Macroinvertebrate Community Responses to Multiple Pressures in a Peri-Urban Mediterranean River
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Water Sampling and Lab Analyses
2.3. Macroinvertebrate Sampling and Analyses
2.4. Statistical Analyses
3. Results
3.1. Physicochemical Parameters and Nutrients
3.2. Abundance and Diversity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wen, Y.; Schoups, G.; Van De Giesen, N. Organic Pollution of Rivers: Combined Threats of Urbanization, Livestock Farming and Global Climate Change. Sci. Rep. 2017, 7, 43289. [Google Scholar] [CrossRef]
- Mahmoud, S.H.; Gan, T.Y. Impact of Anthropogenic Climate Change and Human Activities on Environment and Ecosystem Services in Arid Regions. Sci. Total Environ. 2018, 633, 1329–1344. [Google Scholar] [CrossRef]
- Fernandes, A.C.P.; Sanches Fernandes, L.F.; Moura, J.P.; Cortes, R.M.V.; Pacheco, F.A.L. A Structural Equation Model to Predict Macroinvertebrate-Based Ecological Status in Catchments Influenced by Anthropogenic Pressures. Sci. Total Environ. 2019, 681, 242–257. [Google Scholar] [CrossRef]
- Grill, G.; Lehner, B.; Thieme, M.; Geenen, B.; Tickner, D.; Antonelli, F.; Babu, S.; Borrelli, P.; Cheng, L.; Crochetiere, H.; et al. Mapping the World’s Free-Flowing Rivers. Nature 2019, 569, 215–221. [Google Scholar] [CrossRef] [PubMed]
- Vörösmarty, C.J.; McIntyre, P.B.; Gessner, M.O.; Dudgeon, D.; Prusevich, A.; Green, P.; Glidden, S.; Bunn, S.E.; Sullivan, C.A.; Liermann, C.R.; et al. Global Threats to Human Water Security and River Biodiversity. Nature 2010, 467, 555–561. [Google Scholar] [CrossRef] [PubMed]
- Ding, J.; Jiang, Y.; Liu, Q.; Hou, Z.; Liao, J.; Fu, L.; Peng, Q. Influences of the Land Use Pattern on Water Quality in Low-Order Streams of the Dongjiang River Basin, China: A Multi-Scale Analysis. Sci. Total Environ. 2016, 551–552, 205–216. [Google Scholar] [CrossRef] [PubMed]
- Dalu, T.; Wasserman, R.J.; Magoro, M.L.; Froneman, P.W.; Weyl, O.L.F. River Nutrient Water and Sediment Measurements Inform on Nutrient Retention, with Implications for Eutrophication. Sci. Total Environ. 2019, 684, 296–302. [Google Scholar] [CrossRef]
- Valera, C.; Pissarra, T.; Filho, M.; Valle Júnior, R.; Oliveira, C.; Moura, J.; Sanches Fernandes, L.; Pacheco, F. The Buffer Capacity of Riparian Vegetation to Control Water Quality in Anthropogenic Catchments from a Legally Protected Area: A Critical View over the Brazilian New Forest Code. Water 2019, 11, 549. [Google Scholar] [CrossRef]
- Dosskey, M.G.; Vidon, P.; Gurwick, N.P.; Allan, C.J.; Duval, T.P.; Lowrance, R. The Role of Riparian Vegetation in Protecting and Improving Chemical Water Quality in Streams. J. Am. Water Resour. Assoc. 2010, 46, 261–277. [Google Scholar] [CrossRef]
- Jampani, M.; Amerasinghe, P.; Liedl, R.; Locher-Krause, K.; Hülsmann, S. Multi-Functionality and Land Use Dynamics in a Peri-Urban Environment Influenced by Wastewater Irrigation. Sustain. Cities Soc. 2020, 62, 102305. [Google Scholar] [CrossRef]
