Efficacy of Electrocoagulation Treatment for the Abatement of Heavy Metals: An Overview of Critical Processing Factors, Kinetic Models and Cost Analysis
Abstract
:1. Introduction
2. EC Theory and Mechanism
- formation of H2 gas at the cathode (Equation (4))
- rise of pH as a result of hydroxyl ion formation (Equation (4))
- reduction of metal ions on the cathodes.
3. Factors Affecting EC and Their Significance
3.1. Initial pH
3.2. Role of Electrode Material
3.3. Role of Current Density
3.4. Operational Time
3.5. Initial Concentration
3.6. Electrode Arrangement
3.7. Electrode Spacing
3.8. Agitation
- High stirring speeds prevent the adsorption of pollutants on the fresh flocs and also break down the aggregates, which decreases the removal efficiency;
- Low stirring speeds do not create a uniform distribution of pollutants and coagulants in the solution, which also decreases the efficiency of the EC unit.
4. Kinetic Models Applied in EC
5. Cost Analysis
6. Conclusion Remarks and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yan, C.; Qu, Z.; Wang, J.; Cao, L.; Han, Q. Microalgal bioremediation of heavy metal pollution in water: Recent advances, challenges, and prospects. Chemosphere 2022, 286, 131870. [Google Scholar] [CrossRef] [PubMed]
- Al-Hashimi, O.; Hashim, K.; Loffill, E.; Nakouti, I.; Faisal, A.A.; Čebašek, T.M. Kinetic and Equilibrium Isotherm Studies for the Removal of Tetracycline from Aqueous Solution Using Engineered Sand Modified with Calcium Ferric Oxides. Environments 2023, 10, 7. [Google Scholar] [CrossRef]
- Smal, H.; Ligęza, S.; Wójcikowska-Kapusta, A.; Baran, S.; Urban, D.; Obroślak, R.; Pawłowski, A. Spatial distribution and risk assessment of heavy metals in bottom sediments of two small dam reservoirs (south-east Poland). Arch. Environ. Prot. 2015, 41, 67–80. [Google Scholar] [CrossRef]
- Omran, I.I.; Al-Saati, N.H.; Al-Saati, H.H.; Hashim, K.S.; Al-Saati, Z.N. Sustainability assessment of wastewater treatment techniques in urban areas of Iraq using multi-criteria decision analysis (MCDA). Water Pract. Technol. 2021, 16, 648–660. [Google Scholar] [CrossRef]
- Khan, N.A.; Khan, S.U.; Islam, D.T.; Ahmed, S.; Farooqi, I.H.; Isa, M.H.; Hussain, A.; Changani, F.; Dhingra, A. Performance evaluation of column-SBR in paper and pulp wastewater treatment: Optimization and bio-kinetics. Desalin Water Treat. 2019, 156, 204–219. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.U.; Noor, A.; Farooqi, I.H. GIS application for groundwater management and quality mapping in rural areas of District Agra, India. Int. J. Water Resour. Arid. Environ. 2015, 4, 89–96. [Google Scholar]
- Puttaiah, E.T.; Kiran, B.R. Heavy metal transport in a sewage fed lake of Karnataka, India. In Proceedings of the TAAL: The World Lake Conference, Jaipur, India, 28 October–2 November 2007; pp. 347–354. [Google Scholar]
- Mukherjee, I.; Singh, U.K.; Singh, R.P. An overview on heavy metal contamination of water system and sustainable approach for remediation. In Water Pollution and Management Practices; Springer: Singapore, 2021; pp. 255–277. [Google Scholar]
- Drasch, G.; Schöpfer, J.; Schrauzer, G.N. Selenium/cadmium ratios in human prostates. Biol. Trace Elem. Res. 2005, 103, 103–107. [Google Scholar] [CrossRef]
- Kumar, L.; Chugh, M.; Kumar, S.; Kumar, K.; Sharma, J.; Bharadvaja, N. Remediation of petrorefinery wastewater contaminants: A review on physicochemical and bioremediation strategies. Process Saf. Environ. Prot. 2022, 1, 362–375. [Google Scholar] [CrossRef]
- Simeonov, V.; Stratis, J.; Samara, C.; Zachariadis, G.; Voutsa, D.; Anthemidis, A.; Sofoniou, M.; Kouimtzis, T. Assessment of the surface water quality in Northern Greece. Water Res. 2003, 37, 4119–4124. [Google Scholar] [CrossRef]
- Tamasi, G.; Cini, R. Heavy metals in drinking waters from Mount Amiata (Tuscany, Italy). Possible risks from arsenic for public health in the Province of Siena. Sci. Total Environ. 2004, 327, 41–51. [Google Scholar] [CrossRef]
- Demirak, A.; Yilmaz, F.; Tuna, A.L.; Ozdemir, N. Heavy metals in water, sediment and tissues of Leuciscus cephalus from a stream in southwestern Turkey. Chemosphere 2006, 63, 1451–1458. [Google Scholar] [CrossRef]
- Buschmann, J.; Berg, M.; Stengel, C.; Winkel, L.; Sampson, M.L.; Trang, P.T.K.; Viet, P.H. Contamination of drinking water resources in the Mekong delta floodplains: Arsenic and other trace metals pose serious health risks to population. Environ. Int. 2008, 34, 756–764. [Google Scholar] [CrossRef]
- Karavoltsos, S.; Sakellari, A.; Mihopoulos, N.; Dassenakis, M.; Scoullos, M.J. Evaluation of the quality of drinking water in regions of Greece. Desalination 2008, 224, 317–329. [Google Scholar] [CrossRef]
- El-Harouny, M.A.; El-Dakroory, S.A.; Attalla, S.M.; Hasan, N.A.; Hegazy, R. Chemical quality of tap water versus bottled water: Evaluation of some heavy metals and elements content of drinking water in Dakahlia governorate-Egypt. Mansoura J. Forensic Med. Clin. Toxicol. 2008, 16, 1–15. [Google Scholar] [CrossRef]
