An Overview of Poultry Greenhouse Gas Emissions in the Mediterranean Area
Abstract
:1. Introduction
2. Greenhouse Gas Emissions
2.1. Calculation of the GHG Emissions
2.2. Mediterranean Statistics for Livestock GHG
3. Poultry
3.1. Greenhouse Gas Emissions
3.1.1. CO2 Emissions
3.1.2. CH4 Emissions
3.1.3. N2O Emissions
4. Mitigation Strategies
4.1. Poultry Feed Formulation and Additives
4.1.1. Unconventional Feed Formulation
4.1.2. Feed Production Practices
4.1.3. Amino Acids
4.1.4. Exogenous Enzymes
4.1.5. Waste Valorization
4.2. Manure Management
4.2.1. Storage
4.2.2. Process
4.3. Energy Management and Hatchery Practices
4.4. Data Management
5. Future Prospects
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- United Nations Department of Economic and Social Affairs. United Nations World Population Prospects 2022: Summary of Results; United Nations: New York, NY, USA, 2022. [Google Scholar]
- United Nations, Department of Economic and Social Affairs. World Urbanization Prospects: 2018: Highlights; Population Division; United Nations: New York, NY, USA, 2019; p. 126. [Google Scholar]
- Godfray, H.C.J.; Aveyard, P.; Garnett, T.; Hall, J.W.; Key, T.J.; Lorimer, J.; Pierrehumbert, R.T.; Scarborough, P.; Springmann, M.; Jebb, S.A. Meat Consumption, Health, and the Environment. Science 2018, 361, eaam5324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González, N.; Marquès, M.; Nadal, M.; Domingo, J.L. Meat Consumption: Which Are the Current Global Risks? A Review of Recent (2010–2020) Evidences. Food Res. Int. 2020, 137, 109341. [Google Scholar] [CrossRef] [PubMed]
- OECD/FAO. OECD-FAO Agricultural Outlook 2021–2030; OECD Publishing: Paris, France, 2021. [Google Scholar] [CrossRef]
- Poore, J.; Nemecek, T. Reducing Food’s Environmental Impacts through Producers and Consumers. Science 2018, 360, 987–992. [Google Scholar] [CrossRef] [Green Version]
- Grossi, G.; Goglio, P.; Vitali, A.; Williams, A.G. Livestock and Climate Change: Impact of Livestock on Climate and Mitigation Strategies. Anim. Front. 2019, 9, 69–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naser, H.M.; Nagata, O.; Sultana, S.; Hatano, R. Carbon Sequestration and Contribution of CO2, CH4 and N2O Fluxes to Global Warming Potential from Paddy-Fallow Fields on Mineral Soil Beneath Peat in Central Hokkaido, Japan. Agriculture 2019, 10, 6. [Google Scholar] [CrossRef] [Green Version]
- Environmental Protection Agency. Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2018; Inventory of U.S. Greenhouse Gas Emissions and Sinks; EPA: Washington, DC, USA, 2020; p. 733. [Google Scholar]
- Tullo, E.; Finzi, A.; Guarino, M. Review: Environmental Impact of Livestock Farming and Precision Livestock Farming as a Mitigation Strategy. Sci. Total Environ. 2019, 650, 2751–2760. [Google Scholar] [CrossRef] [PubMed]
- van Lingen, H.J.; Niu, M.; Kebreab, E.; Valadares Filho, S.C.; Rooke, J.A.; Duthie, C.-A.; Schwarm, A.; Kreuzer, M.; Hynd, P.I.; Caetano, M.; et al. Prediction of Enteric Methane Production, Yield and Intensity of Beef Cattle Using an Intercontinental Database. Agric. Ecosyst. Environ. 2019, 283, 106575. [Google Scholar] [CrossRef]
- Arndt, C.; Hristov, A.N.; Price, W.J.; McClelland, S.C.; Pelaez, A.M.; Cueva, S.F.; Oh, J.; Bannink, A.; Bayat, A.R.; Crompton, L.A.; et al. Strategies to Mitigate Enteric Methane Emissions by Ruminants—A Way to Approach the 2.0 °C Target. CABI Agrirxiv. 2021. Available online: https://agrirxiv.org/search-details/?pan=20210085288 (accessed on 13 November 2022).
- Christodoulou, C.; Mavrommatis, A.; Mitsiopoulou, C.; Symeon, G.; Dotas, V.; Sotirakoglou, K.; Kotsampasi, B.; Tsiplakou, E. Assessing the Optimum Level of Supplementation with Camelina Seeds in Ewes’ Diets to Improve Milk Quality. Foods 2021, 10, 2076. [Google Scholar] [CrossRef]
- Mostert, P.F.; Bos, A.P.; van Harn, J.; de Jong, I.C. The Impact of Changing toward Higher Welfare Broiler Production Systems on Greenhouse Gas Emissions: A Dutch Case Study Using Life Cycle Assessment. Poult. Sci. 2022, 101, 102151. [Google Scholar] [CrossRef]
- Clark, M.A.; Domingo, N.G.G.; Colgan, K.; Thakrar, S.K.; Tilman, D.; Lynch, J.; Azevedo, I.L.; Hill, J.D. Global Food System Emissions Could Preclude Achieving the 1.5° and 2°C Climate Change Targets. Science 2020, 370, 705–708. [Google Scholar] [CrossRef]
- Ravaglia, P.; Famiglietti, J.; Valentino, F. Certification and Added Value for Farm Productions. In Advances in Chemical Pollution, Environmental Management and Protection; Elsevier: Amsterdam, The Netherlands, 2018; Volume 2, pp. 63–108. ISBN 9780128128664. [Google Scholar]
- Guarino Amato, M.; Castellini, C. Adaptability Challenges for Organic Broiler Chickens: A Commentary. Animals 2022, 12, 1354. [Google Scholar] [CrossRef] [PubMed]
- Wiedmann, T.; Minx, J. A Definition of Carbon Footprint. In Ecological Economics Research Trends; Nova Publishers: New York, NY, USA, 2007; pp. 55–65. ISBN 9781600219412. [Google Scholar]
- Opio, C.; Gerber, P.; Mottet, A.; Falcucci, A.; Tempio, G.; MacLeod, M.; Vellinga, T.; Henderson, B.; Steinfeld, H. Greenhouse Gas Emmission from Ruminant Supply Chains: A Global Life Cycle Assessment; Food and Agriculture Organization of the United Nations: Rome, Italy, 2013. [Google Scholar]
- ISO 14044:2006; Environmental Management—Life Cycle Assessment—Requirements and Guidelines. International Organization for Standardization: Geneva, Switzerland. Available online: https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/03/84/38498.html (accessed on 21 November 2022).
