar] [CrossRef]
- Verbrugge, B.; Cuvelier, J.; Van Bockstael, S. Min(d)ing the land: The relationship between artisanal and small-scale mining and surface land arrangements in the southern Philippines, eastern DRC and Liberia. J. Rural Stud. 2015, 37, 50–60. [Google Scholar] [CrossRef]
- Siegel, S.; Veiga, M.M. Artisanal and Small-Scale Mining as an Extralegal Economy: De Soto and the Redefinition of “Formalization”. Resour. Policy 2009, 34, 51–56. [Google Scholar] [CrossRef]
- Kemp, D.; Owen, J.R. Characterising the Interface between Large and Small-Scale Mining. Extr. Ind. Soc. 2019, 6, 1091–1100. [Google Scholar] [CrossRef]
- Hilson, G. Why Is There a Large-Scale Mining ‘Bias’ in Sub-Saharan Africa? Land Use Policy 2019, 81, 852–861. [Google Scholar] [CrossRef]
- Pedersen, R.H.; Mutagwaba, W.; Jønsson, J.B.; Schoneveld, G.; Jacob, T.; Chacha, M.; Weng, X.; Njau, M.G. Mining-Sector Dynamics in an Era of Resurgent Resource Nationalism: Changing Relations between Large-Scale Mining and Artisanal and Small-Scale Mining in Tanzania. Resour. Policy 2019, 62, 339–346. [Google Scholar] [CrossRef]
- Cuddington, J.T.; Jerrett, D. Super Cycles in Real Metals Prices? IMF Staff Pap. 2008, 55, 541–565. [Google Scholar] [CrossRef]
- Heap, A. China, the Engine of a Commodities. 2005. Available online: https://scholar.google.com/scholar?hl=en&as_sdt=0%2C31&q=Heap%2C+A.+%282005%29%2C+China%2C+the+Engine+of+a+Commodities+Super+Cycle%2C+New+York%2C+Citigroup+Smith+Barney.&btnG= (accessed on 26 July 2022).
- Weis, R.; Thuy, B.; Garbay, L. Le Circuit Géologique Giele Botter (Differdange-Pétange)—Une Vitrine à Ciel Ouvert Du Géopatrimoine Des Terres Rouges Luxembourgeoises. Bull. Soc. Nat. Luxemb. 2022, 124, 179–189. [Google Scholar]
- Jean-Michel Lourtioz, J.L. Enjeux de La Transition Écologique. 2022, pp. 197–220. Available online: https://www.degruyter.com/document/doi/10.1051/978-2-7598-2662-9.c009/html (accessed on 20 July 2022).
- Moon, S.; Cho, H.; Koh, E.; Cho, Y.S.; Oh, H.L.; Kim, Y.; Kim, S.B. Remanufacturing Decision-Making for Gas Insulated Switchgear with Remaining Useful Life Prediction. Sustainability 2022, 14, 12357. [Google Scholar] [CrossRef]
- Policy, D.H.-R. The Great Metals Boom: A Retrospective. Resour. Policy 2010, 35, 1–13. [Google Scholar]
- Haley, U.; Haley, G. Subsidies to Chinese Industry: State Capitalism, Business Strategy, and Trade Policy; Oxford University Press: Oxford, UK, 2013. [Google Scholar]
- Wu, W. China Steel Industry to Keep Stable. 2011. Available online: https://scholar.google.com/scholar?as_sdt=0,31&q=Wu,+W.+(2011),+“China+Steel+Industry+to+Keep+Stable+Growth+in+Next+Five+Years”,+Inde,+Shanghai+SteelHome+Website,+mars.&hl=en (accessed on 26 July 2022).
- Pettis, M. Avoiding the Fall: China’s Economic Restructuring; Brookings Institution Press: Washington, DC, USA, 2013. [Google Scholar]
- Ahuja, M.; Nabar, M. Investment-Led Growth in China: Global Spillovers; International Monetary Fund: Washington, DC, USA, 2012. [Google Scholar]
- Hilson, G. Farming, Small-Scale Mining and Rural Livelihoods in Sub-Saharan Africa: A Critical Overview. Extr. Ind. Soc. 2016, 3, 547–563. [Google Scholar] [CrossRef]
- Brodny, J.; Tutak, M. Analysing the Utilisation Effectiveness of Mining Machines Using Independent Data Acquisition Systems: A Case Study. Energies 2019, 12, 2505. [Google Scholar] [CrossRef] [Green Version]
- Vagenas, N.; Runciman, N.; Clément, S.R. A Methodology for Maintenance Analysis of Mining Equipment. Int. J. Surf. Mining, Reclam. Environ. 1997, 11, 33–40. [Google Scholar] [CrossRef]
- Musao, J.K. La problematique de l’exploitation minière artisanale dans la province du Katanga (cas du district de Kolwezi). Mémoire de Licence en Sociologie industrielle. Institut Supérieur d’Etudes Sociales, 2009. Available online: http://www.memoireonline.com/12/09/3006/La-problematique-de-lexpl (accessed on 26 July 2022).
