Multiple Monitoring Stations in Big Cities: First Example of Three Spore Traps in Rome
Abstract
:1. Introduction
1.1. Climate, Flora, and Vegetation
1.2. Pollen Flora and Aerobiological Monitoring Stations
1.3. Aim
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ravaglioli, A. Roma anno 2750 ab Urbe Condita; Tascabili Economici Newton: Rome, Italy, 1997; ISBN 978-88-8183-670-3. (In Italian) [Google Scholar]
- Roma Capitale–Ufficio di Statistica. I Numeri di Roma Capitale. Comune di Roma. 31 December 2018. Available online: https://www.comune.roma.it/web-resources/cms/documents/Popolazione_2018_RC_rev.pdf (accessed on 7 December 2022).
- Roma Capitale Dipartimento Tutela Ambientale e Del Verde–Protezione Civile. Relazione sullo Stato dell’Ambiente Natura e Verde Pubblico 2016. Available online: https://www.comune.roma.it/web-resources/cms/documents/Verde_2016.pdf (accessed on 12 September 2022).
- ISTAT. 2020. Available online: https://demo.istat.it/strasa2020/index.html (accessed on 28 November 2022).
- Roma Capitale Dipartimento Trasformazione Digitale U.O. Statistica-Open Data. Il Turismo a Roma Anno 2019. Available online: https://www.comune.roma.it/web-resources/cms/documents/Il_turismo_a_Roma_2019_new.pdf (accessed on 28 November 2022).
- Vélez-Pereira, A.M.; De Linares, C.; Belmonte, J. Aerobiological modelling II: A review of long-range transport models. Sci. Total Environ. 2022, 845, 157351. [Google Scholar] [CrossRef] [PubMed]
- Caiola, M.G.; Mazzitelli, A.; Capucci, E.; Travaglini, A. Monitoring pollinosis and airborne pollen in a Rome university. Aerobiologia 2002, 18, 267–275. [Google Scholar] [CrossRef]
- Travaglini, A.; Mazzitelli, A. A method to control the spread of allergenic pollen in archaeological and highly frequented areas. Aerobiologia 2003, 19, 185–190. [Google Scholar] [CrossRef]
- Ricotta, C.; Celesti Grapow, L.; Avena, G.; Blasi, C. Topological analysis of the spatial distribution of plant species richness across the city of Rome (Italy) with the echelon approach. Landsc. Urban Plan. 2001, 57, 69–76. [Google Scholar] [CrossRef]
- Blasi, C. Fitoclimatologia del Lazio. Fitosociologia 1994, 27, 151–175. [Google Scholar]
- Amanti, M.; Crescenzo, R.; Marra, F.; Pecci, M.; Piro, M.; Salvi, S.; Vallesi, R. Memorie Descrittive della Carta Geologica d’Italia; La geologia di Roma, il centro storico (Geology of Rome. The historic center); Istituto Poligrafico e Zecca dello Stato: Roma, Italy, 1995; Volume 50, ISBN 978-88-240-3970-3. [Google Scholar]
- Celesti-Grapow, L.; Fanelli, G. The vanishing landscape of the Campagna Romana. Landsc. Urban Plan. 1993, 24, 69–76. [Google Scholar] [CrossRef]
- Celesti-Grapow, L.; Capotorti, G.; Del Vico, E.; Lattanzi, E.; Tilia, A.; Blasi, C. The vascular flora of Rome. Plant Biosyst. 2013, 147, 1059–1087. [Google Scholar] [CrossRef] [Green Version]
- Fanelli, G.; Tescarollo, P.; Testi, A. Ecological indicators applied to urban and suburban floras. Ecol. Indic. 2006, 6, 444–457. [Google Scholar] [CrossRef]
- Anzalone, B. Flora e vegetazione dei muri di Roma. Ann. Bot. 1951, 23, 393–497. [Google Scholar]
- Anzalone, B.; Iberite, M.; Lattanzi, E. La Flora vascolare del Lazio. Inf. Bot. Ital. 2010, 42, 187–317. [Google Scholar]