- Pinto, U.; Maheshwari, B. A Framework for Assessing River Health in Peri-Urban Landscapes. Ecohydrol. Hydrobiol. 2014, 14, 121–131. [Google Scholar] [CrossRef]
- Wei, G.; Yang, Z.; Cui, B.; Li, B.; Chen, H.; Bai, J.; Dong, S. Impact of Dam Construction on Water Quality and Water Self-Purification Capacity of the Lancang River, China. Water Resour Manag. 2009, 23, 1763–1780. [Google Scholar] [CrossRef]
- Mantyka-Pringle, C.S.; Martin, T.G.; Moffatt, D.B.; Linke, S.; Rhodes, J.R. Understanding and Predicting the Combined Effects of Climate Change and Land-use Change on Freshwater Macroinvertebrates and Fish. J. Appl. Ecol. 2014, 51, 572–581. [Google Scholar] [CrossRef]
- Seebens, H.; Blackburn, T.M.; Dyer, E.E.; Genovesi, P.; Hulme, P.E.; Jeschke, J.M.; Pagad, S.; Pyšek, P.; Winter, M.; Arianoutsou, M.; et al. No Saturation in the Accumulation of Alien Species Worldwide. Nat. Commun. 2017, 8, 14435. [Google Scholar] [CrossRef] [PubMed]
- Birk, S.; Chapman, D.; Carvalho, L.; Spears, B.M.; Andersen, H.E.; Argillier, C.; Auer, S.; Baattrup-Pedersen, A.; Banin, L.; Beklioğlu, M.; et al. Impacts of Multiple Stressors on Freshwater Biota across Spatial Scales and Ecosystems. Nat. Ecol. Evol. 2020, 4, 1060–1068. [Google Scholar] [CrossRef] [PubMed]
- Tornwall, B.; Sokol, E.; Skelton, J.; Brown, B. Trends in Stream Biodiversity Research since the River Continuum Concept. Diversity 2015, 7, 16–35. [Google Scholar] [CrossRef]
- Qu, Y.; Keller, V.; Bachiller-Jareno, N.; Eastman, M.; Edwards, F.; Jürgens, M.D.; Sumpter, J.P.; Johnson, A.C. Significant Improvement in Freshwater Invertebrate Biodiversity in All Types of English Rivers over the Past 30 Years. Sci. Total Environ. 2023, 905, 167144. [Google Scholar] [CrossRef] [PubMed]
- Parker, H.; Oates, N. How Do Healthy Rivers Benefit Society? A Review of the Evidence; ODI and WWF: London, UK, 2016. [Google Scholar]
- Directive 2000/60/EC; Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 Establishing a Framework for Community Action in the Field of Water Policy 2000. The European Parliament and the Council of the European Union: Luxemburg, 2000.
- European Environment Agency Water Framework Directive—2nd River Basin Management Plans—European Environment Agency. Available online: https://www.eea.europa.eu/data-and-maps/explore-interactive-maps/water-framework-directive-2nd-rbmp (accessed on 8 October 2023).
- Bruno, D.; Belmar, O.; Sánchez-Fernández, D.; Guareschi, S.; Millán, A.; Velasco, J. Responses of Mediterranean Aquatic and Riparian Communities to Human Pressures at Different Spatial Scales. Ecol. Indic. 2014, 45, 456–464. [Google Scholar] [CrossRef]
- Buss, D.F.; Carlisle, D.M.; Chon, T.-S.; Culp, J.; Harding, J.S.; Keizer-Vlek, H.E.; Robinson, W.A.; Strachan, S.; Thirion, C.; Hughes, R.M. Stream Biomonitoring Using Macroinvertebrates around the Globe: A Comparison of Large-Scale Programs. Environ. Monit. Assess. 2015, 187, 4132. [Google Scholar] [CrossRef]
- Bonada, N.; Prat, N.; Resh, V.H.; Statzner, B. Developments in Aquatic Insect Biomonitoring: A Comparative Analysis of Recent Approaches. Annu. Rev. Entomol. 2006, 51, 495–523. [Google Scholar] [CrossRef]