- O’driscoll, D. Overview of Child Labour in the Artisanal and Small-Scale Mining Sector in Asia and Africa Question; K4D Helpdesk Report; Institute of Development Studies: Brighton, UK, 2017. [Google Scholar]
- Lanke, A.; Hoseinie, H.; Ghodrati, B. Mine Production Index (MPI): New Method to Evaluate Effectiveness of Mining Machinery. Int. J. Environ. Chem. Ecol. Geol. Geophys. Eng. 2014, 8, 714–718. [Google Scholar]
- Barabady, J.; Kumar, U. Reliability Analysis of Mining Equipment: A Case Study of a Crushing Plant at Jajarm Bauxite Mine in Iran. Reliab. Eng. Syst. Saf. 2008, 93, 647–653. [Google Scholar] [CrossRef]
- Avril, F.R. Caractérisation Des Déchets Miniers de Quatre Mines d’or de Guyane; BRGM: Orléans, France, 2012. [Google Scholar]
- Poulard, F.; Daupley, X.; Didier, C.; Pokryska, Z.; Charles, N.; Save, M. Explotation Minere et Traitement Du Minerais; INERIS: Verneuil-en-Halatte, France, 2017; Volume 6. [Google Scholar]
- Fourie, H. Improvement in the Overall Efficiency of Mining Equipment: A Case Study. J. S. Afr. Inst. Min. Metall. 2016, 116, 275–281. [Google Scholar] [CrossRef]
- Laliberté, E. Recommandations Pour La Réduction Des Gaz A Effet De Serre Dans Le Secteur Minier Au Québec. Master’s Thesis, Université de Sherbrooke, Sherbrooke, QC, Canada, 2021. [Google Scholar]
- Paraszczak, J. Understanding and Assessment of Mining Equipment Effectiveness. Min. Technol. 2013, 114, 147–151. [Google Scholar] [CrossRef]
- Domingo, R.; Aguado, S. Overall Environmental Equipment Effectiveness as a Metric of a Lean and Green Manufacturing System. Sustainabialty 2015, 7, 9031–9047. [Google Scholar] [CrossRef]
- HIJMANS, R.J.; GRAHAM, C.H. The Ability of Climate Envelope Models to Predict the Effect of Climate Change on Species Distributions. Glob. Chang. Biol. 2006, 12, 2272–2281. [Google Scholar] [CrossRef]
- Martus, E. Russian Industry Responses to Climate Change: The Case of the Metals and Mining Sector. Clim. Policy 2019, 19, 17–29. [Google Scholar] [CrossRef] [Green Version]
- Pearce, T.D.; Ford, J.D.; Prno, J.; Duerden, F.; Pittman, J.; Beaumier, M.; Berrang-Ford, L.; Smit, B. Climate Change and Mining in Canada. Mitig. Adapt. Strateg. Glob. Chang. 2011, 16, 347–368. [Google Scholar] [CrossRef]
- Agrawala, S.; Gigli, S.; Raksakulthai, V.; Hemp, A. Changement Climatique et Gestion Des Ressources Naturelles: Principales Thématiques Des Études de Cas. 2005. Available online: https://www.oecd-ilibrary.org/environment/contre-vents-et-marees-les-politiques-de-developpement-face-au-changement-climatique/changement-climatique-et-gestion-des-ressources-naturelles_9789264013797-6-fr?crawler=true&mimetype=application/pdf (accessed on 15 June 2022).
- Ndehedehe, C.E.; Agutu, N.O. Changements Historiques Dans Les Régimes Pluviométriques Sur Le Bassin Du Congo et Impacts Sur Le Ruissellement (1903–2010). In Hydrologie, Climat et Biogéochimie du Bassin du Congo; Wiley: Hoboken, NJ, USA, 2022; pp. 151–170. [Google Scholar]
- Helm, J.L. (Ed.) Energy—Production, Consumption and Consequences; National Academy Press: Washington, DC, USA, 1990; 296p. [Google Scholar]
- Zhang, J.; Konan, D.E. The Sleeping Giant Awakes: Projecting Global Implications of China’s Energy Consumption. Rev. Dev. Econ. 2010, 14, 750–767. [Google Scholar] [CrossRef]
- Aguilar, F.X. Wood Energy in the EU and the US Assessment and Outlook to 2030. In Wood Energy in Developed Economies: Resource Management, Economics and Policy; Taylor and Francis: Abingdon, UK, 2014; pp. 307–327. ISBN 9781315884417. [Google Scholar]
- Lenssen, N.J.L.; Schmidt, G.A.; Hansen, J.E.; Menne, M.J.; Persin, A.; Ruedy, R.; Zyss, D. Improvements in the GISTEMP Uncertainty Model. J. Geophys. Res. Atmos. 2019, 124, 6307–6326. [Google Scholar] [CrossRef]
- Raslavičius, L.; Keršys, A.; Starevičius, M.; Sapragonas, J.; Bazaras, Ž. Biofuels, Sustainability and the Transport Sector in Lithuania. Renew. Sustain. Energy Rev. 2014, 32, 328–346. [Google Scholar] [CrossRef]