- De Vries, M.; de Boer, I.J.M. Comparing Environmental Impacts for Livestock Products: A Review of Life Cycle Assessments. Livest. Sci. 2010, 128, 1–11. [Google Scholar] [CrossRef]
- Roy, P.; Nei, D.; Orikasa, T.; Xu, Q.; Okadome, H.; Nakamura, N.; Shiina, T. A Review of Life Cycle Assessment (LCA) on Some Food Products. J. Food Eng. 2009, 90, 1–10. [Google Scholar] [CrossRef]
- Dijkman, T.J.; Basset-Mens, C.; Antón, A.; Núñez, M. LCA of Food and Agriculture. In Life Cycle Assessment; Hauschild, M.Z., Rosenbaum, R.K., Olsen, S.I., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 723–754. ISBN 9783319564746. [Google Scholar]
- Dangal, S.R.S.; Tian, H.; Pan, S.; Zhang, L.; Xu, R. Greenhouse Gas Balance in Global Pasturelands and Rangelands. Environ. Res. Lett. 2020, 15, 104006. [Google Scholar] [CrossRef]
- Blandford, D.; Hassapoyannes, K. The Role of Agriculture in Global GHG Mitigation; Food, Agriculture and Fisheries Papers; OECD: Paris, France, 2018. [Google Scholar]
- Crippa, M.; Solazzo, E.; Guizzardi, D.; Monforti-Ferrario, F.; Tubiello, F.N.; Leip, A. Food Systems Are Responsible for a Third of Global Anthropogenic GHG Emissions. Nat. Food 2021, 2, 198–209. [Google Scholar] [CrossRef]
- Gerber, P.J.; Steinfeld, H.; Henderson, B.; Mottet, A.; Opio, C.; Dijkman, J.; Falcucci, A.; Tempio, G. Tackling Climate Change through Livestock: A Global Assessment of Emissions and Mitigation Opportunities; Food and Agriculture Organization of the United Nations: Rome, Italy, 2013. [Google Scholar]
- Gerber, P.J.; Hristov, A.N.; Henderson, B.; Makkar, H.; Oh, J.; Lee, C.; Meinen, R.; Montes, F.; Ott, T.; Firkins, J.; et al. Technical Options for the Mitigation of Direct Methane and Nitrous Oxide Emissions from Livestock: A Review. Animal 2013, 7, 220–234. [Google Scholar] [CrossRef] [Green Version]
- EUROSTAT. Climate Change—Driving Forces. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Climate_change_-_driving_forces (accessed on 5 December 2022).
- European Environmental Agency (EEA). Greenhouse Gas Emissions from Agriculture in Europe. Available online: https://www.eea.europa.eu/ims/greenhouse-gas-emissions-from-agriculture (accessed on 21 November 2022).
- Buratti, C.; Fantozzi, F.; Barbanera, M.; Lascaro, E.; Chiorri, M.; Cecchini, L. Carbon Footprint of Conventional and Organic Beef Production Systems: An Italian Case Study. Sci. Total Environ. 2017, 576, 129–137. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. World Food and Agriculture—Statistical Yearbook 2021; FAO: Rome, Italy, 2021; ISBN 9789251343326. [Google Scholar]
- Costantini, M.; Ferrante, V.; Guarino, M.; Bacenetti, J. Environmental Sustainability Assessment of Poultry Productions through Life Cycle Approaches: A Critical Review. Trends Food Sci. Technol. 2021, 110, 201–212. [Google Scholar] [CrossRef]
- Ministry of Environment and Energy. Climate Change—National Inventory Report of Greece for Greenhouse and Other Gases for the Years 1990–2019; Ministry of Environment and Energy: Athens, Greece, 2021. [Google Scholar]
- OECD; FAO. Agricultural Outlook 2020–2029; OECD/FAO Agricultural Outlook; OECD Publishing: Paris, France, 2020. [Google Scholar]
- Alexandratos, N.; Bruinsma, J. World Agriculture towards 2030/2050: The 2012 Revision; ESA Working Paper No. 12-03. June 2012; Food and Agriculture Organization of the United Nations: Italy, Rome, 2012; Available online: https://www.fao.org/3/ap106e/ap106e.pdf (accessed on 14 November 2022).
- Lesschen, J.P.; van den Berg, M.; Westhoek, H.J.; Witzke, H.P.; Oenema, O. Greenhouse Gas Emission Profiles of European Livestock Sectors. Anim. Feed. Sci. Technol. 2011, 166–167, 16–28. [Google Scholar] [CrossRef]
- Dunkley, C.S.; Fairchild, B.D.; Ritz, C.W.; Kiepper, B.H.; Lacy, M.P. Carbon Footprint of Poultry Production Farms in South Georgia: A Case Study. J. Appl. Poult. Res. 2015, 24, 73–79. [Google Scholar] [CrossRef]
- Vetter, S.H.; Malin, D.; Smith, P.; Hillier, J. The Potential to Reduce GHG Emissions in Egg Production Using a GHG Calculator—A Cool Farm Tool Case Study. J. Clean. Prod. 2018, 202, 1068–1076. [Google Scholar] [CrossRef] [Green Version]
- Andretta, I.; Hickmann, F.M.W.; Remus, A.; Franceschi, C.H.; Mariani, A.B.; Orso, C.; Kipper, M.; Létourneau-Montminy, M.-P.; Pomar, C. Environmental Impacts of Pig and Poultry Production: Insights from a Systematic Review. Front. Vet. Sci. 2021, 8, 750733. [Google Scholar] [CrossRef] [PubMed]
- Pelletier, N. Environmental Performance in the US Broiler Poultry Sector: Life Cycle Energy Use and Greenhouse Gas, Ozone Depleting, Acidifying and Eutrophying Emissions. Agric. Syst. 2008, 98, 67–73. [Google Scholar] [CrossRef]
- Pelletier, N. Life Cycle Assessment of Canadian Egg Products, with Differentiation by Hen Housing System Type. J. Clean. Prod. 2017, 152, 167–180. [Google Scholar] [CrossRef]