- Ramos-Merchante, A.; Prenda, J. Macroinvertebrate Taxa Richness Uncertainty and Kick Sampling in the Establishment of Mediterranean Rivers Ecological Status. Ecol. Indic. 2017, 72, 1–12. [Google Scholar] [CrossRef]
- Carvalho, L.; Mackay, E.B.; Cardoso, A.C.; Baattrup-Pedersen, A.; Birk, S.; Blackstock, K.L.; Borics, G.; Borja, A.; Feld, C.K.; Ferreira, M.T.; et al. Protecting and Restoring Europe’s Waters: An Analysis of the Future Development Needs of the Water Framework Directive. Sci. Total Environ. 2019, 658, 1228–1238. [Google Scholar] [CrossRef] [PubMed]
- Arbačiauskas, K.; Semenchenko, V.; Grabowski, M.; Leuven, R.; Paunović, M.; Son, M.; Csányi, B.; Gumuliauskaitė, S.; Konopacka, A.; Nehring, S.; et al. Assessment of Biocontamination of Benthic Macroinvertebrate Communities in European Inland Waterways. AI 2008, 3, 211–230. [Google Scholar] [CrossRef]
- Laini, A.; Viaroli, P.; Bolpagni, R.; Cancellario, T.; Racchetti, E.; Guareschi, S. Taxonomic and Functional Responses of Benthic Macroinvertebrate Communities to Hydrological and Water Quality Variations in a Heavily Regulated River. Water 2019, 11, 1478. [Google Scholar] [CrossRef]
- Pinto, I.; Rodrigues, S.; Antunes, S.C. Assessment of the Benthic Macroinvertebrate Communities in the Evaluation of the Water Quality of Portuguese Reservoirs: An Experimental Approach. Water 2021, 13, 3391. [Google Scholar] [CrossRef]
- Miliša, M.; Stubbington, R.; Datry, T.; Cid, N.; Bonada, N.; Šumanović, M.; Milošević, D. Taxon-Specific Sensitivities to Flow Intermittence Reveal Macroinvertebrates as Potential Bioindicators of Intermittent Rivers and Streams. Sci. Total Environ. 2022, 804, 150022. [Google Scholar] [CrossRef] [PubMed]
- Matono, P.; Bernardo, J.M.; Oberdorff, T.; Ilhéu, M. Effects of Natural Hydrological Variability on Fish Assemblages in Small Mediterranean Streams: Implications for Ecological Assessment. Ecol. Indic. 2012, 23, 467–481. [Google Scholar] [CrossRef]
- Kalogianni, E.; Vourka, A.; Karaouzas, I.; Vardakas, L.; Laschou, S.; Skoulikidis, N.T. Combined Effects of Water Stress and Pollution on Macroinvertebrate and Fish Assemblages in a Mediterranean Intermittent River. Sci. Total Environ. 2017, 603–604, 639–650. [Google Scholar] [CrossRef]
- Prat, N.; Gallart, F.; Von Schiller, D.; Polesello, S.; García-Roger, E.M.; Latron, J.; Rieradevall, M.; Llorens, P.; Barberá, G.G.; Brito, D.; et al. The MIRAGE TOOLBOX: An Integarted Assessment Tool for Temporary Streams. River Res. Apps. 2014, 30, 1318–1334. [Google Scholar] [CrossRef]
- Tonkin, J.D.; Bogan, M.T.; Bonada, N.; Rios-Touma, B.; Lytle, D.A. Seasonality and Predictability Shape Temporal Species Diversity. Ecology 2017, 98, 1201–1216. [Google Scholar] [CrossRef]
- Arenas-Sánchez, A.; Dolédec, S.; Vighi, M.; Rico, A. Effects of Anthropogenic Pollution and Hydrological Variation on Macroinvertebrates in Mediterranean Rivers: A Case-Study in the Upper Tagus River Basin (Spain). Sci. Total Environ. 2021, 766, 144044. [Google Scholar] [CrossRef] [PubMed]