- Palocz-Andresen, M. Decreasing Fuel Consumption and Exhaust Gas Emissions in Transportation: Sensing, Control and Reduction of Emissions; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Bathiany, S.; Dakos, V.; Scheffer, M.; Lenton, T.M. Climate Models Predict Increasing Temperature Variability in Poor Countries. Sci. Adv. 2018, 4, eaar5809. [Google Scholar] [CrossRef] [Green Version]
- Liao, W.; Heijungs, R.; Huppes, G. Natural Resource Demand of Global Biofuels in the Anthropocene: A Review. Renew. Sustain. Energy Rev. 2012, 16, 996–1003. [Google Scholar] [CrossRef]
- Oberle, B.; Bringezu, S.; Hatfield-Dodds, S.; Hellweg, S. Global Resources Outlook 2019: Natural Resources for the Future We Want; United Nations Environment Programme: Nairobi, Kenya, 2019. [Google Scholar]
- Adams, R.; Hurd, B.; Lenhart, S.; Leary, N. Effects of Global Climate Change on Agriculture: An Interpretative Review. Clim. Res. 1998, 11, 19–30. [Google Scholar] [CrossRef] [Green Version]
- Nordhaus, W.; Boyer, J. Warming the World: Economic Models of Global Warming; MIT Press: Cambridge, MA, USA, 2003. [Google Scholar]
- Clerc, L. Prise de Conscience Du Risque Climatique et de Sa Dimension Systémique. Ann. Mines-Responsab. Environ. 2021, 102, 6–9. [Google Scholar] [CrossRef]
- Leménorel, A. Minerai de Fer et Sidérurgie En Basse-Normandie, Dans La Mayenne et La Sarthe, de 1835 à 1914 (2ème Partie). Ann. Normandie 1982, 32, 121–152. [Google Scholar] [CrossRef]
- Escudero, A. Extraction Du Minerai de Fer et Sidérurgie En Espagne. In Crise espagnole et nouveau siècle en Méditerranée; Casa de Velázquez: Madrid, Spain, 2000. [Google Scholar]
- Nisbet, R. History of the Idea of Progress; Taylor & Francis: Abingdon, UK, 2017; Available online: https://www.taylorfrancis.com/books/mono/10.4324/9780203789940/history-idea-progress-robert-nisbet (accessed on 15 June 2022).
- Landau, R.; Rosenberg, N. The Positive Sum Strategy. Harnessing Technology for Economic Growth; National Academies Press: Washington, DC, USA, 1986. [Google Scholar]
- Rosenberg, N.; Nathan, R. Inside the Black Box: Technology and Economics; Cambridge University Press: Cambridge, UK, 1982. [Google Scholar]
- Artus, P. La Nouvelle Économie, La Découverte. 2001. Available online: https://scholar.google.com/scholar?lookup=0&q=Artus+P.+(2001),+La+nouvelle+économie,+La+Découverte,+Paris&hl=en&as_sdt=0,31 (accessed on 30 July 2022).
- Thierry, S.-P. Les Biens d’équipement Dans l’industrie Algérienne: Évolution Passée et Perspectives. Rev. Tiers Monde 1980, 21, 475–490. [Google Scholar] [CrossRef]
- Les Relations Économiques Entre l’Allemagne et l’URSS, Au Cours de La Période 1918–1932, Considérées Sous l’angle Des Transferts de Technologie. Rev. D’études Comp. Est-Ouest 1977, 8, 97–133. [CrossRef]
- Haenlein, M.; Kaplan, A.M. A Beginner’s Guide to Partial Least Squares Analysis. Underst. Stat. 2004, 3, 283–297. [Google Scholar] [CrossRef]
- Bollen, K.A. A New Incremental Fit Index for General Structural Equation Models. Sociol. Methods Res. 2016, 17, 303–316. [Google Scholar] [CrossRef]
- Hair, J.F. A Primer on Partial Least Squares Structural Equations Modeling (PLS-SEM); SAGE: Thousand Oaks, CA, USA, 2014; ISBN 9781452217444. [Google Scholar]
- Goodhue, D.; Lewis, W.; Thompson, R. PLS, Small Sample Size, and Statistical Power in MIS Research. In Proceedings of the 39th Annual Hawaii International Conference on System Sciences (HICSS’06), Kauai, HI, USA, 4–7 January 2006. [Google Scholar] [CrossRef]
- Roussel, P. Methode d’equations Structurelles: Recherche et Applications en Gestion; Editions Economica: Paris, France, 2002; 274p. [Google Scholar]
- Wold, H. Partial Least Squares. In Encyclopedia of Statistical Sciences; Kotz, S., Johnson, N.L., Eds.; Wiley: New York, NY, USA, 1985; Volume 6, Available online: https://scholar.google.com/scholar?hl=en&as_sdt=0%2C31&q=Wold%2C+H.+%281985%29.+Partial+Least+Squares%2C+in+S.+Kotz+and+N.+L.+Johnson+%28Eds.%29%2C+Encyclopedia+of+Statistical+Sciences+%28Vol.+6%29%2C+New+York%3A+Wiley%2C+581-591.&btnG= (accessed on 28 June 2022).