- Skunca, D.; Tomasevic, I.; Djekic, I. Environmental Performance of the Poultry Meat Chain—LCA Approach. Procedia Food Sci. 2015, 5, 258–261. [Google Scholar] [CrossRef] [Green Version]
- Dekker, S.E.M.; de Boer, I.J.M.; Vermeij, I.; Aarnink, A.J.A.; Koerkamp, P.W.G.G. Ecological and Economic Evaluation of Dutch Egg Production Systems. Livest. Sci. 2011, 139, 109–121. [Google Scholar] [CrossRef]
- Leinonen, I.; Williams, A.G.; Wiseman, J.; Guy, J.; Kyriazakis, I. Predicting the Environmental Impacts of Chicken Systems in the United Kingdom through a Life Cycle Assessment: Egg Production Systems. Poult. Sci. 2012, 91, 26–40. [Google Scholar] [CrossRef]
- Ghasempour, A.; Ahmadi, E. Assessment of Environment Impacts of Egg Production Chain Using Life Cycle Assessment. J. Environ. Manag. 2016, 183, 980–987. [Google Scholar] [CrossRef]
- Bengtsson, J.; Seddon, J. Cradle to Retailer or Quick Service Restaurant Gate Life Cycle Assessment of Chicken Products in Australia. J. Clean. Prod. 2013, 41, 291–300. [Google Scholar] [CrossRef]
- Prudêncio da Silva, V.; van der Werf, H.M.G.; Soares, S.R.; Corson, M.S. Environmental Impacts of French and Brazilian Broiler Chicken Production Scenarios: An LCA Approach. J. Environ. Manag. 2014, 133, 222–231. [Google Scholar] [CrossRef]
- Cederberg, C.; Wivstad, M.; Bergkvist, P.; Mattsson, B.; Ivarsson, K. Environmental Assessment of Plant Protection Strategies Using Scenarios for Pig Feed Production. AMBIO A J. Hum. Environ. 2005, 34, 408–413. [Google Scholar] [CrossRef]
- Xin, H.; Gates, R.S.; Green, A.R.; Mitloehner, F.M.; Moore, P.A.; Wathes, C.M. Environmental Impacts and Sustainability of Egg Production Systems. Poult. Sci. 2011, 90, 263–277. [Google Scholar] [CrossRef] [PubMed]
- Clune, S.; Crossin, E.; Verghese, K. Systematic Review of Greenhouse Gas Emissions for Different Fresh Food Categories. J. Clean. Prod. 2017, 140, 766–783. [Google Scholar] [CrossRef] [Green Version]
- Chianese, D.S.; Rotz, C.A.; Richard, T.L. Richard Whole-Farm Greenhouse Gas Emissions: A Review with Application to a Pennsylvania Dairy Farm. Appl. Eng. Agric. 2009, 25, 431–442. [Google Scholar] [CrossRef]
- Olesen, J.E.; Schelde, K.; Weiske, A.; Weisbjerg, M.R.; Asman, W.A.H.; Djurhuus, J. Modelling Greenhouse Gas Emissions from European Conventional and Organic Dairy Farms. Agric. Ecosyst. Environ. 2006, 112, 207–220. [Google Scholar] [CrossRef]
- Zervas, G.; Tsiplakou, E. Life Cycle Assessment of Animal Origin Products. Adv. Anim. Biosci. 2016, 7, 191–195. [Google Scholar] [CrossRef]
- Różewicz, M. Production, Use and Efficiency of Utilising Grains of Various Cereal Species as Feed Resources for Poultry Production. Pol. J. Agron. 2019, 38, 66–74. [Google Scholar] [CrossRef]
- Kapica, J.; Pawlak, H.; Ścibisz, M. Carbon Dioxide Emission Reduction by Heating Poultry Houses from Renewable Energy Sources in Central Europe. Agric. Syst. 2015, 139, 238–249. [Google Scholar] [CrossRef]
- Usubharatana, P.; Phungrassami, H. Greenhouse Gas Emissions of One-Day-Old Chick Production. Pol. J. Environ. Stud. 2017, 26, 1269–1277. [Google Scholar] [CrossRef]
- Gerber, P.; Opio, C.; Steinfeld, H. Poultry production and the environment—A review. Available online: https://www.semanticscholar.org/paper/Poultry-production-and-the-environment-%E2%80%93-a-review-Gerber-Opio/11b57f4788910bc6263f7eebbe74c58c3eaff779 (accessed on 20 December 2022).
- Tapio, I.; Snelling, T.J.; Strozzi, F.; Wallace, R.J. The Ruminal Microbiome Associated with Methane Emissions from Ruminant Livestock. J. Anim. Sci. Biotechnol. 2017, 8, 7. [Google Scholar] [CrossRef] [Green Version]
- Wolf, J.; Asrar, G.R.; West, T.O. Revised Methane Emissions Factors and Spatially Distributed Annual Carbon Fluxes for Global Livestock. Carbon Balance Manag. 2017, 12, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Redding, M.R. Bentonite Can Decrease Ammonia Volatilisation Losses from Poultry Litter: Laboratory Studies. Anim. Prod. Sci. 2013, 53, 1115. [Google Scholar] [CrossRef] [Green Version]
- Wedwitschka, H.; Gallegos Ibanez, D.; Schäfer, F.; Jenson, E.; Nelles, M. Material Characterization and Substrate Suitability Assessment of Chicken Manure for Dry Batch Anaerobic Digestion Processes. Bioengineering 2020, 7, 106. [Google Scholar] [CrossRef] [PubMed]
- Gržinić, G.; Piotrowicz-Cieślak, A.; Klimkowicz-Pawlas, A.; Górny, R.L.; Ławniczek-Wałczyk, A.; Piechowicz, L.; Olkowska, E.; Potrykus, M.; Tankiewicz, M.; Krupka, M.; et al. Intensive Poultry Farming: A Review of the Impact on the Environment and Human Health. Sci. Total Environ. 2022, 858, 160014. [Google Scholar] [CrossRef]
- Food and Agriculture Organization FAOSTAT. Available online: https://fenix.fao.org/faostat/internal/en/ (accessed on 9 December 2022).