- Sabater, S.; Barceló, D.; De Castro-Català, N.; Ginebreda, A.; Kuzmanovic, M.; Petrovic, M.; Picó, Y.; Ponsatí, L.; Tornés, E.; Muñoz, I. Shared Effects of Organic Microcontaminants and Environmental Stressors on Biofilms and Invertebrates in Impaired Rivers. Environ. Pollut. 2016, 210, 303–314. [Google Scholar] [CrossRef] [PubMed]
- Castro, D.M.P.D.; Dolédec, S.; Callisto, M. Land Cover Disturbance Homogenizes Aquatic Insect Functional Structure in Neotropical Savanna Streams. Ecol. Indic. 2018, 84, 573–582. [Google Scholar] [CrossRef]
- Skoulikidis, N.T.; Sabater, S.; Datry, T.; Morais, M.M.; Buffagni, A.; Dörflinger, G.; Zogaris, S.; Del Mar Sánchez-Montoya, M.; Bonada, N.; Kalogianni, E.; et al. Non-Perennial Mediterranean Rivers in Europe: Status, Pressures, and Challenges for Research and Management. Sci. Total Environ. 2017, 577, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Vatitsi, K.; Ioannidou, N.; Mirli, A.; Siachalou, S.; Kagalou, I.; Latinopoulos, D.; Mallinis, G. LULC Change Effects on Environmental Quality and Ecosystem Services Using EO Data in Two Rural River Basins in Thrace, Greece. Land 2023, 12, 1140. [Google Scholar] [CrossRef]
- Latinopoulos, D.; Bakas, T.; Kagalou, I.; Spiliotis, M. Threat Prioritization and Causality Relations for Sustainable Water Management under the Circular Economy Principles: Case Study in Laspias River, Greece Using eDPSIR and DEMATEL. In Proceedings of the EWaS5, Naples, Italy, 12–15 July 2022; MDPI: Basel, Switzerland, 2022; p. 59. [Google Scholar]
- Eye4Water. Available online: https://eye4water.com/en/ (accessed on 20 May 2023).
- Ioannidou, N.; Latinopoulos, D.; Mirli, A.; Bakalakou, C.; Karasani, M.; Ntislidou, C.; Kagalou, I.; Akratos, C. Is Missing Knowledge Hampering the Effectiveness of the Sustainable Water Management? The Cases of Laspias and Lissos Rivers, Thrace, Greece. In Proceedings of the 7th IAHR Europe Congress, Athens, Greece, 7 September 2022. [Google Scholar]
- Papaevangelou, V.; Bakalakou, K.; Ntislidou, C.; Latinopoulos, D.; Kokkos, N.; Zachopoulos, K.; Zoidou, A.; Makri, A.; Azis, A.; Ioannidou, P.; et al. The Spring to Coast Approach in Small-Scale Catchments and Adjacent Coastal Zone. Water 2023, in press. [Google Scholar]
- Wentworth, C.K. A Scale of Grade and Class Terms for Clastic Sediments. J. Geol. 1922, 30, 377–392. [Google Scholar] [CrossRef]
- Armitage, P.D.; Hogger, J. Invertebrate Ecology and Survey. In The New Rivers and Wildlife Handbook; Sandy RSPB: Bedfordshire, UK, 1994; p. 426. [Google Scholar]
- Wright, J.F.; Winder, J.M.; Gunn, R.J.M.; Blackburn, J.H.; Symes, K.L.; Clarke, R.T. Minor Local Effects of a River Thames Power Station on the Macroinvertebrate Fauna. Regul. Rivers Res. Mgmt. 2000, 16, 159–174. [Google Scholar] [CrossRef]
- Lazaridou, M.; Ntislidou, C.; Karaouzas, I.; Skoulikidis, N. Harmonisation of a New Assessment Method for Estimating the Ecological Quality Status of Greek Running Waters. Ecol. Indic. 2018, 84, 683–694. [Google Scholar] [CrossRef]