- Attorre, F.; Stanisci, A.; Bruno, F. The urban woods of Rome (Italy). Plant Biosyst. 1997, 131, 113–135. [Google Scholar] [CrossRef]
- Celesti-Grapow, L. Atlante Della Flora di Roma–La Distribuzione delle Piante Spontanee Come Indicatore Ambientale; Argos Edizioni: Milton Keynes, UK, 1995. [Google Scholar]
- Celesti-Grapow, L.; Pyšek, P.; Jarošík, V.; Blasi, C. Determinants of native and alien species richness in the urban flora of Rome. Divers. Distrib. 2006, 12, 490–501. [Google Scholar] [CrossRef]
- Caneva, G.; Pacini, A.; Celesti-Grapow, L.; Ceschin, S. The Colosseum’s use and state of abandonment as analyzed through its flora. Int. Biodeterior. Biodegrad. 2001, 51, 211–219. [Google Scholar] [CrossRef]
- Ceschin, S.; Cutini, M.; Caneva, G. Contributo alla conoscenza della vegetazione delle aree archeologiche romane-(Contribution to vegetation knowledge of Roman archaeological areas. Fitosociologia 2006, 43, 97–139. [Google Scholar]
- Celesti-Grapow, L.; Pretto, F.; Carli, E.; Blasi, C. Flora Vascolare Alloctona e Invasiva delle Regioni d’Italia; Casa Editrice Università La Sapienza: Roma, Italy, 2010; 208p. [Google Scholar]
- Campitelli, A.; Cremona, A. Atlante Storico delle Ville e Giardini di Roma. Jaca Book: Milano, Italy, 2012. [Google Scholar]
- Comune di Roma—Dipartimento VI—Politiche della Programmazione e Pianificazione del Territorio Roma Capitale. Relazione Vegetazionale (Documentazione ai Sensi della D.G.R. 18/5/99 n.2649). 1999. Available online: http://www.urbanistica.comune.roma.it/images/uo_urban/prg_vigente/prg_g9b.pdf (accessed on 24 June 2022).
- The Number in Brackets Indicates the Number of Specimens per Species. Available online: https://www.comune.roma.it/PCR/resources/cms/documents/RSA12natura.pdf (accessed on 18 May 2022).
- Di Menno di Bucchianico, A.; Brighetti, M.A.; Cattani, G.; Costa, C.; Cusano, M.; De Gironimo, V.; Froio, F.; Gaddi, R.; Pelosi, S.; Sfika, I.; et al. Combined effects of air pollution and allergens in the city of Rome. Urban For. Urban Green. 2019, 37, 13–23. [Google Scholar] [CrossRef]
- Menzel, A.; Ghasemifard, H.; Yuan, Y.; Estrella, N. A first pre-season pollen transport climatology to Bavaria, Germany. Front. Allergy 2021, 2, 627–863. [Google Scholar] [CrossRef] [PubMed]
- de Weger, L.A.; Pashley, C.H.; Šikoparija, B.; Skjøth, C.A.; Kasprzyk, I.; Grewling, Ł.; Thibaudon, M.; Magyar, D.; Smith, M. The long distance transport of airborne Ambrosia pollen to the UK and the Netherlands from Central and south Europe. Int. J. Biometeorol. 2016, 60, 1829–1839. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cecchi, L.; Morabito, M.; Domeneghetti, M.P.; Crisci, A.; Onorari, M.; Orlandini, S. Long distance transport of ragweed pollen as a potential cause of allergy in central Italy. Ann. Allergy Asthma Immunol. 2006, 96, 86–91. [Google Scholar] [CrossRef]
- Damialis, A.; Gioulekas, D.; Lazopoulou, C.; Balafoutis, C.; Vokou, D. Transport of airborne pollen into the city of Thessaloniki: The effects of wind direction, speed and persistence. Int. J. Biometeorol. 2005, 49, 139–145. [Google Scholar] [CrossRef]
- Travaglini, A.; Canini, A.; Grilli Caiola, M. Project of the “Tor Vergata” University (Rome) botanic garden: Description of the site. Museol. Sci. 1992, 9, 329–345. [Google Scholar]