- Monteny, G.-J.; Bannink, A.; Chadwick, D. Greenhouse Gas Abatement Strategies for Animal Husbandry. Agric. Ecosyst. Environ. 2006, 112, 163–170. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. FAO’s Work on Climate Change United Nations Climate Change Conference 2017; Food and Agriculture Organization of the United Nations: Rome, Italy, 2017; p. 40. [Google Scholar]
- Fatica, A.; Fantuz, F.; Wu, M.; Tavaniello, S.; Maiorano, G.; Salimei, E. Soybean vs. Pea Bean in the Diet of Medium-Growing Broiler Chickens Raised under Semi-Intensive Conditions of Inner Mediterranean Areas: Growth Performance and Environmental Impact. Animals 2022, 12, 649. [Google Scholar] [CrossRef]
- Koivunen, E.; Tuunainen, P.; Valkonen, E.; Valaja, J. Use of Semi-Leafless Peas (Pisum sativum L.) in Laying Hen Diets. Agric. Food Sci. 2015, 24, 84–91. [Google Scholar] [CrossRef]
- Yuan, C.; Song, H.; Zhang, X.; Jiang, Y.; Zhang, A.; Azzam, M.M.; Zou, X. Effect of Expanded Cottonseed Meal on Laying Performance, Egg Quality, Concentrations of Free Gossypol in Tissue, Serum and Egg of Laying Hens: Laying Hens Fed Expanded Cottonseed Meal. Anim. Sci. J. 2014, 85, 549–554. [Google Scholar] [CrossRef]
- Abín, R.; Laca, A.; Laca, A.; Díaz, M. Environssessmentsesment of Intensive Egg Production: A Spanish Case Study. J. Clean. Prod. 2018, 179, 160–168. [Google Scholar] [CrossRef]
- Biasato, I.; De Marco, M.; Rotolo, L.; Renna, M.; Lussiana, C.; Dabbou, S.; Capucchio, M.T.; Biasibetti, E.; Costa, P.; Gai, F.; et al. Effects of Dietary Tenebrio Molitor Meal Inclusion in Free-Range Chickens. J. Anim. Physiol. Anim. Nutr. 2016, 100, 1104–1112. [Google Scholar] [CrossRef]
- Bovera, F.; Loponte, R.; Marono, S.; Piccolo, G.; Parisi, G.; Iaconisi, V.; Gasco, L.; Nizza, A. Use of Tenebrio Molitor Larvae Meal as Protein Source in Broiler Diet: Effect on Growth Performance, Nutrient Digestibility, and Carcass and Meat Traits. J. Anim. Sci. 2016, 94, 639–647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schiavone, A.; Cullere, M.; De Marco, M.; Meneguz, M.; Biasato, I.; Bergagna, S.; Dezzutto, D.; Gai, F.; Dabbou, S.; Gasco, L.; et al. Partial or Total Replacement of Soybean Oil by Black Soldier Fly Larvae (Hermetia Illucens L.) Fat in Broiler Diets: Effect on Growth Performances, Feed-Choice, Blood Traits, Carcass Characteristics and Meat Quality. Ital. J. Anim. Sci. 2017, 16, 93–100. [Google Scholar] [CrossRef] [Green Version]
- Mosnier, E.; van der Werf, H.M.G.; Boissy, J.; Dourmad, J.-Y. Evaluation of the Environmental Implications of the Incorporation of Feed-Use Amino Acids in the Manufacturing of Pig and Broiler Feeds Using Life Cycle Assessment. Animal 2011, 5, 1972–1983. [Google Scholar] [CrossRef] [Green Version]
- Al-Harthi, M.A.; Attia, Y.A.; El-Shafey, A.S.; Elgandy, M.F. Impact of Phytase on Improving the Utilisation of Pelleted Broiler Diets Containing Olive By-Products. Ital. J. Anim. Sci. 2020, 19, 310–318. [Google Scholar] [CrossRef] [Green Version]
- Zarghi, H.; Golian, A.; Hassanabadi, A.; Khaligh, F. Effect of Zinc and Phytase Supplementation on Performance, Immune Response, Digestibility and Intestinal Features in Broilers Fed a Wheat-Soybean Meal Diet. Ital. J. Anim. Sci. 2022, 21, 430–444. [Google Scholar] [CrossRef]
- Giannenas, I.; Bonos, E.; Anestis, V.; Filioussis, G.; Papanastasiou, D.K.; Bartzanas, T.; Papaioannou, N.; Tzora, A.; Skoufos, I. Effects of Protease Addition and Replacement of Soybean Meal by Corn Gluten Meal on the Growth of Broilers and on the Environmental Performances of a Broiler Production System in Greece. PLoS ONE 2017, 12, e0169511. [Google Scholar] [CrossRef] [Green Version]
- Giamouri, E.; Pappas, A.C.; Papadomichelakis, G.; Tsiplakou, E.; Sotirakoglou, K.; Markakis, N.; Galliou, F.; Manios, T.; Zentek, J.; Lasaridi, K.; et al. The Food for Feed Concept. Performance of Broilers Fed Hotel Food Residues. Br. Poult. Sci. 2021, 62, 452–458. [Google Scholar] [CrossRef] [PubMed]
- Giamouri, E.; Pappas, A.C.; Papadomichelakis, G.; Simitzis, P.E.; Manios, T.; Zentek, J.; Lasaridi, K.; Tsiplakou, E.; Zervas, G. The Food for Feed Concept: Redefining the Use of Hotel Food Residues in Broiler Diets. Sustainability 2022, 14, 3659. [Google Scholar] [CrossRef]
- Giamouri, E.; Mavrommatis, A.; Simitzis, P.E.; Mitsiopoulou, C.; Haroutounian, S.A.; Koutinas, A.; Pappas, A.C.; Tsiplakou, E. Redefining the Use of Vinification Waste By-Products in Broiler Diets. Sustainability 2022, 14, 15714. [Google Scholar] [CrossRef]
- Mavrommatis, A.; Giamouri, E.; Myrtsi, E.D.; Evergetis, E.; Filippi, K.; Papapostolou, H.; Koulocheri, S.D.; Zoidis, E.; Pappas, A.C.; Koutinas, A.; et al. Antioxidant Status of Broiler Chickens Fed Diets Supplemented with Vinification By-Products: A Valorization Approach. Antioxidants 2021, 10, 1250. [Google Scholar] [CrossRef]
- Fraanje, W.; Garnett, T. Soy: Food, Feed, and Land Use Change (Foodsource: Building Blocks); Technical Report; Food Climate Research Network, University of Oxford: Oxford, UK, 2020. [Google Scholar]
- Song, X.-P.; Hansen, M.C.; Potapov, P.; Adusei, B.; Pickering, J.; Adami, M.; Lima, A.; Zalles, V.; Stehman, S.V.; Di Bella, C.M.; et al. Massive Soybean Expansion in South America since 2000 and Implications for Conservation. Nat. Sustain. 2021, 4, 784–792. [Google Scholar] [CrossRef] [PubMed]