- Chatzinikolaou, Y.; Dakos, V.; Lazaridou, M. Longitudinal Impacts of Anthropogenic Pressures on Benthic Macroinvertebrate Assemblages in a Large Transboundary Mediterranean River during the Low Flow Period. Acta Hydrochim. Hydrobiol. 2006, 34, 453–463. [Google Scholar] [CrossRef]
- Tachet, H.; Richoux, P.; Bournaud, M.; Usseglio-Polatera, P. Invertébrés d’eau Douce. Systématique, Biologie, Écologie; CNRS Editions: Paris, France, 2010. [Google Scholar]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using Lme4. J. Stat. Soft. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Naimi, B. USDM: Uncertainty Analysis for Species Distribution Models. Ph.D. Thesis, University of Twente, Enschede, The Netherlands, 2015. [Google Scholar]
- Hothorn, T.; Bretz, F.; Westfall, P.; Heiberger, R.; Schuetzenmeister, A.; Scheibe, S.; Hothorn, M. Package ‘Multcomp’. Simultaneous Inference in General Parametric Models; R Package: Vienna, Austria, 2016. [Google Scholar]
- Oksanen, J.; Simpson, G.L.; Blanchet, F.G.; Kindt, R.; Legendre, P.; Minchin, P.R.; O’Hara, R.B.; Solymos, P.; Henry, M.; Stevens, H.; et al. Package ‘Vegan’: Community Ecology Package; R Package: Vienna, Austria, 2012. [Google Scholar]
- Theodoropoulos, C.; Karaouzas, I. Climate Change and the Future of Mediterranean Freshwater Macroinvertebrates: A Model-Based Assessment. Hydrobiologia 2021, 848, 5033–5050. [Google Scholar] [CrossRef]
- Nie, J.; Feng, H.; Witherell, B.B.; Alebus, M.; Mahajan, M.D.; Zhang, W.; Yu, L. Causes, Assessment, and Treatment of Nutrient (N and P) Pollution in Rivers, Estuaries, and Coastal Waters. Curr. Pollut. Rep. 2018, 4, 154–161. [Google Scholar] [CrossRef]
- Blaen, P.J.; Khamis, K.; Lloyd, C.E.M.; Bradley, C.; Hannah, D.; Krause, S. Real-Time Monitoring of Nutrients and Dissolved Organic Matter in Rivers: Capturing Event Dynamics, Technological Opportunities and Future Directions. Sci. Total Environ. 2016, 569–570, 647–660. [Google Scholar] [CrossRef] [PubMed]
- Friberg, N.; Skriver, J.; Larsen, S.E.; Pedersen, M.L.; Buffagni, A. Stream Macroinvertebrate Occurrence along Gradients in Organic Pollution and Eutrophication. Freshw. Biol. 2010, 55, 1405–1419. [Google Scholar] [CrossRef]
- Smeti, E.; Kalogianni, E.; Karaouzas, I.; Laschou, S.; Tornés, E.; De Castro-Català, N.; Anastasopoulou, E.; Koutsodimou, M.; Andriopoulou, A.; Vardakas, L.; et al. Effects of Olive Mill Wastewater Discharge on Benthic Biota in Mediterranean Streams. Environ. Pollut. 2019, 254, 113057. [Google Scholar] [CrossRef] [PubMed]
- Amoatey, P.; Baawain, M.S. Effects of Pollution on Freshwater Aquatic Organisms. Water Environ. Res. 2019, 91, 1272–1287. [Google Scholar] [CrossRef]
- Azrina, M.Z.; Yap, C.K.; Rahim Ismail, A.; Ismail, A.; Tan, S.G. Anthropogenic Impacts on the Distribution and Biodiversity of Benthic Macroinvertebrates and Water Quality of the Langat River, Peninsular Malaysia. Ecotoxicol. Environ. Saf. 2006, 64, 337–347. [Google Scholar] [CrossRef]