- EAACI-European Academy of Allergy and Clinical Immunology. Global Atlas of Asthma; Akdis, C.A., Agache, I., Eds.; European Academy of Allergy and Clinical Immunology: Florence, Italy, 2013. [Google Scholar]
- EAACI-European Academy of Allergy and Clinical Immunology. Global Atlas of Allergy; Akdis, C.A., Agache, I., Eds.; European Academy of Allergy and Clinical Immunology: Florence, Italy, 2014. [Google Scholar]
- EAACI-European Academy of Allergy and Clinical Immunology. White Paper on Research, Innovation and Quality Care; Agache, I., Akdis, C.A., Chivato, T., Hellings, P., Hoffman-Sommergruber, K., Jutel, M., Lauerma, A., Papadopoulos, N., Schmid-Grendelmeier, P., Schmidt-Weber, C., Eds.; European Academy of Allergy and Clinical Immunology: Florence, Italy, 2018. [Google Scholar]
- WAO-World Allergy Organization. White Book on Allergy: Update 2013; Pawankar, R., Canonica, G.W., Holgate, S.T., Lockey, R.F., Blaiss, M.S., Eds.; World Allergy Organization: Milwaukee, WI, USA, 2013. [Google Scholar]
- Xie, W.; Li, Y.; Bai, W.; Hou, J.; Ma, T.; Zeng, X.; Zhang, L.; An, T. The source and transport of bioaerosols in the air: A review. Front. Environ. Sci. Eng. 2021, 15, 44. [Google Scholar] [CrossRef] [PubMed]
- Joubert, A.I.; Geppert, M.; Johnson, L.; Mills-Goodlet, R.; Michelini, S.; Korotchenko, E.; Duschl, A.; Weiss, R.; Horejs-Höck, J.; Himly, M. Mechanisms of particles in sensitization, effector function and therapy of allergic disease. Front. Immunol. 2020, 11, 1334. [Google Scholar] [CrossRef] [PubMed]
- Damialis, A.; Gilles, S.; Sofiev, M.; Sofiev, V.; Kolek, F.; Bayr, D.; Plaza, M.P.; Leier-Wirtz, V.; Kaschuba, S.; Ziska, L.H.; et al. Higher airborne pollen concentrations correlated with increased SARS-CoV-2 infection rates, as evidenced from 31 countries across the globe. Proc. Natl. Acad. Sci. USA 2021, 18, e2019034118. [Google Scholar] [CrossRef]
- Awaya, A.; Kuroiwa, Y. The relationship between annual airborne pollen levels and occurrence of all cancers, and lung, stomach, colorectal, pancreatic and breast cancers: A retrospective study from the National Registry Database of cancer incidence in Japan, 1975–2015. Int. J. Environ. Res. Public Health 2020, 17, 3950. [Google Scholar] [CrossRef]
- Ziello, C.; Sparks, T.H.; Estrella, N.; Belmonte, J.; Bergmann, K.C.; Bucher, E.; Brighetti, M.A.; Damialis, A.; Detandt, M.; Galan, C.; et al. Changes to airborne pollen counts across Europe. PLoS ONE 2012, 7, e34076. [Google Scholar] [CrossRef]
- Bruffaerts, N.; De Smedt, T.; Delcloo, A.; Simons, K.; Hoebeke, L.; Verstraeten, C.; Van Nieuwenhuyse, A.; Packeu, A.; Hendrickx, M. Comparative long-term trend analysis of daily weather conditions with daily pollen concentrations in Brussels, Belgium. Int. J. Biometeorol. 2018, 62, 483–491. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, T.M.; Travaglini, A.; Brighetti, M.A.; Acar Şahin, A.; Arasi, S.; Bregu, B.; Caeiro, E.; Caglayan Sozmen, S.; Charpin, D.; Delgado, L.; et al. Cumulative Pollen Concentration Curves for Pollen Allergy Diagnosis. J. Investig. Allergol. Clin. Immunol. 2021, 31, 340–343. [Google Scholar] [CrossRef]
- UNI 11108:2004; Air Quality. Method for Sampling and Counting of Airborne Pollen Grains and Fungal Spores; UNI, Italian National Unification: Milano, Italy, 2004; p. 8.