- Alfonso-Avila, A.R.; Cirot, O.; Lambert, W.; Létourneau-Montminy, M.P. Effect of Low-Protein Corn and Soybean Meal-Based Diets on Nitrogen Utilization, Litter Quality, and Water Consumption in Broiler Chicken Production: Insight from Meta-Analysis. Animal 2022, 16, 100458. [Google Scholar] [CrossRef] [PubMed]
- Różewicz, M.; Grabiński, J.; Sułek, A. Possibilities and Limitations in the Use of Legumes from Domestic Cultivation in Poultry Feed in the Context of Fodder Protein Deficit. Pol. J. Agron. 2018, 35, 32–44. [Google Scholar] [CrossRef]
- Ceylan, N.; Ciftçi, I.; Mızrak, C.; Kahraman, Z.; Efil, H. Influence of different dietary oil sources on performance and fatty acid profile of egg yolk in laying hens. J. Anim. Feed Sci. 2011, 20, 71–83. [Google Scholar] [CrossRef] [Green Version]
- Tallentire, C.W.; Mackenzie, S.G.; Kyriazakis, I. Can Novel Ingredients Replace Soybeans and Reduce the Environmental Burdens of European Livestock Systems in the Future? J. Clean. Prod. 2018, 187, 338–347. [Google Scholar] [CrossRef] [Green Version]
- Veldkamp, T.; Bosch, G. Insects: A Protein-Rich Feed Ingredient in Pig and Poultry Diets. Anim. Front. 2015, 5, 45–50. [Google Scholar] [CrossRef]
- Vauterin, A.; Steiner, B.; Sillman, J.; Kahiluoto, H. The Potential of Insect Protein to Reduce Food-Based Carbon Footprints in Europe: The Case of Broiler Meat Production. J. Clean. Prod. 2021, 320, 128799. [Google Scholar] [CrossRef]
- Rumpold, B.A.; Schlüter, O.K. Nutritional Composition and Safety Aspects of Edible Insects. Mol. Nutr. Food Res. 2013, 57, 802–823. [Google Scholar] [CrossRef]
- Hong, J.; Han, T.; Kim, Y.Y. Mealworm (Tenebrio Molitor Larvae) as an Alternative Protein Source for Monogastric Animal: A Review. Animals 2020, 10, 2068. [Google Scholar] [CrossRef]
- van Huis, A. Edible Insects: Future Prospects for Food and Feed Security; FAO Forestry Paper; Food and Agriculture Organization of the United Nations: Rome, Italy, 2013; ISBN 9789251075951. [Google Scholar]
- Khan, S.; Khan, R.U.; Alam, W.; Sultan, A. Evaluating the Nutritive Profile of Three Insect Meals and Their Effects to Replace Soya Bean in Broiler Diet. J. Anim. Physiol. Anim. Nutr. 2018, 102, e662–e668. [Google Scholar] [CrossRef]
- Selaledi, L.; Mbajiorgu, C.A.; Mabelebele, M. The Use of Yellow Mealworm (T. Molitor) as Alternative Source of Protein in Poultry Diets: A Review. Trop. Anim. Health Prod. 2020, 52, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Naz, S.; Sultan, A.; Alhidary, I.A.; Abdelrahman, M.M.; Khan, R.U.; Khan, N.A.; Khan, M.A.; Ahmad, S. Worm Meal: A Potential Source of Alternative Protein in Poultry Feed. World’s Poult. Sci. J. 2016, 72, 93–102. [Google Scholar] [CrossRef]
- Biasato, I.; Gasco, L.; De Marco, M.; Renna, M.; Rotolo, L.; Dabbou, S.; Capucchio, M.T.; Biasibetti, E.; Tarantola, M.; Sterpone, L.; et al. Yellow Mealworm Larvae (Tenebrio Molitor) Inclusion in Diets for Male Broiler Chickens: Effects on Growth Performance, Gut Morphology, and Histological Findings. Poult. Sci. 2018, 97, 540–548. [Google Scholar] [CrossRef] [PubMed]
- De Boer, H.C.; van Krimpen, M.M.; Blonk, H.; Tyszler, M. Replacement of Soybean Meal in Compound Feed by European Protein Sources—Effects on Carbon Footprint; Livestock Research Report; Wageningen UR (University & Research Centre) Livestock Research: Wageningen, The Netherlands, 2014. [Google Scholar]
- Gasco, L.; Acuti, G.; Bani, P.; Dalle Zotte, A.; Danieli, P.P.; De Angelis, A.; Fortina, R.; Marino, R.; Parisi, G.; Piccolo, G.; et al. Insect and Fish By-Products as Sustainable Alternatives to Conventional Animal Proteins in Animal Nutrition. Ital. J. Anim. Sci. 2020, 19, 360–372. [Google Scholar] [CrossRef] [Green Version]
- Tavares, M.N.; Pereira, R.T.; Silva, A.L.; Lemes, L.R.; Menten, J.F.M.; Gameiro, A.H. Economic Viability of Insect Meal as a Novel Ingredient in Diets for Broiler Chickens. J. Insects Food Feed 2022, 8, 1015–1025. [Google Scholar] [CrossRef]
- Maharjan, P.; Martinez, D.A.; Weil, J.; Suesuttajit, N.; Umberson, C.; Mullenix, G.; Hilton, K.M.; Beitia, A.; Coon, C.N. Review: Physiological Growth Trend of Current Meat Broilers and Dietary Protein and Energy Management Approaches for Sustainable Broiler Production. Animal 2021, 15, 100284. [Google Scholar] [CrossRef]
- Belloir, P.; Méda, B.; Lambert, W.; Corrent, E.; Juin, H.; Lessire, M.; Tesseraud, S. Reducing the CP Content in Broiler Feeds: Impact on Animal Performance, Meat Quality and Nitrogen Utilization. Animal 2017, 11, 1881–1889. [Google Scholar] [CrossRef] [Green Version]
- Hilliar, M.; Hargreave, G.; Girish, C.K.; Barekatain, R.; Wu, S.-B.; Swick, R.A. Using Crystalline Amino Acids to Supplement Broiler Chicken Requirements in Reduced Protein Diets. Poult. Sci. 2020, 99, 1551–1563. [Google Scholar] [CrossRef]
- Benavides, P.T.; Cai, H.; Wang, M.; Bajjalieh, N. Life-Cycle Analysis of Soybean Meal, Distiller-Dried Grains with Solubles, and Synthetic Amino Acid-Based Animal Feeds for Swine and Poultry Production. Anim. Feed. Sci. Technol. 2020, 268, 114607. [Google Scholar] [CrossRef]