- Karaouzas, I.; Theodoropoulos, C.; Vardakas, L.; Kalogianni, E.; Skoulikidis, N.T. A Review of the Effects of Pollution and Water Scarcity on the Stream Biota of an Intermittent Mediterranean Basin. River Res. Apps. 2018, 34, 291–299. [Google Scholar] [CrossRef]
- Marziali, L.; Armanini, D.G.; Cazzola, M.; Erba, S.; Toppi, E.; Buffagni, A.; Rossaro, B. Responses of Chironomid Larvae (Insecta, Diptera) to Ecological Quality in Mediterranean River Mesohabitats (South Italy). River Res. Apps. 2010, 26, 1036–1051. [Google Scholar] [CrossRef]
- Serra, S.R.Q.; Graça, M.A.S.; Dolédec, S.; Feio, M.J. Chironomidae Traits and Life History Strategies as Indicators of Anthropogenic Disturbance. Environ. Monit. Assess. 2017, 189, 326. [Google Scholar] [CrossRef]
- Brinkhurst, R.O.; Kennedy, C.R. Studies on the Biology of the Tubificidae (Annelida, Oligochaeta) in a Polluted Stream. J. Anim. Ecol. 1965, 34, 429. [Google Scholar] [CrossRef]
- Moldovan, M.; Rauch, S.; Gómez, M.; Antonia Palacios, M.; Morrison, G.M. Bioaccumulation of Palladium, Platinum and Rhodium from Urban Particulates and Sediments by the Freshwater Isopod Asellus Aquaticus. Water Res. 2001, 35, 4175–4183. [Google Scholar] [CrossRef] [PubMed]
- Lobo, H.; Espindola, E.L.G. Branchiura Sowerbyi Beddard, 1892 (Oligochaeta: Naididae) as a Test Species in Ecotoxicology Bioassays: A Review. Zoosymposia 2014, 9, 59–69. [Google Scholar] [CrossRef]
- Vučković, N.; Pozojević, I.; Kerovec, M.; Dorić, V.; Mihaljević, Z. Notes and New Data on the Distribution of a Non-Native Oligochaete: Branchiura Sowerbyi (Beddard, 1892) in Croatia. Nat. Croat. 2019, 28, 457–464. [Google Scholar] [CrossRef]
- POWER|Data Access Viewer. Available online: https://power.larc.nasa.gov/data-access-viewer/ (accessed on 22 November 2022).
- Stitz, L.; Fabbro, L.; Kinnear, S. Response of Macroinvertebrate Communities to Seasonal Hydrologic Changes in Three Sub-Tropical Australian Streams. Environ. Monit. Assess. 2017, 189, 254. [Google Scholar] [CrossRef]
- Karaouzas, I.; Theodoropoulos, C.; Vourka, A.; Gritzalis, K.; Skoulikidis, N.T. Stream Invertebrate Communities Are Primarily Shaped by Hydrological Factors and Ultimately Fine-Tuned by Local Habitat Conditions. Sci. Total Environ. 2019, 665, 290–299. [Google Scholar] [CrossRef] [PubMed]
- Pringle, C.M. Hydrologic Connectivity and the Management of Biological Reserves: A Global Perspective. Ecol. Appl. 2001, 11, 981–998. [Google Scholar] [CrossRef]
- Weber, M.L. Markets for Water Rights under Environmental Constraints. J. Environ. Econ. Manag. 2001, 42, 53–64. [Google Scholar] [CrossRef]
- Deane, A.; Norrey, J.; Coulthard, E.; McKendry, D.C.; Dean, A.P. Riverine Large Woody Debris Introduced for Natural Flood Management Leads to Rapid Improvement in Aquatic Macroinvertebrate Diversity. Ecol. Eng. 2021, 163, 106197. [Google Scholar] [CrossRef]
- Stefanidis, K.; Karaouzas, I.; Oikonomou, A.; Smeti, E.; Kouvarda, T.; Latsiou, A.; Vourka, A.; Dimitriou, E. Geodiversity as a Potential Indicator of Stream Health in Ecological Quality Assessment Systems. Ecohydrology 2023, 16, e2551. [Google Scholar] [CrossRef]