- Chakraborti, D.; Rahman, M.M.; Das, B.; Murrill, M.; Dey, S.; Mukherjee, S.C.; Dhar, R.K.; Biswas, B.K.; Chowdhury, U.K.; Roy, S. Status of groundwater arsenic contamination in Bangladesh: A 14-year study report. Water Res. 2010, 44, 5789–5802. [Google Scholar] [CrossRef]
- Ahmad, M.; Islam, S.; Rahman, S.; Haque, M.; Islam, M. Heavy metals in water, sediment and some fishes of Buriganga River, Bangladesh. Int. J. Environ. Res. 2010, 4, 321–332. [Google Scholar]
- Khdary, N.H.; Gassim, A.E. The distribution and accretion of some heavy metals in Makkah Wells. J. Water Resour. Prot. 2014, 6, 48906. [Google Scholar] [CrossRef] [Green Version]
- Mandour, R.; Azab, Y. The prospective toxic effects of some heavy metals overload in surface drinking water of Dakahlia Governorate, Egypt. Int. J. Occup. Environ. Med. 2011, 2, 245–253. [Google Scholar]
- Islam, M.; Karim, M.; Higuchi, T.; Sakakibara, H.; Sekine, M. Comparison of the trace metal concentration of drinking water supply options in southwest coastal areas of Bangladesh. Appl. Water Sci. 2014, 4, 183–191. [Google Scholar] [CrossRef] [Green Version]
- Ojekunle, O.Z.; Ojekunle, O.V.; Adeyemi, A.A.; Taiwo, A.G.; Sangowusi, O.R.; Taiwo, A.M.; Adekitan, A.A. Evaluation of surface water quality indices and ecological risk assessment for heavy metals in scrap yard neighbourhood. SpringerPlus 2016, 5, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Boateng, T.K.; Opoku, F.; Akoto, O. Heavy metal contamination assessment of groundwater quality: A case study of Oti landfill site, Kumasi. Appl. Water Sci. 2019, 9, 1–15. [Google Scholar] [CrossRef] [Green Version]
- de Oliveira, M.T.; Torres, I.M.S.; Ruggeri, H.; Scalize, P.; Albuquerque, A.; Gil, E.d.S. Application of electrocoagulation with a new steel-swarf-based electrode for the removal of heavy metals and total coliforms from sanitary landfill leachate. Appl. Sci. 2021, 11, 5009. [Google Scholar] [CrossRef]
- Stylianou, M.; Montel, E.; Zissimos, A.; Christoforou, I.; Dermentzis, K.; Agapiou, A. Removal of toxic metals and anions from acid mine drainage (AMD) by electrocoagulation: The case of North Mathiatis open cast mine. Sustain. Chem. Pharm. 2022, 29, 100737. [Google Scholar] [CrossRef]
- Beiramzadeh, Z.; Baqersad, M.; Aghababaei, M. Application of the response surface methodology (RSM) in heavy metal removal from real power plant wastewater using electrocoagulation. Eur. J. Environ. Civ. Eng. 2022, 26, 1–20. [Google Scholar] [CrossRef]
- Xu, R.; Yang, Z.; Niu, Y.; Xu, D.; Wang, J.; Han, J.; Wang, H. Removal of microplastics and attached heavy metals from secondary effluent of wastewater treatment plant using interpenetrating bipolar plate electrocoagulation. Sep. Purif. Technol. 2022, 290, 120905. [Google Scholar] [CrossRef]
- Khan, N.A.; Khan, S.U.; Ahmed, S.; Farooqi, I.H.; Dhingra, A.; Hussain, A.; Changani, F. Applications of nanotechnology in water and wastewater treatment: A review. Asian J. Water Environ. Pollut. 2019, 16, 81–86. [Google Scholar] [CrossRef]
- Khadem, M.; Husni Ibrahim, A.; Mokashi, I.; Hasan Fahmi, A.; Noeman Taqui, S.; Mohanavel, V.; Hossain, N.; Baba Koki, I.; Elfasakhany, A.; Dhaif-Allah, M.A. Removal of heavy metals from wastewater using low-cost biochar prepared from jackfruit seed waste. Biomass Convers. Biorefinery 2022, 1–10. [Google Scholar] [CrossRef]
- Zaidi, R.; Khan, S.U.; Azam, A.; Farooqi, I.H. A study on effective adsorption of lead from an aqueous solution using copper oxide nanoparticles. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1058, 012074. [Google Scholar] [CrossRef]
- Kumari, S.; Kumar, R.N. River water treatment using electrocoagulation for removal of acetaminophen and natural organic matter. Chemosphere 2021, 273, 128571. [Google Scholar] [CrossRef]
- Hendaoui, K.; Trabelsi-Ayadi, M.; Ayari, F. Optimization and mechanisms analysis of indigo dye removal using continuous electrocoagulation. Chin. J. Chem. Eng. 2021, 29, 242–252. [Google Scholar] [CrossRef]
- Alam, R.; Sheob, M.; Saeed, B.; Khan, S.U.; Shirinkar, M.; Frontistis, Z.; Basheer, F.; Farooqi, I.H. Use of electrocoagulation for treatment of pharmaceutical compounds in water/wastewater: A review exploring opportunities and challenges. Water 2021, 13, 2105. [Google Scholar] [CrossRef]
- Hashim, K.S.; AlKhaddar, R.; Shaw, A.; Kot, P.; Al-Jumeily, D.; Alwash, R.; Aljefery, M.H. Electrocoagulation as an eco-friendly River water treatment method. In Advances in Water Resources Engineering and Management; Springer: Singapore, 2020; pp. 219–235. [Google Scholar] [CrossRef]
- Taqui, S.N.; Cs, M.; Goodarzi, M.S.; Elkotb, M.A.; Khatoon, B.A.; Soudagar, M.E.M.; Koki, I.B.; Elfasakhany, A.; Khalifa, A.S.; Ali, M.A. Sustainable adsorption method for the remediation of crystal violet dye using nutraceutical industrial fenugreek seed spent. Appl. Sci. 2021, 11, 7635. [Google Scholar] [CrossRef]