- Galán Soldevilla, C.; Cariñanos González, P.; Alcázar Teno, P.; Domínguez Vilches, E. Spanish Aerobiology Network (REA): Management and Quality Manual. Serv. Publ. Univ. Córdoba. 2007, 184, 1–300. [Google Scholar]
- CEN/TS 16868:2019; Ambient Air—Sampling and Analysis of Airborne Pollen Grains and Fungal Spores for Allergy Networks—Volumetric Hirst Method; UNI, Italian National Unification: Milano, Italy, 2019.
- Buters, J.T.M.; Antunes, C.; Galveias, A.; Bergmann, K.C.; Thibaudon, M.; Galán, C.; Schmidt-Weber, C.; Oteros, J. Pollen and spore monitoring in the world. Clin. Transl. Allergy. 2018, 4, 9. [Google Scholar] [CrossRef] [PubMed]
- Pollnet-Snpa. 2020. Available online: https://www.arpae.it/it/notizie/lo-stato-dei-principali-pollini-allergenici-in-italia-nel-2020 (accessed on 24 June 2022).
- Cariñanos, P.; Casares-Porcel, M.; Díaz de la Guardia, C.; Aira, M.J.; Belmonte, J.; Boi, M.; Elvira-Rendueles, B.; De Linares, C.; Fernández-Rodriguez, S.; Maya-Manzano, J.M.; et al. Assessing allergenicity in urban parks: A nature-based solution to reduce the impact on public health. Environ. Res. 2017, 155, 219–227. [Google Scholar] [CrossRef]
- Blasi, C.; Filibeck, G.; Frondoni, R.; Rosati, L.; Smiraglia, D. The map of the vegetation series of Italy. Fitosociologia 2004, 41 (Suppl. 1), 21–25. [Google Scholar]
- Blasi, C.; Dowgiallo, G.; Follieri, M.; Lucchese, F.; Magri, D.; Pignatti, S.; Sadori, L. La vegetazione naturale potenziale dell’area romana. Atti Acc. Naz. Lincei 1995, 115, 423–457. [Google Scholar]
- Fanelli, G. Analisi Fitosociologica dell’Area Metropolitana di Roma; Braun-Blanquetia: Camerino, Italy, 2002; Volume 27, 269p. [Google Scholar]
- Blasi, C.; Di Pietro, R.; Filibeck, G.; Filesi, L.; Ercole, S.; Rosati, L. Le Serie di Vegetazione della Regione Lazio. La Vegetazione d’Italia; Palombi & Partner Srl: Roma, Italy, 2010; pp. 281–309. [Google Scholar]
- Mandrioli, P.; Comtois, P.; Domınguez-Vilches, E.; Galan-Soldevilla, C.; Syzdek, L.D.; Isard, S.A. Sampling: Principles and techniques. In Methods in Aerobiology; Mandrioli, P., Comtois, P., Levizzani, V., Eds.; Pitagora Editrice: Bologna, Italy, 1998. [Google Scholar]
- Galan, C.; Ariatti, A.; Bonini, M.; Clot, B.; Crouzy, B.; Dahl, A.; Fernandez-Gonzalez, D.; Frenguelli, G.; Gehrig, R.; Isard, S.; et al. Recommended terminology for aerobiological studies. Aerobiologia 2017, 33, 293–295. [Google Scholar] [CrossRef]