- Dumas, M.; Campoy, E. Etudes Longitudinales et Comparaisons Entre Groupes Par Les Modèles d’équations Structurelles. In Management des Ressources Humaines; De Boeck Supérieur: Louvain-la-Neuve, France, 2005. [Google Scholar]
- Robert, A.; Ping, J. A Parsimonious Estimating Technique for Interaction and Quadratic Latent Variables. J. Mark. Res. 2018, 32, 336–347. [Google Scholar] [CrossRef]
- Ringle, C.M.; Wende, S.; Will, A. SmartPLS. 2005. Available online: https://scholar.google.com/scholar?hl=en&as_sdt=0%2C31&q=Ringle%2C+C.+M.%2C+Wende%2C+S.%2C+and+Will%2C+A.+%282005%29.+SmartPLS+–+Version+2.0.+Universit¨at+Hamburg%2C+Hamburg&btnG= (accessed on 28 June 2022).
- Akter, S.; Ambra, J.D.; Ray, P. An Evaluation of PLS Based Complex Models: The Roles of Power Analysis, An Evaluation of PLS Based Complex Models: The Roles of Power Analysis, Predictive Relevance and GoF Index Predictive Relevance and GoF Index. In Proceedings of the 17th Americas Conference on Information Systems, AMCIS 2011, Detroit, MI, USA, 4–8 August 2011. [Google Scholar]
- Tennenhaus, M. La Régression PLS, Théorie et Pratique; Technip: Paris, France, 1998; Available online: https://scholar.google.com/scholar?hl=en&as_sdt=0%2C31&q=Tennenhaus+M.+%281998%29+%3A+La+régression+PLS%2C+théorie+et+pratique+–+Paris+Technip&btnG= (accessed on 28 June 2022).
- Chin, W.W. The Partial Least Squares Approach to Structural Equation Modeling. In Modern Methods for Business Research; Psychology Press: New York, NY, USA, 1998; pp. 295–336. [Google Scholar]
- Cohen, J.B. Exploring Attitude Construct Validity: Or Are We? Adv. Consum. Res. 1979, 6, 303–306. [Google Scholar]
- Ivarsson, B.; Malm, U. Self-Reported Consumer Satisfaction in Mental Health Services: Validation of a Self-Rating Version of the UKU-Consumer Satisfaction Rating Scale. Nord. J. Psychiatry 2007, 61, 194–200. [Google Scholar] [CrossRef]
- Ivarsson, B.; Lindstr?m, L.; Malm, U.; Norlander, T. The Self-Assessment Perceived Global Distress Scale-Reliability and Construct Validity—Perceived Global Distress Scale. Psychology 2011, 2, 283–290. [Google Scholar] [CrossRef]
- Anderson, J.C.; Gerbing, D.W. The Effect of Sampling Error on Convergence, Improper Solutions, and Goodness-of-Fit Indices for Maximum Likelihood Confirmatory Factor Analysis. Psychometrika 1984, 49, 155–173. [Google Scholar] [CrossRef]
- Fernandes, V. En Quoi l’approche PLS Est-Elle Une Méthode a (Re)-Découvrir Pour Les Chercheurs En Management? M@n@gement 2012, 15, 102. [Google Scholar] [CrossRef]
- EBSCOhost|83883892|(Re)Discovering the PLS Approach in Management Science. Available online: https://web.s.ebscohost.com/abstract?direct=true&profile=ehost&scope=site&authtype=crawler&jrnl=12864692&asa=Y&AN=83883892&h=1LVzt5%2F8%2ByiPMepSl1VCXHxEV0abErXH6CV1k2wI7426ZeSDALO980t3%2B%2F69uusbQ55DIEKu3T7oaUV10nWP3w%3D%3D&crl=c&resultNs=AdminWebAuth&resultLocal=ErrCrlNotAuth&crlhashurl=login.aspx%3Fdirect%3Dtrue%26profile%3Dehost%26scope%3Dsite%26authtype%3Dcrawler%26jrnl%3D12864692%26asa%3DY%26AN%3D83883892 (accessed on 1 July 2022).
- Fornell, C.; Larcker, D.F. Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. J. Mark. Res. 2018, 18, 39–50. [Google Scholar] [CrossRef]
- Ab Hamid, M.R.; Sami, W.; Sidek, M.M. Discriminant Validity Assessment: Use of Fornell & Larcker Criterion versus HTMT Criterion. J. Phys. Conf. Ser. 2017, 890, 012163. [Google Scholar] [CrossRef]
- Sosik, J.J.; Kahai, S.S.; Piovoso, M.J. Silver Bullet or Voodoo Statistics?: A Primer for Using the Partial Least Squares Data Analytic Technique in Group and Organization Research. Group Organ. Manag. 2009, 34, 5–36. [Google Scholar] [CrossRef]
- Gauchi, J.P.; Chagnon, P. Comparison of Selection Methods of Explanatory Variables in PLS Regression with Application to Manufacturing Process Data. Chemom. Intell. Lab. Syst. 2001, 58, 171–193. [Google Scholar] [CrossRef]
- Villeneuve, B.; Piffady, J.; Valette, L.; Souchon, Y.; Usseglio-Polatera, P. Direct and Indirect Effects of Multiple Stressors on Stream Invertebrates across Watershed, Reach and Site Scales: A Structural Equation Modelling Better Informing on Hydromorphological Impacts. Sci. Total Environ. 2018, 612, 660–671. [Google Scholar] [CrossRef] [Green Version]