- Mahvi, A.; Malakootian, M.; Heidari, M. Comparison of polyaluminum silicate chloride and electrocoagulation process, in natural organic matter removal from surface water in Ghochan, Iran. J. Water Chem. Technol. 2011, 33, 377–385. [Google Scholar] [CrossRef] [Green Version]
- Hashim, K.S.; Ali, S.S.M.; AlRifaie, J.K.; Kot, P.; Shaw, A.; Al Khaddar, R.; Idowu, I.; Gkantou, M. Escherichia coli inactivation using a hybrid ultrasonic–electrocoagulation reactor. Chemosphere 2020, 247, 125868–125875. [Google Scholar] [CrossRef]
- Ölmez, T. The optimization of Cr (VI) reduction and removal by electrocoagulation using response surface methodology. J. Hazard. Mater. 2009, 162, 1371–1378. [Google Scholar] [CrossRef]
- Gholami Borujeni, F.; Mahvi, A.H.; Nejatzadeh-Barandoozi, F. Removal of heavy metal ions from aqueous solution by application of low cost materials. Fresen. Environ. Bull. 2013, 22, 655–658. [Google Scholar]
- Khan, S.U.; Zaidi, R.; Hassan, S.Z.; Farooqi, I.; Azam, A. Application of Fe-Cu binary oxide nanoparticles for the removal of hexavalent chromium from aqueous solution. Water Sci. Technol. 2016, 74, 165–175. [Google Scholar] [CrossRef]
- Chen, Q.; Luo, Z.; Hills, C.; Xue, G.; Tyrer, M. Precipitation of heavy metals from wastewater using simulated flue gas: Sequent additions of fly ash, lime and carbon dioxide. Water Res. 2009, 43, 2605–2614. [Google Scholar] [CrossRef]
- Qdais, H.A.; Moussa, H. Removal of heavy metals from wastewater by membrane processes: A comparative study. Desalination 2004, 164, 105–110. [Google Scholar]
- Tan, J.-j.; Huang, Y.; Wu, Z.-q.; Chen, X. Ion exchange resin on treatment of copper and nickel wastewater. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Zvenigorod, Russia, 4–7 September 2017; p. 012122. [Google Scholar]
- Akbal, F.; Camcı, S. Copper, chromium and nickel removal from metal plating wastewater by electrocoagulation. Desalination 2011, 269, 214–222. [Google Scholar] [CrossRef]
- Goren, A.; Kobya, M. Arsenic removal from groundwater using an aerated electrocoagulation reactor with 3D Al electrodes in the presence of anions. Chemosphere 2021, 263, 128253. [Google Scholar] [CrossRef] [PubMed]
- Mamelkina, M.A.; Tuunila, R.; Sillänpää, M.; Häkkinen, A. Systematic study on sulfate removal from mining waters by electrocoagulation. Sep. Purif. Technol. 2019, 216, 43–50. [Google Scholar] [CrossRef]
- Asaithambi, P.; Govindarajan, R.; Yesuf, M.B.; Selvakumar, P.; Alemayehu, E. Investigation of direct and alternating current–electrocoagulation process for the treatment of distillery industrial effluent: Studies on operating parameters. J. Environ. Chem. Eng. 2021, 9, 104811. [Google Scholar] [CrossRef]
- Ano, J.; Briton, B.G.H.; Kouassi, K.E.; Adouby, K. Nitrate removal by electrocoagulation process using experimental design methodology: A techno-economic optimization. J. Environ. Chem. Eng. 2020, 8, 104292. [Google Scholar] [CrossRef]
- Núñez, J.; Yeber, M.; Cisternas, N.; Thibaut, R.; Medina, P.; Carrasco, C. Application of electrocoagulation for the efficient pollutants removal to reuse the treated wastewater in the dyeing process of the textile industry. J. Hazard. Mater. 2019, 371, 705–711. [Google Scholar] [CrossRef] [PubMed]
- Jallouli, S.; Wali, A.; Buonerba, A.; Zarra, T.; Belgiorno, V.; Naddeo, V.; Ksibi, M. Efficient and sustainable treatment of tannery wastewater by a sequential electrocoagulation-UV photolytic process. J. Water Process Eng. 2020, 38, 101642. [Google Scholar] [CrossRef]
- Dimoglo, A.; Sevim-Elibol, P.; Dinç, Ö.; Gökmen, K.; Erdoğan, H. Electrocoagulation/electroflotation as a combined process for the laundry wastewater purification and reuse. J. Water Process Eng. 2019, 31, 100877. [Google Scholar] [CrossRef]
- Al-Shannag, M.; Al-Qodah, Z.; Bani-Melhem, K.; Qtaishat, M.R.; Alkasrawi, M. Heavy metal ions removal from metal plating wastewater using electrocoagulation: Kinetic study and process performance. Chem. Eng. J. 2015, 260, 749–756. [Google Scholar] [CrossRef]
- Lu, J.; Fan, R.; Wu, H.; Zhang, W.; Li, J.; Zhang, X.; Sun, H.; Liu, D. Simultaneous removal of Cr (VI) and Cu (II) from acid wastewater by electrocoagulation using sacrificial metal anodes. J. Mol. Liq. 2022, 359, 119276. [Google Scholar] [CrossRef]
- Foudhaili, T.; Lefebvre, O.; Coudert, L.; Neculita, C.M. Sulfate removal from mine drainage by electrocoagulation as a stand-alone treatment or polishing step. Miner. Eng. 2020, 152, 106337. [Google Scholar] [CrossRef]
- Mehri, M.; Fallah, N.; Nasernejad, B. Mechanisms of heavy metal and oil removal from synthetic saline oilfield produced water by electrocoagulation. NPJ Clean Water 2021, 4, 1–14. [Google Scholar] [CrossRef]
- Verma, S.K.; Khandegar, V.; Saroha, A.K. Removal of chromium from electroplating industry effluent using electrocoagulation. J. Hazard. Toxic Radioact. Waste 2013, 17, 146–152. [Google Scholar] [CrossRef]