- Bonada, N.; Resh, V.H. Mediterranean-Climate Streams and Rivers: Geographically Separated but Ecologically Comparable Freshwater Systems. Hydrobiologia 2013, 719, 1–29. [Google Scholar] [CrossRef]
- Clavel, J.; Julliard, R.; Devictor, V. Worldwide Decline of Specialist Species: Toward a Global Functional Homogenization? Front. Ecol. Environ. 2011, 9, 222–228. [Google Scholar] [CrossRef]
- McKinney, M.L. Urbanization as a Major Cause of Biotic Homogenization. Biol. Conserv. 2006, 127, 247–260. [Google Scholar] [CrossRef]
- McKinney, M.L.; Lockwood, J.L. Biotic Homogenization: A Few Winners Replacing Many Losers in the next Mass Extinction. Trends Ecol. Evol. 1999, 14, 450–453. [Google Scholar] [CrossRef] [PubMed]
- Cazalis, V. Species Richness Response to Human Pressure Hides Important Assemblage Transformations. Proc. Natl. Acad. Sci. USA 2022, 119, e2107361119. [Google Scholar] [CrossRef]
- Kortz, A.R.; Magurran, A.E. Increases in Local Richness (α-Diversity) Following Invasion Are Offset by Biotic Homogenization in a Biodiversity Hotspot. Biol. Lett. 2019, 15, 20190133. [Google Scholar] [CrossRef]
- Karaouzas, I.; Skoulikidis, N.T.; Giannakou, U.; Albanis, T.A. Spatial and Temporal Effects of Olive Mill Wastewaters to Stream Macroinvertebrates and Aquatic Ecosystems Status. Water Res. 2011, 45, 6334–6346. [Google Scholar] [CrossRef]
- Fogarty, J.; Van Bueren, M.; Iftekhar, M.S. Making Waves: Creating Water Sensitive Cities in Australia. Water Res. 2021, 202, 117456. [Google Scholar] [CrossRef]
- Bakas, T.; Papadopoulos, C.; Latinopoulos, D.; Kagalou, I.; Akratos, C.; Angelidis, P.; Pliakas, F.-K.; Spiliotis, M. Supporting Participatory Management Planning for Catchment Operationalization with Intuitionistic Fuzzy Sets—A Study in Laspias River, Thrace, Greece. Water 2023, 15, 2928. [Google Scholar] [CrossRef]
Parameter | 2021 | 2022 | p-Value | ||||
---|---|---|---|---|---|---|---|
Summer | Autumn | Spring | Summer | Autumn | Season | Year | |
Temperature | 20.30 ± 1.64 | 19.30 ± 1.27 | 12.13 ± 1.18 | 20.10 ± 2.18 | 17.15 ± 2.33 | *** | ns |
pH | 7.81 ± 0.16 | 7.66 ± 0.01 | 7.84 ± 0.31 | 7.61 ± 0.28 | 7.91 ± 0.16 | ns | ns |
Conductivity | 1239.75 ± 454.63 | 1312.50 ± 91.22 | 1117.00 ± 361.26 | 476.67 ± 193.56 | 767.63 ± 271.90 | ns | *** |
DO | 3.45 ± 2.43 | 1.03 ± 0.62 | 7.33 ± 3.86 | 3.93 ± 3.53 | 5.48 ± 2.12 | ns | ns |
Salinity | 0.65 ± 0.24 | 0.65 ± 0.07 | 0.57 ± 0.23 | 0.20 ± 0.10 | 0.38 ± 0.13 | ns | * |
COD | 60.80 ± 21.86 | 80.00 ± 49.78 | 14.93 ± 7.39 | 12.80 ± 0.00 | 51.20 ± 23.95 | ns | *** |
BOD5 | 15.00 ± 5.77 | 18.65 ± 13.65 | 1.67 ± 1.53 | 5.00 ± 2.65 | 4.00 ± 5.35 | ns | ** |
SS | 22.50 ± 10.91 | 29.50 ± 21.92 | 9.77 ± 2.04 | 9.77 ± 5.61 | 9.38 ± 7.30 | ns | ns |
TS | 736.48 ± 371.46 | 720.00 ± 14.14 | 673.56 ± 359.26 | 316.67 ± 128.54 | 493.25 ± 159.42 | ns | ** |
VSS | 17.50 ± 6.03 | 0.00 ± 0.00 | 9.77 ± 2.04 | 2.43 ± 4.21 | 4.13 ± 4.44 | ns | ns |
TDS | 590.00 ± 289.83 | 655.00 ± 35.36 | 606.67 ± 312.14 | 263.33 ± 134.29 | 422.50 ± 158.40 | ns | * |