- Cohen, J. The Statistical Power of Abnormal-Social Psychological Research: A Review. J. Abnorm. Soc. Psychol. 1962, 65, 145–153. [Google Scholar] [CrossRef]
- Huberty, C.J. A History of Effect Size Indices. Educ. Psychol. Meas. 2016, 62, 227–240. [Google Scholar] [CrossRef] [Green Version]
- Thompson, B. Significance, Effect Sizes, Stepwise Methods, and Other Issues: Strong Arguments Move the Field. J. Exp. Educ. 2001, 70, 80–93. [Google Scholar] [CrossRef]
- Thompson, B. Effect Sizes, Confidence Intervals, and Confidence Intervals for Effect Sizes. Psychol. Sch. 2007, 44, 423–432. [Google Scholar] [CrossRef]
- Vacha-Haase, T.; Thompson, B. How to Estimate and Interpret Various Effect Sizes. J. Couns. Psychol. 2004, 51, 473. [Google Scholar] [CrossRef] [Green Version]
- Steiger, J.H. Beyond the F Test: Effect Size Confidence Intervals and Tests of Close Fit in the Analysis of Variance and Contrast Analysis. Psychol. Methods 2004, 9, 164–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sawilowsky, S.S. Very Large and Huge Effect Sizes. J. Mod. Appl. Stat. Methods 2009, 8, 597–599. [Google Scholar] [CrossRef]
- Cohen, J. Set Correlation and Contingency Tables. Appl. Psychol. Meas. 1988, 12, 425–434. [Google Scholar] [CrossRef] [Green Version]
- Pearson, K. Drapers’ Company Resarch Memoirs; Cambridge University Press: Cambridge, UK, 1922; 190p, Available online: https://books.google.com/books?hl=en&lr=&id=fJYrEGRbx_EC&oi=fnd&pg=PA1&ots=RnNbeV3dfr&sig=RAHra_-x8kpDq9hJgJ861c9Pk8I (accessed on 15 June 2022).
- Fornell, C.; Bookstein, F.L. Two Structural Equation Models: LISREL and PLS Applied to Consumer Exit-Voice Theory. J. Mark. Res. 1982, 19, 440–452. [Google Scholar] [CrossRef] [Green Version]
- Vinzi, V.E.; Trinchera, L.; Amato, S. PLS Path Modeling: From Foundations to Recent Developments and Open Issues for Model Assessment and Improvement. In Handbook of Partial Least Squares; Springer: Berlin/Heidelberg, Germany, 2010; pp. 47–82. [Google Scholar] [CrossRef]
- Thompson, L.G. Climate Change: The Evidence and Our Options. Behav. Anal. 2010, 33, 153–170. [Google Scholar] [CrossRef]
- Pachauri, R.; Reisinger, A. Climate Change 2007. Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report; IPCC: Geneva, Switzerland, 2008. [Google Scholar]
- Charness, N.; Boot, W.R. Aging and Information Technology Use: Potential and Barriers. Curr. Dir. Psychol. Sci. 2009, 18, 253–258. [Google Scholar] [CrossRef]
- Maibach, E.W.; Leiserowitz, A.; Roser-Renouf, C.; Mertz, C.K. Identifying Like-Minded Audiences for Global Warming Public Engagement Campaigns: An Audience Segmentation Analysis and Tool Development. PLoS ONE 2011, 6, e17571. [Google Scholar] [CrossRef] [Green Version]
- Taylor, M.; Lamm, A.J.; Israel, G.D.; Rampold, S.D. Using the Six Americas Framework to Communicate and Educate about Global Warming. J. Agric. Educ. 2018, 59, 215–232. [Google Scholar] [CrossRef]
- Wojcik, D.J.; Monroe, M.C.; Adams, D.C.; Plate, R.R.; Wojcik, D.J.; Monroe, M.C.; Adams, D.C. Message in a Bottleneck? Attitudes and Perceptions of Climate Change in the Cooperative Extension Service in the Southeastern United States. J. Hum. Sci. Ext. 2014, 2, 4. [Google Scholar] [CrossRef]
- Al Mahmud, A.; Dadlani, P.; Mubin, O.; Shahid, S.; Midden, C.; Moran, O. IParrot: Towards Designing a Persuasive Agent for Energy Conservation. Lect. Notes Comput. Sci. 2007, 4744, 64–67. [Google Scholar]
- Van Houten, R.; Nau, P.A. A Comparison of the Effects of Posted Feedback and Increased Police Surveillance on Highway Speeding. J. Appl. Behav. Anal. 1981, 14, 1308212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Houten, R.; Nau, P.; Marini, Z. An Analysis of Public Posting in Reducing Speeding Behavior on an Urban Highway. J. Appl. Behav. Anal. 1980, 13, 1308145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Houten, R.; Nau, P.A. Feedback interventions and driving speed: A parametric and comparative analysis. J. Appl. Behav. Anal. 1983, 16, 253–281. [Google Scholar] [CrossRef] [Green Version]