- Dermentzis, K.; Valsamidou, E.; Lazaridou, A.; Kokkinos, N. Nickel removal from wastewater by electrocoagulation with aluminum electrodes. J. Eng. Sci. Technol. Rev. 2011, 4, 188–192. [Google Scholar] [CrossRef]
- Flores, O.J.; Nava, J.L.; Carreño, G. Arsenic removal from groundwater by electrocoagulation process in a filter-press-type FM01-LC reactor. Int. J. Electrochem. Sci 2014, 9, 6658–6667. [Google Scholar]
- Can, B.Z.; Boncukcuoglu, R.; Yilmaz, A.E.; Fil, B.A. Effect of some operational parameters on the arsenic removal by electrocoagulation using iron electrodes. J. Environ. Health Sci. Eng. 2014, 12, 1–10. [Google Scholar] [CrossRef]
- Daniel, R.; Himabindu, V.; Krupadam, R.; Anjaneyulu, Y. Removal of Mercury from Pharmaceutical Wastewaters Using Electrocoagulation: A Cleaner Technology Option. IUP J. Environ. Sci. 2010, 4, 7–15. [Google Scholar]
- Murthy, Z.; Parmar, S. Electrocoagulative treatment of mercury containing aqueous solutions. Water Sci. Technol. 2012, 65, 1468–1474. [Google Scholar] [CrossRef]
- Khan, S.U.; Mahtab, M.S.; Farooqi, I.H. Enhanced lead (II) removal with low energy consumption in an electrocoagulation column employing concentric electrodes: Process optimisation by RSM using CCD. Int. J. Environ. Anal. Chem. 2021, 1–18. [Google Scholar] [CrossRef]
- Kamaraj, R.; Ganesan, P.; Vasudevan, S. Removal of lead from aqueous solutions by electrocoagulation: Isotherm, kinetics and thermodynamic studies. Int. J. Environ. Sci. Technol. 2015, 12, 683–692. [Google Scholar] [CrossRef] [Green Version]
- Dermentzis, K.; Christoforidis, A.; Valsamidou, E. Removal of nickel, copper, zinc and chromium from synthetic and industrial wastewater by electrocoagulation. Int. J. Environ. Sci. 2011, 1, 697–710. [Google Scholar]
- Sasson, M.B.; Calmano, W.; Adin, A. Iron-oxidation processes in an electroflocculation (electrocoagulation) cell. J. Hazard. Mater. 2009, 171, 704–709. [Google Scholar] [CrossRef]
- Parga, J.R.; Cocke, D.L.; Valverde, V.; Gomes, J.A.; Kesmez, M.; Moreno, H.; Weir, M.; Mencer, D. Characterization of electrocoagulation for removal of chromium and arsenic. Chem. Eng. Technol. Ind. Chem.-Plant Equip.-Process Eng.-Biotechnol. 2005, 28, 605–612. [Google Scholar] [CrossRef]
- Al-Anbari, R.H.; Albaidani, J.; Alfatlawi, S.M.; Al-Hamdani, T.A. Removal of heavy metals from industrial water using electro-coagulation technique. In Proceedings of the Twelft International Water Technology Conference, Alexandria, Egypt, 27–30 March 2008. [Google Scholar]
- Kim, T.; Kim, T.-K.; Zoh, K.-D. Removal mechanism of heavy metal (Cu, Ni, Zn, and Cr) in the presence of cyanide during electrocoagulation using Fe and Al electrodes. J. Water Process Eng. 2020, 33, 101109. [Google Scholar] [CrossRef]
- Xie, J.; Zhong, Y.; Yu, Y.; Wang, M.; Guo, Z. Green capturing of Ag from ultra-low concentration precious metal wastewater by electrodeposition assisted with electrocoagulation: Electrochemical behavior and floc characterization. Process Saf. Environ. Prot. 2022, 167, 592–600. [Google Scholar] [CrossRef]
- Barrera-Díaz, C.E.; Balderas-Hernández, P.; Bilyeu, B. Electrocoagulation: Fundamentals and prospectives. In Electrochemical Water and Wastewater Treatment; Elsevier: Amsterdam, The Netherlands, 2018; pp. 61–76. [Google Scholar]
- Safwat, S.M. Treatment of real printing wastewater using electrocoagulation process with titanium and zinc electrodes. J. Water Process Eng. 2020, 34, 101137. [Google Scholar] [CrossRef]
- Hafez, O.M.; Shoeib, M.A.; El-Khateeb, M.A.; Abdel-Shafy, H.I.; Youssef, A.O. Removal of scale forming species from cooling tower blowdown water by electrocoagulation using different electrodes. Chem. Eng. Res. Des. 2018, 136, 347–357. [Google Scholar] [CrossRef]
- Reátegui-Romero, W.; Flores-Del Pino, L.V.; Guerrero-Guevara, J.L.; Castro-Torres, J. Benefits of electrocoagulation in treatment of wastewater: Removal of Fe and Mn metals, oil and grease and cod: Three case studies. Int. J. Appl. Eng. Res. 2018, 13, 6450–6462. [Google Scholar]
- Khosa, M.K.; Jamal, M.A.; Hussain, A.; Muneer, M.; Zia, K.M.; Hafeez, S. Efficiency of Aluminum and Iron Electrodes for the Removal of Heavy Metals [(Ni (II), Pb (II), Cd (II)] by Electrocoagulation Method. J. Korean Chem. Soc. 2013, 57, 316–321. [Google Scholar] [CrossRef]
- Al-Qodah, Z.; Al-Shannag, M. Heavy metal ions removal from wastewater using electrocoagulation processes: A comprehensive review. Sep. Sci. Technol. 2017, 52, 2649–2676. [Google Scholar] [CrossRef]
- Manilal, A.; Soloman, P.; Basha, C.A. Removal of oil and grease from produced water using electrocoagulation. J. Hazard. Toxic Radioact. Waste 2020, 24, 04019023. [Google Scholar] [CrossRef]
- Mena, V.; Betancor-Abreu, A.; González, S.; Delgado, S.; Souto, R.; Santana, J. Fluoride removal from natural volcanic underground water by an electrocoagulation process: Parametric and cost evaluations. J. Environ. Manag. 2019, 246, 472–483. [Google Scholar] [CrossRef]