- Hoffmann, T.M.; Acar Şahin, A.; Aggelidis, X.; Arasi, S.; Barbalace, A.; Bourgoin, A.; Bregu, B.; Brighetti, M.A.; Caeiro, E.; Sozmen, S.C.; et al. “Whole” vs. “fragmented” approach to EAACI pollen season definitions: A multicenter study in six Southern European cities. Allergy 2020, 75, 1659–1671. [Google Scholar] [CrossRef] [Green Version]
- D’Amato, G.; Lobefalo, G. Allergenic pollens in the southern Mediterranean area. J. Allergy Clin. Immunol. 1989, 83, 116–122. [Google Scholar] [CrossRef] [PubMed]
- Jäger, S.; Nilsson, S.; Berggren, B.; Pessi, A.; Helander, M.; Ramfjord, H. Trends of some airborne tree pollen in the Nordic countries and Austria, 1980–1993. Grana 1996, 35, 171–178. [Google Scholar] [CrossRef] [Green Version]
- IBM Corp. Released 2017. IBM SPSS Statistics for Windows, Version 25.0; IBM Corp: Armonk, NY, USA.
- Munafò, M. (Ed.) Consumo di Suolo, Dinamiche Territoriali e Servizi Ecosistemici; Report SNPA 32/22; Report SNPA: 2022; ISBN 978-88-448-1124-2. Available online: https://www.snpambiente.it/2022/07/26/consumo-di-suolo-dinamiche-territoriali-e-servizi-ecosistemici-edizione-2022/ (accessed on 18 March 2022).
- Fusaro, L.; Marando, F.; Sebastiani, A.; Capotorti, G.; Blasi, C.; Copiz, R.; Manes, F. Mapping and assessment of PM10 and O3 removal by woody vegetation at urban and regional level. Remote Sens. 2017, 9, 791. [Google Scholar] [CrossRef] [Green Version]
- Travaglini, A.; Ravaziol, D.; Caiola, M.G. A meteorological station and a pollen trap at the botanical garden and arboretum of the university of Rome Tor Vergata. Aerobiologia 2000, 16, 303–307. [Google Scholar] [CrossRef]
- Jato, V.; Rodriguez-Rajo, F.J.; Alcázar, P.; De Nuntiies, P.; Galán, C.; Mandrioli, P. May the definition of pollen season influence aerobiological results? Aerobiologia 2006, 22, 13–25. [Google Scholar] [CrossRef] [Green Version]
- Stepalska, D.; Myszkowska, D.; Piotrowicz, K.; Kasprzyk, I. The phenological phases of flowering and pollen seasons of spring flowering tree taxa against a background of meteorological conditions in Krako’w, Poland. Acta Agrobot. 2016, 65, 1678. [Google Scholar] [CrossRef] [Green Version]
- Blasi, C.; Michetti, L. La Carta del Fitoclima d’Italia (scala 1:250.000). In International Symposium of Biodiversity and Phytosociology: 106; University of Ancona: Ancona, Italy, 2003. [Google Scholar]
- Roma Capitale-Dipartimento Tutela Ambientale e del Verde. Relazione sullo Stato dell’Ambiente, Natura e Verde Pubblico. 2012. Available online: https://www.comune.roma.it/PCR/resources/cms/documents/RSA12natura.pdf (accessed on 18 March 2022).