- Selle, P.H.; de Paula Dorigam, J.C.; Lemme, A.; Chrystal, P.V.; Liu, S.Y. Synthetic and Crystalline Amino Acids: Alternatives to Soybean Meal in Chicken-Meat Production. Animals 2020, 10, 729. [Google Scholar] [CrossRef] [Green Version]
- Giamouri, E.; Papadomichelakis, G.; Pappas, A.C.; Simitzis, P.E.; Galliou, F.; Paßlack, N.; Zentek, J.; Lasaridi, K.; Fegeros, K.; Manios, T.; et al. Μeat Quality Traits as Affected by the Dietary Inclusion of Food Waste in Finishing Pigs. Sustainability 2022, 14, 6593. [Google Scholar] [CrossRef]
- Georganas, A.; Giamouri, E.; Pappas, A.C.; Papadomichelakis, G.; Galliou, F.; Manios, T.; Tsiplakou, E.; Fegeros, K.; Zervas, G. Bioactive Compounds in Food Waste: A Review on the Transformation of Food Waste to Animal Feed. Foods 2020, 9, 291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Georganas, A.; Giamouri, E.; Pappas, A.C.; Papadomichelakis, G.; Fortatos, S.; Manios, T.; Lasaridi, K.; Fegeros, K.; Tsiplakou, E.; Zervas, G. Redefining the Future of Catering Waste Application in Animal Diets—A Review on the Minimization of Potential Hazards in Catering Waste Prior to Application in Animal Diets. Anim. Feed. Sci. Technol. 2022, 289, 115334. [Google Scholar] [CrossRef]
- Bouwman, A.F.; Boumans, L.J.M.; Batjes, N.H. Emissions of N2O and NO from Fertilized Fields: Summary of Available Measurement Data: Summary of NO and N2O measurement data. Glob. Biogeochem. Cycles 2002, 16, 6-1–6-13. [Google Scholar] [CrossRef]
- Awasthi, M.K.; Duan, Y.; Awasthi, S.K.; Liu, T.; Zhang, Z. Influence of Bamboo Biochar on Mitigating Greenhouse Gas Emissions and Nitrogen Loss during Poultry Manure Composting. Bioresour. Technol. 2020, 303, 122952. [Google Scholar] [CrossRef]
- USEPA. Quantitative Microbial Risk Assessment to Estimate Illness in Freshwater Impacted by Agricultural Animal Sources of Fecal Contamination. Report EPA 822-R-10-005; U.S. Environmental Protection Agency Office of Water: Washington, DC, USA, 2010. [Google Scholar]
- Kreidenweis, U.; Breier, J.; Herrmann, C.; Libra, J.; Prochnow, A. Greenhouse Gas Emissions from Broiler Manure Treatment Options Are Lowest in Well-Managed Biogas Production. J. Clean. Prod. 2021, 280, 124969. [Google Scholar] [CrossRef]
- Mohankumar Sajeev, E.P.; Winiwarter, W.; Amon, B. Greenhouse Gas and Ammonia Emissions from Different Stages of Liquid Manure Management Chains: Abatement Options and Emission Interactions. J. Environ. Qual. 2018, 47, 30–41. [Google Scholar] [CrossRef] [Green Version]
- Burton, C.H.; Turner, C. Manure Management: Treatment Strategies for Sustainable Agriculture, 2nd ed.; Burton, C.H., Turner, C., Eds.; Silsoe Research Institute: Silsoe, UK, 2003; ISBN 9780953128266. [Google Scholar]
- Sommer, S.G.; Petersen, S.O.; Møller, H.B. Algorithms for Calculating Methane and Nitrous Oxide Emissions from Manure Management. Nutr. Cycl. Agroecosystems 2004, 69, 143–154. [Google Scholar] [CrossRef]
- Groenestein, C.M.; Smits, M.C.J.; Huijsmans, J.F.M.; Oenema, O. Measures to Reduce Ammonia Emissions from Livestock Manures; Now, Soon and Later; Wageningen UR (University & Research Centre) Livestock Research: Wageningen, The Netherlands, 2011. [Google Scholar]
- Sommer, S.G.; Olesen, J.E.; Petersen, S.O.; Weisbjerg, M.R.; Valli, L.; Rodhe, L.; Béline, F. Region-Specific Assessment of Greenhouse Gas Mitigation with Different Manure Management Strategies in Four Agroecological Zones: Region-specific assessment of greenhouse gas mitigation. Glob. Chang. Biol. 2009, 15, 2825–2837. [Google Scholar] [CrossRef]
- Aguirre-Villegas, H.A.; Larson, R.A. Evaluating Greenhouse Gas Emissions from Dairy Manure Management Practices Using Survey Data and Lifecycle Tools. J. Clean. Prod. 2017, 143, 169–179. [Google Scholar] [CrossRef]
- Awe, O.W.; Zhao, Y.; Nzihou, A.; Minh, D.P.; Lyczko, N. A Review of Biogas Utilisation, Purification and Upgrading Technologies. Waste Biomass Valorization 2017, 8, 267–283. [Google Scholar] [CrossRef] [Green Version]
- Teenstra, E.; De Buisonjé, F.; Ndambi, A.; Pelster, D. Manure Management in the (Sub-)Tropics: Training Manual for Extension Workers; Livestock Research Report; Wageningen UR (University & Research Centre) Livestock Research: Rome, Italy; Wageningen, The Netherlands, 2015. [Google Scholar]
- Teenstra, E.; Vellinga, T.; Aektasaeng, N.; Amatayakul, W.; Ndambi, A.; Pelster, D.; Germer, L.; Jenet, A.; Opio, C.; Andeweg, K. Global Assessment of Manure Management Policies and Practices; Livestock Research Report; Wageningen UR (University & Research Centre) Livestock Research: Wageningen, The Netherlands, 2014. [Google Scholar]
- Kalogiannis, A.; Vasiliadou, I.A.; Spyridonidis, A.; Diamantis, V.; Stamatelatou, K. Biogas Production from Chicken Manure Wastes Using an LBR-CSTR Two-stage System: Process Efficiency, Economic Feasibility, and Carbon Dioxide Footprint. J. Chem. Technol. Biotechnol. 2022, 97, 2952–2961. [Google Scholar] [CrossRef]
- Da Costa Gomez, C. Biogas as an Energy Option: An Overview. In The Biogas Handbook; Elsevier: Amsterdam, The Netherlands, 2013; pp. 1–16. ISBN 9780857094988. [Google Scholar]
- Bhatia, S.C. Biogas. In Advanced Renewable Energy Systems; WPI Publishing: New York, NY, USA, 2015; p. 47. ISBN 9780429091575. [Google Scholar]