- Müller, D.; Stirn, C.N.; Maier, M.V. Arsenic Removal from Highly Contaminated Groundwater by Iron Electrocoagulation—Investigation of Process Parameters and Iron Dosage Calculation. Water 2021, 13, 687. [Google Scholar] [CrossRef]
- Asaithambi, P.; Aziz, A.R.A.; Daud, W.M.A.B.W. Integrated ozone—Electrocoagulation process for the removal of pollutant from industrial effluent: Optimization through response surface methodology. Chem. Eng. Process. Process Intensif. 2016, 105, 92–102. [Google Scholar] [CrossRef]
- Khan, S.U.; Islam, D.T.; Farooqi, I.H.; Ayub, S.; Basheer, F. Hexavalent chromium removal in an electrocoagulation column reactor: Process optimization using CCD, adsorption kinetics and pH modulated sludge formation. Process Saf. Environ. Prot. 2019, 122, 118–130. [Google Scholar] [CrossRef]
- Balarak, D.; Chandrika, K.; Attaolahi, M. Assessment of effective operational parameters on removal of amoxicillin from synthetic wastewater using electrocoagulation process. J. Pharm. Res. Int. 2019, 29, 8. [Google Scholar] [CrossRef] [Green Version]
- AlJaberi, F.Y. Removal of TOC from oily wastewater by electrocoagulation technology. Proc. IOP Conf. Ser. Mater. Sci. Eng. 2020, 928, 022024. [Google Scholar] [CrossRef]
- Signorelli, S.C.M.; Costa, J.M.; de Almeida Neto, A.F. Electrocoagulation-flotation for orange II dye removal: Kinetics, costs, and process variables effects. J. Environ. Chem. Eng. 2021, 9, 106157. [Google Scholar] [CrossRef]
- Patel, S.R.; Parikh, S.P. Chromium removal from industrial effluent by electrocoagulation: Operating cost and kinetic analysis. J. Environ. Treat. Tech. 2021, 9, 621–628. [Google Scholar]
- Alkurdi, S.S.; Abbar, A.H. Removal of COD from Petroleum refinery Wastewater by Electro-Coagulation Process Using SS/Al electrodes. Proc. IOP Conf. Ser. Mater. Sci. Eng. 2020, 870, 012052. [Google Scholar] [CrossRef]
- Danial, R.; Abdullah, L.C.; Sobri, S. Potential of copper electrodes in electrocoagulation process for glyphosate herbicide removal. Proc. MATEC Web Conf. 2017, 103, 06019. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.; Dollar, O.; Shafer-Peltier, K.; Randtke, S.; Waseem, S.; Peltier, E. Boron removal by electrocoagulation: Removal mechanism, adsorption models and factors influencing removal. Water Res. 2020, 170, 115362. [Google Scholar] [CrossRef] [PubMed]
- Nyangi, M.J.; Chebude, Y.; Kilulya, K.F.; Andrew, M. Simultaneous removal of fluoride and arsenic from water by hybrid Al-Fe electrocoagulation: Process optimization through surface response method. Sep. Sci. Technol. 2021, 56, 2648–2658. [Google Scholar] [CrossRef]
- Chen, X.; Ren, P.; Li, T.; Trembly, J.P.; Liu, X. Zinc removal from model wastewater by electrocoagulation: Processing, kinetics and mechanism. Chem. Eng. J. 2018, 349, 358–367. [Google Scholar] [CrossRef]
- Genawi, N.M.; Ibrahim, M.H.; El-Naas, M.H.; Alshaik, A.E. Chromium removal from tannery wastewater by electrocoagulation: Optimization and sludge characterization. Water 2020, 12, 1374. [Google Scholar] [CrossRef]
- Othmani, A.; Kadier, A.; Singh, R.; Igwegb, C.A.; Bouzid, M.; Aquatar, M.O.; Khanday, W.A.; Bote, M.E.; Damiri, F.; Gökkuş, Ö. A comprehensive review on green perspectives of electrocoagulation integrated with advanced processes for effective pollutants removal from water environment. Environ. Res. 2022, 215, 114294. [Google Scholar] [CrossRef]
- Bagastyo, A. Electrocoagulation for drinking water treatment: A review. Proc. IOP Conf. Ser. Earth Environ. Sci. 2021, 623, 012016. [Google Scholar]
- Anwer, E.A.; Majeed, B.A.A. Different electrodes connections in electrocoagulation of synthetic blow down water of cooling tower. Iraqi J. Chem. Pet. Eng. 2020, 21, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Khaled, B.; Wided, B.; Béchir, H.; Elimame, E.; Mouna, L.; Zied, T. Investigation of electrocoagulation reactor design parameters effect on the removal of cadmium from synthetic and phosphate industrial wastewater. Arab. J. Chem. 2019, 12, 1848–1859. [Google Scholar] [CrossRef]
- Al Aji, B. A Comparison Between monopolar and bipolar Electrode configurations on Removal of chromium from synthetic wastewater by Electrocoagulation Process. J. Res. Sci. Stud. 2016, 38, 525–537. [Google Scholar]
- Khandegar, V.; Saroha, A.K. Electrochemical treatment of effluent from small-scale dyeing unit. Indian Chem. Eng. 2013, 55, 112–120. [Google Scholar] [CrossRef]
- Salman, R.H.; Hassan, H.A.; Abed, K.M.; Al-Alawy, A.F.; Tuama, D.A.; Hussein, K.M.; Jabir, H.A. Removal of chromium ions from a real wastewater of leather industry using electrocoagulation and reverse osmosis processes. Proc. AIP Conf. Proc. 2020, 2213, 020186. [Google Scholar]
- Mohammadi, A.; Khadir, A.; Tehrani, R.M. Optimization of nitrogen removal from an anaerobic digester effluent by electrocoagulation process. J. Environ. Chem. Eng. 2019, 7, 103195. [Google Scholar] [CrossRef]