- Farjana, S.H.; Huda, N.; Parvez Mahmud, M.A.; Saidur, R. A Review on the Impact of Mining and Mineral Processing Industries through Life Cycle Assessment. J. Clean. Prod. 2019, 231, 1200–1217. [Google Scholar] [CrossRef]
- Arent, D.J.; Tol, R.S.; Faust, E.; Hella, J.P.; Kumar, S.; Strzepek, K.M.; Tóth, F.L.; Yan, D.; Abdulla, A.; Kheshgi, H.; et al. Key Economic Sectors and Services. In Climate Change 2014 Impacts, Adaptation and Vulnerability: Part A: Global and Sectoral Aspects; Cambridge University Press: Cambridge, UK, 2015. [Google Scholar]
- Myhrvold, N.P.; Caldeira, K. Greenhouse Gases, Climate Change and the Transition from Coal to Low-Carbon Electricity. Environ. Res. Lett. 2012, 7, 014019. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.T.; Hashim, H.; Ho, C.S.; Van Fan, Y.; Klemeš, J.J. Sustaining the Low-Carbon Emission Development in Asia and beyond: Sustainable Energy, Water, Transportation and Low-Carbon Emission Technology. J. Clean. Prod. 2017, 146, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Karyono, T.H. Architecture and Technology: The Impact of Modern Technology on Global Warming. In Proceedings of the International Conference on “Technology and Local Wisdom”, Wonosobo, Indonesia, 6 April 2015. [Google Scholar]
- Sassi, O. L’impact du Changement Technique Endogene sur Les Politiques Climatiques. Ph.D. Thesis, Université Paris-Est, Paris, France, 2008. [Google Scholar]
- Solow, R.M. Growth Theory and After. Am. Econ. Rev. 1988, 78, 307–317. [Google Scholar]
- Clarke, L.; Weyant, J.; Birky, A. On the Sources of Technological Change: Assessing the Evidence. Energy Econ. 2006, 28, 579–595. [Google Scholar] [CrossRef]
- Le Déaut, M.J.Y. Innovation et Changement Climatique: L’Apport de l’Évaluation Scientifique et Technologique; Report, OPECST 3206. 2015. Available online: https://eptanetwork.org/images/documents/minutes/EPTA_Greenbook_final_FR.pdf (accessed on 26 July 2022).
- Bruno, B.; Virginie, S. Technologies Numériques, Information et Communication: Guide Sectoriel 2012 Sommaire. 2012. Ademe. p. 146. Available online: https://inis.iaea.org/collection/NCLCollectionStore/_Public/50/061/50061084.pdf (accessed on 1 December 2022).
- Pour, D.E.S.S.; Rapport, A. Les Technologies Et le Changement Climatique. Rapport de l’Académie des technologies. 2016, p. 77. Available online: https://academie-technologies-prod.s3.amazonaws.com/2016/04/21/12/45/33/406/Rapport_TCC_DEF.pdf (accessed on 1 December 2022).
- Liu, H.; Pan, K.; Xiang, C.; Ye, D.; Wang, H.; Gou, X. Mechanochemical Effect of Spontaneous Combustion of Sulfide Ore. Fuel 2022, 329, 125391. [Google Scholar] [CrossRef]
- Wang, F.; Yan, J. CO2 Storage and Geothermal Extraction Technology for Deep Coal Mine. Sustainability 2022, 14, 12322. [Google Scholar] [CrossRef]
- Azri, C.; Tili, A.; Serbaji, M.M.; Medhioub, K. Etude des Résidus de Combustion des Fuels Liquide et Solide et de Traitement Chimique du Phosphate Brut dans la Ville de Sfax (Tunisie). Pollut. Atmosphérique 2022, 44, 297–308. [Google Scholar] [CrossRef] [Green Version]
- Klein, N. Tout Peut Changer Capitalisme et Changement Climatique; Actes Sud: Arles, France, 2015. [Google Scholar]
- Boudreau-Trudel, B.; Nadeau, S.; Zaras, K.; Deschamps, I. Introduction of Innovative Equipment in Mining: Impact on Occupational Health and Safety. Open J. Saf. Sci. Technol. 2014, 4, 49–58. [Google Scholar] [CrossRef] [Green Version]
- Boudreau-Trudel, B. Impact et Facteurs Clés de l’introduction d’équipements Miniers Innovants: Le Cas d’une Mine Souterraine. Ph.D. Thesis, École de Technologie Supérieure, Montreal, QC, Canada, 2014. [Google Scholar]
- Boudreau-Trudel, B.; Nadeau, S.; Zaras, K.; Deschamps, I. Introduction of Innovative Equipment in Mining: Impact on Productivity. Am. J. Ind. Bus. Manag. 2014, 4, 31–39. [Google Scholar] [CrossRef] [Green Version]
- Bullock, R.L. Trends in Non-Coal Underground Mining Technology at the Close of the Millennium. In Mining in the New Millennium Challenges and Opportunities; CRC Press: Boca Raton, FL, USA, 2022; pp. 127–144. [Google Scholar]