- Teng, Z.; Hua, J.; Wang, C.; Lu, X. Design and Optimization Principles of Biogas Reactors in Large Scale Applications. In Reactor and Process Design in Sustainable Energy Technology; Elsevier: Amsterdam, The Netherlands, 2014; pp. 99–134. ISBN 9780444595669. [Google Scholar]
- Siddiki, S.Y.A.; Uddin, M.N.; Mofijur, M.; Fattah, I.M.R.; Ong, H.C.; Lam, S.S.; Kumar, P.S.; Ahmed, S.F. Theoretical Calculation of Biogas Production and Greenhouse Gas Emission Reduction Potential of Livestock, Poultry and Slaughterhouse Waste in Bangladesh. J. Environ. Chem. Eng. 2021, 9, 105204. [Google Scholar] [CrossRef]
- Hristov, A.N.; Oh, J.; Firkins, J.L.; Dijkstra, J.; Kebreab, E.; Waghorn, G.; Makkar, H.P.S.; Adesogan, A.T.; Yang, W.; Lee, C.; et al. SPECIAL TOPICS—Mitigation of Methane and Nitrous Oxide Emissions from Animal Operations: I. A Review of Enteric Methane Mitigation Options1. J. Anim. Sci. 2013, 91, 5045–5069. [Google Scholar] [CrossRef] [Green Version]
- Vandecasteele, B.; Reubens, B.; Willekens, K.; De Neve, S. Composting for Increasing the Fertilizer Value of Chicken Manure: Effects of Feedstock on P Availability. Waste Biomass Valorization 2014, 5, 491–503. [Google Scholar] [CrossRef]
- Steiner, C.; Das, K.C.; Melear, N.; Lakly, D. Reducing Nitrogen Loss during Poultry Litter Composting Using Biochar. J. Environ. Qual. 2010, 39, 1236–1242. [Google Scholar] [CrossRef] [Green Version]
- Janczak, D.; Malińska, K.; Czekała, W.; Cáceres, R.; Lewicki, A.; Dach, J. Biochar to Reduce Ammonia Emissions in Gaseous and Liquid Phase during Composting of Poultry Manure with Wheat Straw. Waste Manag. 2017, 66, 36–45. [Google Scholar] [CrossRef]
- Godlewska, P.; Schmidt, H.P.; Ok, Y.S.; Oleszczuk, P. Biochar for Composting Improvement and Contaminants Reduction. A Review. Bioresour. Technol. 2017, 246, 193–202. [Google Scholar] [CrossRef]
- He, Z.; Lin, H.; Hao, J.; Kong, X.; Tian, K.; Bei, Z.; Tian, X. Impact of Vermiculite on Ammonia Emissions and Organic Matter Decomposition of Food Waste during Composting. Bioresour. Technol. 2018, 263, 548–554. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, X.; Zhang, W.; Wang, S.; Fan, Y.; Xie, J.; Liao, W.; Gao, Z. Mitigating Gas Emissions from Poultry Litter Composting with Waste Vinegar Residue. Sci. Total Environ. 2022, 842, 156957. [Google Scholar] [CrossRef]
- He, X.; Hu, Q.; Chen, J.; Leong, W.Q.; Dai, Y.; Wang, C.-H. Energy and Environmental Risk Assessments of Poultry Manure Sustainable Solution: An Industrial Case Study in Singapore. J. Clean. Prod. 2022, 339, 130787. [Google Scholar] [CrossRef]
- Choudhury, A.; Felton, G.; Moyle, J.; Lansing, S. Fluidized Bed Combustion of Poultry Litter at Farm-Scale: Environmental Impacts Using a Life Cycle Approach. J. Clean. Prod. 2020, 276, 124231. [Google Scholar] [CrossRef]
- Ogino, A.; Oishi, K.; Setoguchi, A.; Osada, T. Life Cycle Assessment of Sustainable Broiler Production Systems: Effects of Low-Protein Diet and Litter Incineration. Agriculture 2021, 11, 921. [Google Scholar] [CrossRef]
- Cui, Y.; Theo, E.; Gurler, T.; Su, Y.; Saffa, R. A Comprehensive Review on Renewable and Sustainable Heating Systems for Poultry Farming. Int. J. Low-Carbon Technol. 2020, 15, 121–142. [Google Scholar] [CrossRef]
- Manolakos, D.; Panagakis, P.; Bartzanas, T.; Bouzianas, K. Use of Heat Pumps in HVAC Systems for Precise Environment Control in Broiler Houses: System’s Modeling and Calculation of the Basic Design Parameters. Comput. Electron. Agric. 2019, 163, 104876. [Google Scholar] [CrossRef]
- Choi, H.C.; Salim, H.M.; Akter, N.; Na, J.C.; Kang, H.K.; Kim, M.J.; Kim, D.W.; Bang, H.T.; Chae, H.S.; Suh, O.S. Effect of Heating System Using a Geothermal Heat Pump on the Production Performance and Housing Environment of Broiler Chickens. Poult. Sci. 2012, 91, 275–281. [Google Scholar] [CrossRef]
- Li, Y.; Arulnathan, V.; Heidari, M.D.; Pelletier, N. Design Considerations for Net Zero Energy Buildings for Intensive, Confined Poultry Production: A Review of Current Insights, Knowledge Gaps, and Future Directions. Renew. Sustain. Energy Rev. 2022, 154, 111874. [Google Scholar] [CrossRef]
- Gurler, T.; Elmer, T.; Cui, Y.; Omer, S.; Riffat, S. Experimental Investigation of a Novel PVt/Heat Pump System for Energy-Efficient Poultry Houses. Int. J. Low-Carbon Technol. 2018, 13, 404–413. [Google Scholar] [CrossRef]
- Cui, Y.; Theo, E.; Gurler, T.; Su, Y.; Saffa, R. Feasibility of Hybrid Renewable Heating System Application in Poultry House: A Case Study of East Midlands, UK. Int. J. Low-Carbon Technol. 2021, 16, 73–88. [Google Scholar] [CrossRef]
- Wijnen, H.J.; Molenaar, R.; Kemp, B.; van Roovert-Reijrink, I.A.M.; van den Brand, H.; van der Pol, C.W. Effects of Late Incubation Temperature and Moment of First Post-Hatch Feed Access on Neonatal Broiler Development, Temperature Preference, and Stress Response. Poult. Sci. 2022, 101, 102088. [Google Scholar] [CrossRef]
- Gaweł, A.; Madej, J.P.; Kozak, B.; Bobrek, K. Early Post-Hatch Nutrition Influences Performance and Muscle Growth in Broiler Chickens. Animals 2022, 12, 3281. [Google Scholar] [CrossRef]