- Maghanga, J.; Segor, K.; Irina, J.; Tole, M. Effect of Process Parameters on the Electro Coagulation of Azo-Dye Wastewater in a Kenyan Textile Factory. IOSR J. Appl. Chem. 2017, 10, 1–7. [Google Scholar]
- Naje, A.S.; Chelliapan, S.; Zakaria, Z.; Abbas, S.A. Electrocoagulation using a rotated anode: A novel reactor design for textile wastewater treatment. J. Environ. Manag. 2016, 176, 34–44. [Google Scholar] [CrossRef]
- Liu, S.; Ye, X.; He, K.; Chen, Y.; Hu, Y. Simultaneous removal of Ni (II) and fluoride from a real flue gas desulfurization wastewater by electrocoagulation using Fe/C/Al electrode. J. Water Reuse Desalination 2017, 7, 288–297. [Google Scholar] [CrossRef] [Green Version]
- Naje, A.S.; Chelliapan, S.; Zakaria, Z.; Ajeel, M.A.; Alaba, P.A. A review of electrocoagulation technology for the treatment of textile wastewater. Rev. Chem. Eng. 2017, 33, 263–292. [Google Scholar] [CrossRef]
- Bao, J.; Yu, W.-J.; Liu, Y.; Wang, X.; Liu, Z.-Q.; Duan, Y.-F. Removal of perfluoroalkanesulfonic acids (PFSAs) from synthetic and natural groundwater by electrocoagulation. Chemosphere 2020, 248, 125951. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, X.-M.; Zhao, Y.; Wang, J.; Lu, M.-X.; Peng, F.-H.; Bao, J. Removal of perfluorooctanoic acid in simulated and natural waters with different electrode materials by electrocoagulation. Chemosphere 2018, 201, 303–309. [Google Scholar] [CrossRef]
- Kamaraj, R.; Ganesan, P.; Lakshmi, J.; Vasudevan, S. Removal of copper from water by electrocoagulation process—Effect of alternating current (AC) and direct current (DC). Environ. Sci. Pollut. Res. 2013, 20, 399–412. [Google Scholar] [CrossRef]
- Yılmaz, A.E.; Boncukcuoğlu, R.; Kocaker, M.M.; Kocadağistan, E. An empirical model for kinetics of boron removal from boroncontaining wastewaters by the electrocoagulation method in a batch reactor. Desalination 2008, 230, 288–297. [Google Scholar] [CrossRef]
- Xi, Y.; Luo, Y.; Luo, J.; Luo, X. Removal of cadmium (II) from wastewater using novel cadmium ion-imprinted polymers. J. Chem. Eng. Data 2015, 60, 3253–3261. [Google Scholar] [CrossRef]
- Vasudevan, S.; Lakshmi, J.; Packiyam, M. Electrocoagulation studies on removal of cadmium using magnesium electrode. J. Appl. Electrochem. 2010, 40, 2023–2032. [Google Scholar] [CrossRef]
- Vasudevan, S.; Lakshmi, J.; Sozhan, G. Optimization of electrocoagulation process for the simultaneous removal of mercury, lead, and nickel from contaminated water. Environ. Sci. Pollut. Res. 2012, 19, 2734–2744. [Google Scholar] [CrossRef] [PubMed]
- Chithra, K.; Balasubramanian, N. Modeling electrocoagulation through adsorption kinetics. J. Model. Simul. Syst. 2010, 1, 124–130. [Google Scholar]
- Shafaei, A.; Rezaie, M.; Nikazar, M. Evaluation of Mn2+ and Co2+ removal by electrocoagulation: A case study. Chem. Eng. Process. Process Intensif. 2011, 50, 1115–1121. [Google Scholar] [CrossRef]
- Kabdaşlı, I.; Arslan, T.; Ölmez-Hancı, T.; Arslan-Alaton, I.; Tünay, O. Complexing agent and heavy metal removals from metal plating effluent by electrocoagulation with stainless steel electrodes. J. Hazard. Mater. 2009, 165, 838–845. [Google Scholar] [CrossRef]
- Kobya, M.; Demirbas, E.; Ulu, F. Evaluation of operating parameters with respect to charge loading on the removal efficiency of arsenic from potable water by electrocoagulation. J. Environ. Chem. Eng. 2016, 4, 1484–1494. [Google Scholar] [CrossRef]
- Rehman, A.; Kimb, M.; Reverberic, A.; Fabianoa, B. Operational parameter influence on heavy metal removal from metal plating wastewater by electrocoagulation process. Transactions 2015, 43, 2251–2256. [Google Scholar]
- Chou, W.-L.; Huang, Y.-H. Electrochemical removal of indium ions from aqueous solution using iron electrodes. J. Hazard. Mater. 2009, 172, 46–53. [Google Scholar] [CrossRef]
- Hashim, K.S.; Shaw, A.; Al Khaddar, R.; Pedrola, M.O.; Phipps, D. Iron removal, energy consumption and operating cost of electrocoagulation of drinking water using a new flow column reactor. J. Environ. Manag. 2017, 189, 98–108. [Google Scholar] [CrossRef]
- Moussa, D.T.; El-Naas, M.H.; Nasser, M.; Al-Marri, M.J. A comprehensive review of electrocoagulation for water treatment: Potentials and challenges. J. Environ. Manag. 2017, 186, 24–41. [Google Scholar] [CrossRef]
- Kobya, M.; Demirbas, E.; Bayramoglu, M.; Sensoy, M. Optimization of electrocoagulation process for the treatment of metal cutting wastewaters with response surface methodology. Water Air Soil Pollut. 2011, 215, 399–410. [Google Scholar] [CrossRef]
- Shaker, O.A.; Safwat, S.M.; Matta, M.E. Nickel removal from wastewater using electrocoagulation process with zinc electrodes under various operating conditions: Performance investigation, mechanism exploration, and cost analysis. Environ. Sci. Pollut. Res. 2022, 1–13. [Google Scholar] [CrossRef]
- Mateen, Q.S.; Khan, S.U.; Islam, D.T.; Khan, N.A.; Farooqi, I.H. Copper (II) removal in a column reactor using electrocoagulation: Parametric optimization by response surface methodology using central composite design. Water Environ. Res. 2020, 92, 1350–1362. [Google Scholar] [CrossRef]