- Planeta, S.; Paraszczak, J. Underground Metalliferous Mining in Canada: Methods and Costs. In Mining in the New Millennium Challenges and Opportunities; CRC Press: Boca Raton, FL, USA, 2020; pp. 106–116. [Google Scholar]
- Nielsen, K.; Gether, H. Innovation as a Contribution to Sustainable Development. A Status Assessment of the Mineral Industry. In Proceedings of the 1st International Conference on Advances in Mineral Resources Management and Environmental Geotechnology (AMIREG), Crete, Greece, 7–9 June 2004. [Google Scholar]
- Upstill, G.; Hall, P. Innovation in the Minerals Industry: Australia in a Global Context. Resour. Policy 2006, 31, 137–145. [Google Scholar] [CrossRef]
- Carnot, S. Réflexions Sur La Puissance Motrice Du Feu et Sur Les Machines Propres à Développer Cette Puissance. Ann. Sci. L’école Norm. Supérieure 1872, 1, 393–457. [Google Scholar] [CrossRef]
- Kalaydjian, F.; Cornot-Gandolphe, S. La Nouvelle Donne Du Charbon; Éditions Technip: Paris, France, 2008. [Google Scholar]
- Veiga, M.M.; Marshall, B.G. The Colombian Artisanal Mining Sector: Formalization Is a Heavy Burden. Extr. Ind. Soc. 2019, 6, 223–228. [Google Scholar] [CrossRef]
- Hilson, G. Artisanal mining, smallholder farming and livelihood diversification in rural Sub-Saharan Africa: An introduction. J. Int. Dev. 2011, 23, 1031–1041. [Google Scholar] [CrossRef]
Colonial Period | Mechanized but Small-Scale Mining Activity |
---|---|
1960–1980 | From independence to the fall of the Soviet bloc, a boom in the mining sector, both artisanal and industrial |
1980–2004 | End of industrial operations, political unrest, little dynamism |
2005–2025 | The new Mining Code of 2005 and the revival of mining |
Countries | Trade Value In (USD) | Percentage | Products |
---|---|---|---|
China | 4684.28 | 36.9 | Aluminum |
United States | 2046.95 | 17.0 | Aluminum |
Germany | 793.65 | 6.6 | Aluminum |
Spain | 707.23 | 5.9 | Aluminum |
Ireland | 604.95 | 5.0 | Aluminum |
China | 2857.62 | 76.0 | Cobalt |
Finland | 468.24 | 12.4 | Cobalt |
Zambia | 303.87 | 8.0 | Cobalt |
Japan | 40,831.89 | 32.5 | Copper |
China | 40,266.99 | 32.1 | Copper |
Republic of Korea | 10,154.05 | 8.1 | Copper |
Germany | 8712.76 | 6.9 | Copper |
United States | 70,100.19 | 22.9 | Diamonds |
Belgium | 56,073.83 | 18.3 | Diamonds |
China, Hong Kong | 47,906.70 | 15.9 | Diamonds |
Israel | 33,025.45 | 10.8 | Diamonds |
China | 224,369.97 | 62.3 | Iron |
Japan | 46,049.68 | 12.8 | Iron |
Germany | 15,852.91 | 4.4 | Iron |
Republic of Korea | 11,240.82 | 3.1 | Iron |
China | 7486.04 | 47.0 | Lead |
Republic of Korea | 1791.29 | 11.2 | Lead |
Japan | 1409.43 | 8.8 | Lead |
Germany | 1390.77 | 8.7 | Lead |
Belgium | 1175.83 | 7.4 | Lead |
China | 9347.35 | 58.1 | Manganese |
Japan | 1380.60 | 8.9 | Manganese |
Norway | 1115.36 | 6.9 | Manganese |
Republic of Korea | 718.58 | 4.5 | Manganese |
Malaysia | 488.88 | 40.7 | Tin |
Thailand | 435.81 | 38.3 | Tin |
China | 195.45 | 16.3 | Tin |
United State | 1045.52 | 19.7 | Titanium |
China | 743.96 | 14.0 | Titanium |
Germany | 620.05 | 11.7 | Titanium |
Japan | 476.20 | 9.0 | Titanium |
United State | 2479.31 | 98.8 | Uranium |
China | 19.93 | 0.8 | Uranium |
France | 7.17 | 0.3 | Uranium |
Demographic and Social Information | Frequency | Percentage | Cumulative |
---|---|---|---|
Gender | |||
Female | 568 | 41.76% | 41.76 |
Male | 792 | 58.24% | 100.00 |
Total | 1360 | 100.00 | |
Age | |||
18–25 | 38 | 2.79% | 2.79 |
26–30 | 315 | 23.16% | 25.96 |
31–39 | 398 | 29.26% | 55.22 |
40–48 | 475 | 34.93% | 90.15 |
49–55 | 91 | 6.69% | 96.84 |
56 and above Total | 43 1360 | 3.16% 100 | 100.00 |
Level of education | |||
Primary | 5 | 0.37% | 6.25 |
Junior high | 80 | 5.88% | 5.88 |
Senior high | 149 | 10.96% | 17.21 |
University Total | 1126 1360 | 82.79% 100.00 | 100.00 |
Occupation | |||
Intern | 25 | 1.84% | 78.9 |
Government workers | 1037 | 76.25% | 76.25 |
Private workers Total | 298 1360 | 21.91% 100.00 | 100.00 |
Profile of Companies and Respondents | Frequency | Percentage | Cumulative |