NO2-N | 0.31 ± 0.28 | 0.05 ± 0.02 | 0.25 ± 0.18 | 0.13 ± 0.06 | 0.09 ± 0.04 | ns | ns |
NO3-N | 1.98 ± 2.15 | 0.14 ± 0.16 | 3.76 ± 0.88 | 0.74 ± 0.34 | 1.26 ± 1.07 | ns | * |
NH4-N | 14.19 ± 19.08 | 22.82 ± 16.35 | 3.13 ± 4.14 | 2.44 ± 2.17 | 9.30 ± 14.19 | ns | * |
PO4-P | 1.91 ± 2.47 | 2.45 ± 2.30 | 0.69 ± 0.67 | 0.45 ± 0.30 | 0.52 ± 0.54 | ns | ns |
Sites | 2021 | 2022 | |||
---|---|---|---|---|---|
Summer | Autumn | Spring | Summer | Autumn | |
L3.5 | Poor | Inaccesible | Poor | Poor | Poor |
L4a | Bad | Bad | Bad | Bad | Poor |
L4b | Poor | Bad | Bad | Poor | Poor |
L6 | Poor | Inaccesible | Bad | Moderate | Inaccesible |
L6.5 | Dry river | Dry river | Moderate | Dry river | Dry river |
Response Variable | Comparison | Estimate | Standard Error | df | t-Value | Pr(>|t|) | |
---|---|---|---|---|---|---|---|
Family richness | (Intercept) | 2.10 | 0.29 | 7.29 | 0.00 | *** | |
Seasons | autumn–spring | −0.53 | 0.29 | −1.84 | 0.07 | ||
autumn–summer | 0.06 | 0.23 | 0.27 | 0.79 | |||
Sampling years | second-first | −0.07 | 0.33 | −0.22 | 0.83 | ||
PCenv1 | −0.18 | 0.08 | −2.28 | 0.02 | * | ||
PCenv2 | −0.24 | 0.09 | −2.72 | 0.01 | ** | ||
Abundance | (Intercept) | 7.97 | 0.47 | 16.87 | <0.001 | *** | |
Seasons | spring–autumn | −2.20 | 0.04 | −60.16 | <0.001 | *** | |
summer–autumn | −1.07 | 0.03 | −36.17 | <0.001 | *** | ||
summer–spring | 1.13 | 0.05 | 25.24 | <0.001 | *** | ||
Sampling years | second-first | −0.38 | 0.04 | −10.42 | <0.001 | *** | |
PCenv1 | −0.31 | 0.02 | −18.62 | <0.001 | *** | ||
PCenv2 | −0.37 | 0.01 | −31.27 | <0.001 | *** | ||
Shannon index | (Intercept) | 0.91 | 0.37 | 2.45 | 0.03 | ** | |
Seasons | autumn–spring | −0.25 | 0.49 | −0.50 | 0.63 | ||
autumn–summer | 0.34 | 0.31 | 1.10 | 0.30 | |||
Sampling years | second-first | −0.34 | 0.44 | −0.78 | 0.45 | ||
PCenv1 | 0.01 | 0.06 | 0.09 | 0.93 | |||
PCenv2 | 0.12 | 0.07 | 1.70 | 0.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Latinopoulos, D.; Ntislidou, C.; Lazarina, M.; Papaevangelou, V.; Akratos, C.; Kagalou, I. Macroinvertebrate Community Responses to Multiple Pressures in a Peri-Urban Mediterranean River. Sustainability 2023, 15, 16569. https://doi.org/10.3390/su152416569
Latinopoulos D, Ntislidou C, Lazarina M, Papaevangelou V, Akratos C, Kagalou I. Macroinvertebrate Community Responses to Multiple Pressures in a Peri-Urban Mediterranean River. Sustainability. 2023; 15(24):16569. https://doi.org/10.3390/su152416569
Chicago/Turabian StyleLatinopoulos, Dionissis, Chrysoula Ntislidou, Maria Lazarina, Vassiliki Papaevangelou, Christos Akratos, and Ifigenia Kagalou. 2023. "Macroinvertebrate Community Responses to Multiple Pressures in a Peri-Urban Mediterranean River" Sustainability 15, no. 24: 16569. https://doi.org/10.3390/su152416569
APA StyleLatinopoulos, D., Ntislidou, C., Lazarina, M., Papaevangelou, V., Akratos, C., & Kagalou, I. (2023). Macroinvertebrate Community Responses to Multiple Pressures in a Peri-Urban Mediterranean River. Sustainability, 15(24), 16569. https://doi.org/10.3390/su152416569