- Khan, S.U.; Farooqi, I.H.; Usman, M.; Basheer, F. Energy efficient rapid removal of arsenic in an electrocoagulation reactor with hybrid Fe/Al electrodes: Process optimization using CCD and kinetic modeling. Water 2020, 12, 2876. [Google Scholar] [CrossRef]
- Al Aji, B.; Yavuz, Y.; Koparal, A.S. Electrocoagulation of heavy metals containing model wastewater using monopolar iron electrodes. Sep. Purif. Technol. 2012, 86, 248–254. [Google Scholar] [CrossRef]
- Thakur, L.S.; Goyal, H.; Mondal, P. Simultaneous removal of arsenic and fluoride from synthetic solution through continuous electrocoagulation: Operating cost and sludge utilization. J. Environ. Chem. Eng. 2019, 7, 102829. [Google Scholar] [CrossRef]
- Yilmaz, A.E.; Bayar, S.; Boncukcuoglu, R.; Fil, B.A. Removal of cadmium by electrocoagulation and a cost evaluation. Ekoloji 2012, 21, 26–33. [Google Scholar] [CrossRef]
- Nouri, J.; Mahvi, A.; Bazrafshan, E. Application of electrocoagulation process in removal of zinc and copper from aqueous solutions by aluminum electrodes. Int. J. Environ. Res. 2010, 4, 201–208. [Google Scholar]
- Ozyonar, F.; Karagozoglu, B. Operating cost analysis and treatment of domestic wastewater by electrocoagulation using aluminum electrodes. Pol. J. Environ. Stud. 2011, 20, 173. [Google Scholar]
- Palahouane, B.; Drouiche, N.; Aoudj, S.; Bensadok, K. Cost-effective electrocoagulation process for the remediation of fluoride from pretreated photovoltaic wastewater. J. Ind. Eng. Chem. 2015, 22, 127–131. [Google Scholar] [CrossRef]
- Dalvand, A.; Gholami, M.; Joneidi, A.; Mahmoodi, N.M. Dye removal, energy consumption and operating cost of electrocoagulation of textile wastewater as a clean process. Clean–Soil Air Water 2011, 39, 665–672. [Google Scholar] [CrossRef]
S. No | Heavy Metals | Country/Region | Source Type | Contamination Source/Reason | Reference |
---|---|---|---|---|---|
1. | Chromium, lead, copper, manganese and iron | North Greece | Surface water used for drinking | Effluents discharged from industries and leaching with soil | [11] |
2. | Arsenic, iron, lead, copper and zinc | Amiata and Siena, Italy | Drinking water supplies | Leaching with water-distributing pipes | [12] |
3. | Chromium, lead, copper, cadmium and zinc | Dipsiz stream, Turkey | Surface water | Coal-fired power plant | [13] |
4. | Arsenic and manganese | South Vietnam and Cambodia | Groundwater | Geogenic | [14] |
5. | Cadmium, chromium, lead, copper and nickel | Greece | Drinking water supplies | Geogenic and anthropogenic activities | [15] |
6. | Lead, arsenic, cadmium and zinc | Dakahliya Governorate, Egypt | Tap water | Corrosion in plumbing fixtures | [16] |
7. | Arsenic | Coastal areas and 64 districts, Bangladesh | Tube wells of shallow depth | Subsurface contamination | [17] |
8. | Chromium, lead, copper, cadmium and nickel | Bangladesh | Buriganga river | Effluents from tanneries, other industrial outlets and pesticides | [18] |
9. | Arsenic, chromium, and selenium | Makkah, Kingdom Saudi Arabia | Groundwater | Geological activity | [19] |
10. | Cadmium and lead | Egypt | Water distribution system | Battery, steel and plastic making industries | [20] |
11. | Lead | Southwest Bangladesh | Rainwater harvesting structures | Dissolutions from atmosphere | [21] |
12. | Cadmium, Lead | Lagos State, Nigeria | surface water | scrap yard waste | [22] |
13. | Cadmium, lead and iron | Kumasi district, Ghana | Groundwater from boreholes | Industrial waste from paint industries, municipal sewage and anthropogenic waste | [23] |
14. | Chromium, zinc, copper, manganese, nickel, lead and iron | Goiânia, Brazil | Leachate | Sanitary landfill | [24] |
15. | Chromium, zinc, copper, manganese, nickel and iron | North Mathiatis mine Nicosia, Cyprus | Open cast mine | Mine drainage | [25] |
16. | Nickel and iron | Qazvin, Iran | Thermal power plant | Boiler, air preheater and washing | [26] |
17. | Copper | Eco-city, Bohai bay | Sewage samples | Wastewater treatment plant | [27] |
S. No | Treatment Technique | Target Metal Ion | Efficiency % | Advantages | Disadvantages | References |
---|---|---|---|---|---|---|
1. | Adsorption | Cd2+ & Cr6+ | 55–60 | Low cost, simple technique | Moderately efficient, Regenerative power declines substantially | [39] |
2. | Nano-adsorption | Pb2+, Cr6+ | 90–99% | Selective removal, Highly efficient | Costly, bulk production is not possible | [40] |
3. | Coagulation and chemical precipitation | Cu2+, Cr3+, Pb2+ & Zn2+ | 99.3–99.6 | Easily operational, Ease of sludge settling & dewatering | Costly, high consumption of chemicals, huge sludge production | [41] |
4. | Nano filtration | Cu2+ | 96 | Highly efficient, reliable | Low anti-compacting ability | [42] |
5. | Ion exchange | Cu2+ & Ni2+ | 99.14–99.33 | Selective removal, high regenerability | Costly disposal problems with regenerative fluids | [43] |