---|---|---|---|
Names of mining companies in Congo | |||
Others | 1360 | 86.84 | 86.84 |
La société d’exploitation minière du Congo | 9 | 0.66% | 96.62 |
Mayoko | 25 | 1.84% | 91.32 |
Potasse Congo | 36 | 2.65% | 84.49 |
Zanaga | 25 | 1.84% | 93.16 |
Avina | 38 | 2.79% | 93.82 |
Mayoko Total | 46 1360 | 3.38% 100.00 | 100.00 |
The number of mining industries in the Congo | |||
1–5 | 54 | 3.97% | 3.97 |
6–10 | 776 | 57.06% | 61.03 |
11 and above Total | 530 1360 | 38.97% 100.00 | 100.00 |
I have worked in the mining sector for a period of | |||
0–1 year | 53 | 3.90% | 3.90 |
2–5 years | 401 | 29.49% | 33.38 |
6–8 years | 32 | 2.35% | 35.74 |
9–11 years | 729 | 53.60% | 89.34 |
12 years and above Total | 145 1360 | 10.66% 100.00 | 100.00 |
I have worked in the mining industry as | |||
A miner | 1181 | 86.84% | 86.84 |
Climate management manager | 36 | 2.65% | 89.49 |
Mine site coordinator | 25 | 1.84% | 91.32 |
Corporate organization manager | 25 | 1.84% | 93.16 |
Equipment manager | 38 | 2.79% | 96.62 |
Director | 9 | 0.66% | 93.82 |
Mining resource manager Total | 46 1360 | 3.38% 100.00 | 100.00 |
Number of people trained in machine risk analysis | |||
1–5 | 298 | 21.91% | 76.25 |
6–10 | 25 | 1.84% | 78.9 |
None Total | 1037 1360 | 76.25% 100.00 | 100.00 |
Number of people trained in machine maintenance | |||
1–5 | 776 | 57.06% | 3.97 |
6–10 | 54 | 3.97% | 61.03 |
None Total | 530 1360 | 38.97% 100.00 | 100.00 |
Global warming is about to happen | |||
No | 1181 | 86.84% | 86.84 |
Yes | 36 | 2.65% | 89.49 |
Never | 25 | 1.84% | 91.32 |
There is no global warming | |||
No | 568 | 41.76% | 41.76 |
Yes | 792 | 58.24% | 100.00 |
Total | 1360 | 100.00 |
Cronbach’s Alpha | Rho_A | Composite Reliability | Average Variance Extracted (AVE) | |
---|---|---|---|---|
CARB | 0.854 | 0.872 | 0.896 | 0.635 |
CLIM | 0.823 | 0.842 | 0.876 | 0.589 |
EQ | 0.752 | 0.811 | 0.840 | 0.569 |
IND | 0.847 | 0.870 | 0.892 | 0.625 |
TECH | 0.860 | 0.883 | 0.899 | 0.642 |
CARB | CLIM | EQ | IND | TECH | |
---|---|---|---|---|---|
CARB | 0.797 | ||||
CLIM | 0.264 | 0.768 | |||
EQ | 0.123 | 0.568 | 0.754 | ||
IND | 0.299 | 0.553 | 0.643 | 0.791 | |
TECH | 0.287 | 0.726 | 0.535 | 0.690 | 0.801 |
Hypothesis | Paths | Path Coefficients (β) | T Statistics | Probability Values | Status |
---|---|---|---|---|---|
H1 | TECH → EQ | 0.835 | 94.855 | 0.000 | Validated |
H2 | TECH → IND | 0.613 | 25.393 | 0.000 | Validated |
H3 | TECH → CLIM | 0.772 | 24.237 | 0.000 | Validated |
H4 | EQ → IND | 0.331 | 13.576 | 0.000 | Validated |
H5 | EQ → CLIM | 0.305 | 9.310 | 0.000 | Validated |
H6 | CARB → CLIM | 0.035 | 4.316 | 0.000 | Validated |
H7 | IND → CLIM | 0.102 | 3.371 | 0.001 | Validated |
CLIM | EQ | IND | |
---|---|---|---|
CARB | 0.035 | ||
EQ | 0.271 | 0.331 | |
IND | 0.102 | ||
TECH | 0.936 | 0.835 | 0.890 |
Q2 | |
---|---|
CLIM | 0.532 |
EQ | 0.371 |
IND | 0.500 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Massonini Ngoma, R.G.T.; Abraham Mahanga Tsoni, C.G.; Meng, X.; Bashiru Danwana, S. The Impact of the Mining Equipment, Technological Trends, and Natural Resource Demand on Climate Change in Congo. Sustainability 2023, 15, 1691. https://doi.org/10.3390/su15021691
Massonini Ngoma RGT, Abraham Mahanga Tsoni CG, Meng X, Bashiru Danwana S. The Impact of the Mining Equipment, Technological Trends, and Natural Resource Demand on Climate Change in Congo. Sustainability. 2023; 15(2):1691. https://doi.org/10.3390/su15021691
Chicago/Turabian StyleMassonini Ngoma, Railh Gugus Tresor, Cety Gessica Abraham Mahanga Tsoni, Xiangrui Meng, and Sumaiya Bashiru Danwana. 2023. "The Impact of the Mining Equipment, Technological Trends, and Natural Resource Demand on Climate Change in Congo" Sustainability 15, no. 2: 1691. https://doi.org/10.3390/su15021691
APA StyleMassonini Ngoma, R. G. T., Abraham Mahanga Tsoni, C. G., Meng, X., & Bashiru Danwana, S. (2023). The Impact of the Mining Equipment, Technological Trends, and Natural Resource Demand on Climate Change in Congo. Sustainability, 15(2), 1691. https://doi.org/10.3390/su15021691