- Witjes, V.L.; Bruckmaier, R.M.; Gebhardt-Henrich, S.G.; Toscano, M.J. Effects of On-Farm Hatching on Short Term Stress Indicators, Weight Gain, and Cognitive Ability in Layer Chicks. Appl. Anim. Behav. Sci. 2022, 254, 105692. [Google Scholar] [CrossRef]
- Arain, M.A.; Nabi, F.; Marghazani, I.B.; Hassan, F.U.; Soomro, H.; Kalhoro, H.; Soomro, F.; Buzdar, J.A. In Ovo Delivery of Nutraceuticals Improves Health Status and Production Performance of Poultry Birds: A Review. World’s Poult. Sci. J. 2022, 78, 765–788. [Google Scholar] [CrossRef]
- Costantino, A.; Fabrizio, E.; Calvet, S. The Role of Climate Control in Monogastric Animal Farming: The Effects on Animal Welfare, Air Emissions, Productivity, Health, and Energy Use. Appl. Sci. 2021, 11, 9549. [Google Scholar] [CrossRef]
- Berckmans, D. General Introduction to Precision Livestock Farming. Anim. Front. 2017, 7, 6–11. [Google Scholar] [CrossRef] [Green Version]
- Fournel, S.; Rousseau, A.N.; Laberge, B. Rethinking Environment Control Strategy of Confined Animal Housing Systems through Precision Livestock Farming. Biosyst. Eng. 2017, 155, 96–123. [Google Scholar] [CrossRef]
- Rowe, E.; Dawkins, M.S.; Gebhardt-Henrich, S.G. A Systematic Review of Precision Livestock Farming in the Poultry Sector: Is Technology Focussed on Improving Bird Welfare? Animals 2019, 9, 614. [Google Scholar] [CrossRef] [Green Version]
- Li, N.; Ren, Z.; Li, D.; Zeng, L. Review: Automated Techniques for Monitoring the Behaviour and Welfare of Broilers and Laying Hens: Towards the Goal of Precision Livestock Farming. Animal 2020, 14, 617–625. [Google Scholar] [CrossRef]
Poultry | ||
---|---|---|
Countries | Meat Production (Thousand Tonnes) | Eggs Production (Thousands of Tonnes) |
Croatia | 54 | 30.1 |
Cyprus | 27 | 10.5 |
France | 1121 | 786.1 |
Greece | 228 | 74.3 |
Italy | 1055 | 717.4 |
Malta | 4 | 5.5 |
Slovenia | 64 | 24.8 |
Spain | 1412 | 810.9 |
Dietary Strategy | Nutritional Practice | Effect-Impact | Supporting Evidence | References |
---|---|---|---|---|
Replacement of soybean | Peas | ↓ 8.21% GHG | Local availability reduces the transportation emissions | [67] |
Semi-leafless peas | [68] | |||
Domestically peas and rapeseed | [49] | |||
Cottonseed meal | [69] | |||
Replacement of palm oil | Cotton seed oil | ↓ 22% CF | [70] | |
Alternative protein sources (insects) | Mealworm | ↓ LUC | - Welfare, growth performance or any other physiological or morphological feature | [71,72] |
Black soldier larvae fat | No alteration on performance or meat and carcass quality | [73] | ||
Balance low-protein diets | Amino acids | ↓ Loss of nutrients | ↓ Energy demand | [74] |
Improve bioavailability of nutrients | E. coli phytase | ↑ Bioavailability | [75] | |
Zn and phytase | ↑ Body weight and nutrient usage | [76] | ||
Decrease or replace the amount of soybean meal with protease and corn gluten meal | [77] | |||
Waste valorization | Hotel food residues | ↓ Loss of nutrients ↓ Energy for feed production ↑ Supply of bioactive compounds | No impact on FCR, mortality, carcass, or breast yield | [78,79] |
Vinification by-products (ground grape pomace, wine lees extract and grape stem extract) | - Feed intake, FCR, carcass yield, and the weight of the internal organs not affected | [80] | ||
Wine lees extract rich in yeast cell walls, and grape stem extracts | - Improvement of the broilers’ oxidative status | [81] |
Manure Strategy | Manure Practice | Effect-Impact | References |
---|---|---|---|
Frequent removal of manure | ↓ CH4 | [112,113] | |
Cooling manure | Cooling < 10 °C | ↓ CH4 30–46%, ↓ NH3 | [65,115] |
Biogas for energy | Producing biogas from manure | ↓ GHG emissions from energy ↓ CF 1.38 to 0.49 kg CO2-eq/head | [117,121] |
Biogas digestate for fertilizer | Biogas digestate stored in closed tanks | ↓ GHG fertilizer production | [111] |
Composting manure | Composting and use of additives (zeolite, biochar etc.) | ↓ CH4, fertilizer production ↑ nutrient conservation | [128,129,130,131,132] |
Incineration | Litter incineration and low-protein diet | ↓ 42% GHG | [135] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zisis, F.; Giamouri, E.; Mitsiopoulou, C.; Christodoulou, C.; Kamilaris, C.; Mavrommatis, A.; Pappas, A.C.; Tsiplakou, E. An Overview of Poultry Greenhouse Gas Emissions in the Mediterranean Area. Sustainability 2023, 15, 1941. https://doi.org/10.3390/su15031941
Zisis F, Giamouri E, Mitsiopoulou C, Christodoulou C, Kamilaris C, Mavrommatis A, Pappas AC, Tsiplakou E. An Overview of Poultry Greenhouse Gas Emissions in the Mediterranean Area. Sustainability. 2023; 15(3):1941. https://doi.org/10.3390/su15031941
Chicago/Turabian StyleZisis, Foivos, Elisavet Giamouri, Christina Mitsiopoulou, Christos Christodoulou, Charalampos Kamilaris, Alexandros Mavrommatis, Athanasios C. Pappas, and Eleni Tsiplakou. 2023. "An Overview of Poultry Greenhouse Gas Emissions in the Mediterranean Area" Sustainability 15, no. 3: 1941. https://doi.org/10.3390/su15031941
APA StyleZisis, F., Giamouri, E., Mitsiopoulou, C., Christodoulou, C., Kamilaris, C., Mavrommatis, A., Pappas, A. C., & Tsiplakou, E. (2023). An Overview of Poultry Greenhouse Gas Emissions in the Mediterranean Area. Sustainability, 15(3), 1941. https://doi.org/10.3390/su15031941