6. | Electrochemical | Ni2+, Cr6+ | 98–100 | Highly efficient, no chemical requirement | High operational cost | [44] |
S. No | Metal Ion | Initial Conc. (ppm) | pH | Electrode Material | Current Density (A/m2) or Current (A) | %Removal Efficiency | References |
---|---|---|---|---|---|---|---|
1. | Ni & Fe | - | 8.1 | Fe-Fe | 1.5 A | 99 | [26] |
2. | Cr, Ni and Cu | - | 6 | Al-Al | 12 | 84.55, 89.65 and 95.16 | [27] |
3. | Cr and Cu | Cu0 = 20 | 4 & 6 | Al-Al | 11.57 | 93 and 99.4 | [53] |
4. | Fe, Zn, Mn, Cu, Ni, Cd and Cr | - | 2.6 | Al-Al | 20 mA/cm2 | 100 | [25] |
5. | SO42− | - | 2.4 | Fe-Fe | 200 | 10 | [54] |
6. | Cd | - | 7 | Fe/Cu/Zn | 25 mA/cm2 | 99.73, 99.9, 82 | [55] |
7. | Cr | 887 | 6 | Fe-Fe | - | 100 | [56] |
8. | Ni | 300 | 4–8 | Al-Al | 400 | 100 | [57] |
9. | As(III) | 50 | 7.5 | Al-Al | 60 | 92.2 | [58] |
50 | 4 | Fe-Fe | 5.4 | 98.42 | [59] | ||
10. | Hg | 41 | 3–7 | Al-Fe | 40 | 99.95 | [60] |
20 | 3–7 | Al-SS | 30 | 99 | [61] | ||
11. | Pb | 41 | 6 | Al-Fe | 23 | 98.2 | [62] |
2 | 7 | Fe-Fe | 80 | 99.3 | [63] | ||
12. | Zn | 75 | 4–8 | Al-Al | 400 | 100 | [64] |
20.4 | 9.5 | Fe-Fe | 40 | 97 | [52] |
S. No | Target Metal Ions (Pollutants) | Anode Employed | Kinetic Model | Reference |
---|---|---|---|---|
1. | Cu, Zn and Ni | Iron | Pseudo-second-order | [52] |
2. | Hg, Ni and Pb | Magnesium | Second-order | [109] |
3. | As | Iron and Aluminum | First-order | [110] |
4. | Co and Mn | Aluminum | First-order | [111] |
5. | Ni and Zn | Stainless steel | Pseudo-first-order | [112] |
6. | As | Iron | Pseudo Second order | [113] |
7. | Cu, Pb and Ni | Aluminum and Iron | Pseudo-first-order | [114] |
8. | Cd | Magnesium | Second-order | [108] |
9. | Pb | Magnesium | Second-order | [63] |
10. | Fe | Iron | Second-order | [115] |
S. No | Metal | Parameters | Removal (%) | Energy Consumption | Operating Cost | References | |
---|---|---|---|---|---|---|---|
Local Currency | USD | ||||||
1. | Copper | Applied current 0.26 A, pH 7, Time 5.4 min, Initial Concentration 27.8 ppm | 95% | 0.903 W-h/g Cu(II) | 0.134 INR/g removal | 0.002 US$/g | [120] |
2. | Arsenic | Applied current 0.46 A, pH 7, Initial concentration 10 ppm, Time 2 min | 95% | 3.1 W-h/g total As | 0.0974 INR/g removal | 0.0013 US$/g | [121] |
3. | Chromium | Applied Current 1.48 A, pH 3, Time 21.47 min Initial Concentration 49.96 ppm, | 100% | 12.97 W-h/g Cr (VI) | 0.956 INR/g removal | 0.013 USD/g | [28] |
4. | Copper, Zinc, Nickel and Manganese | Current density 25 mA/cm2, Time 50 min | 49 kWh/m3 | €3.43/m3 | 3.77 USD/m3 | [122] | |
5. | Iron | Initial concentration 20 ppm, Time 20 min, pH 6, Current density 1.5 mA/cm2 | 98% | 3.2 kWh/m3 | 0.22 USD/m3 | [116] | |
6. | Arsenic and Fluoride | Run time -95 min Flow Rate -0.88 L/h | 0.358 USD/m3 | [123] | |||
7. | Copper Chromium Nickel | pH 3.0, Time 20 min, Current 10 mA/cm2 | Cu-100% Cr-100% Ni-100% | 10.07 kWh/m3 | [44] | ||
8. | Cadmium | Initial concentration 250 ppm, pH 6, Current density 0.25 mA/cm2 | 58% | 0.363 kWh/m3 | 0.42 €/m3 | 0.46 USD/m3 | [124] |
9. | Zinc and Copper | Initial Concentration 500 ppm, pH 7, Electric potential 40 V. | Zinc-99.5% Copper-99.7% | Zn- 0.095 kWh/g Cu- 0.29 kWh/g | [125] | ||
10. | Domestic Wastewater | Current density-100 A/m2, pH 7, Time 10 min | COD- 72% Turbidity-98% Phosphorus- 98% | 8.9 kWh/m3 | 0.86 USD/m3 | [126] | |
11. | Fluoride | pH-7, Current density 18.51 A/m2 | 85% | 3.43 kWh/m3 | [127] | ||
12. | Textile Water | Initial concentration 50 ppm, electrode distance 1 cm, time 30 min | 98.59% | 1.303 kWh/m | 0.256 USD/m3 | [128] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, S.U.; Khalid, M.; Hashim, K.; Jamadi, M.H.; Mousazadeh, M.; Basheer, F.; Farooqi, I.H. Efficacy of Electrocoagulation Treatment for the Abatement of Heavy Metals: An Overview of Critical Processing Factors, Kinetic Models and Cost Analysis. Sustainability 2023, 15, 1708. https://doi.org/10.3390/su15021708
Khan SU, Khalid M, Hashim K, Jamadi MH, Mousazadeh M, Basheer F, Farooqi IH. Efficacy of Electrocoagulation Treatment for the Abatement of Heavy Metals: An Overview of Critical Processing Factors, Kinetic Models and Cost Analysis. Sustainability. 2023; 15(2):1708. https://doi.org/10.3390/su15021708
Chicago/Turabian StyleKhan, Saif Ullah, Mohammad Khalid, Khalid Hashim, Mehdi Hassanvand Jamadi, Milad Mousazadeh, Farrukh Basheer, and Izharul Haq Farooqi. 2023. "Efficacy of Electrocoagulation Treatment for the Abatement of Heavy Metals: An Overview of Critical Processing Factors, Kinetic Models and Cost Analysis" Sustainability 15, no. 2: 1708. https://doi.org/10.3390/su15021708
APA StyleKhan, S. U., Khalid, M., Hashim, K., Jamadi, M. H., Mousazadeh, M., Basheer, F., & Farooqi, I. H. (2023). Efficacy of Electrocoagulation Treatment for the Abatement of Heavy Metals: An Overview of Critical Processing Factors, Kinetic Models and Cost Analysis. Sustainability, 15(2), 1708. https://doi.org/10.3390/su15021708