- Colacino, M.; Lavagnini, A. Evidence of the urban heat island in Rome by climatological analyses. Arch. Meteorol. Geophys. Bioclimatol. Ser. B 1982, 31, 87–97. [Google Scholar] [CrossRef]
- Brighetti, M.A.; De Franco, D.; Di Cosmo, C.; Di Menno di Bucchianico, A.; Froio, F.; Miraglia, A.; Moselli, D.; Travaglini, A. Aerobiological Biodiversity in the Metropolitan City of Rome. Int. J. Environ. Sci. Nat. Res. 2022, 30, 556283. [Google Scholar] [CrossRef]
- Donato, F.D.; Scortichini, M.; Parliari, D.; Kontos, S.; Papastergios, G.; Kelessis, A.; Tzoumaka, P.; Argentini, S.; Casasanta, G.; Deliyannis, A.; et al. Urban Heat Islands and Heat Health Warning Systems in Mediterranean Cities. Results from the Life ASTI Project; ISEE Conference Abstracts; Environmental Health Perspectives: Durham, NC, USA, 2021. [Google Scholar] [CrossRef]
- Keppas, S.C.; Papadogiannaki, S.; Parliari, D.; Kontos, S.; Poupkou, A.; Tzoumaka, P.; Kelessis, A.; Zanis, P.; Casasanta, G.; de’Donato, F.; et al. Future Climate Change Impact on Urban Heat Island in Two Mediterranean Cities Based on High-Resolution Regional Climate Simulations. Atmosphere 2021, 12, 884. [Google Scholar] [CrossRef]
- Esposito, S. Un’analisi dell’Andamento Pluviometrico sul Territorio Nazionale nell’Anno Appena Concluso. PianetaPSR Numero 110 Febbraio 2022. CREA AA. 2022. Available online: http://www.pianetapsr.it/flex/cm/pages/ServeBLOB.php/L/IT/IDPagina/2679 (accessed on 16 March 2022).
- Cristofolini, F.; Anelli, P.; Billi, B.M.; Bocchi, C.; Borney, M.F.; Bucher, E.; Cassoni, F.; Coli, S.; De Gironimo, V.; Gottardini, E.; et al. Temporal trends in airborne pollen seasonality: Evidence from the Italian POLLnet network data. Aerobiologia 2020, 36, 63–70. [Google Scholar] [CrossRef]
- Mercuri, A.M.; Torri, P.; Fornaciari, R.; Florenzano, A. Plant Responses to Climate Change: The Case Study of Betulaceae and Poaceae Pollen Seasons (Northern Italy, Vignola, Emilia-Romagna). Plants 2016, 5, 42. [Google Scholar] [CrossRef] [Green Version]
- Mercuri, A.M.; Torri, P.; Casini, E.; Olmi, L. Climate warming and the decline of Taxus airborne pollen in urban pollen rain (Emilia Romagna, northern Italy). Plant Biol. 2013, 15 (Suppl. 1), 70–82. [Google Scholar] [CrossRef]
- Schramm, P.J.; Brown, C.L.; Saha, S.; Conlon, K.C.; Manangan, A.P.; Bell, J.E.; Hess, J.J. A systematic review of the effects of temperature and precipitation on pollen concentrations and season timing, and implications for human health. Int. J. Biometeorol. 2021, 65, 1615–1628. [Google Scholar] [CrossRef]
- Jiang, C.; Wang, W.; Du, L.; Huang, G.; McConaghy, C.; Fineman, S.; Liu, Y. Field Evaluation of an Automated Pollen Sensor. Int. J. Environ. Res. Public Health 2022, 19, 6444. [Google Scholar] [CrossRef]
2020 | Indicator | 2021 | ||||
---|---|---|---|---|---|---|
TV | SP | CP | TV | SP | CP | |
flowering START (day/month) | ||||||
3/2 | 3/2 | 3/2 | Alnus spp. | 29/1 | 30/1 | 5/2 |
3/2 | 4/2 | 4/2 | Cupressaceae/Taxaceae | 30/1 | 30/1 | 6/2 |
13/6 | 13/6 | 13/6 | Castanea sativa Miller | 19/6 | 13/6 | 16/6 |
10/4 | 31/3 | 30/3 | Quercus spp. | 6/4 | 3/4 | 4/4 |
24/4 | 24/4 | 21/4 | Poaceae | 29/4 | 29/4 | 5/5 |
24/4 | 4/5 | 21/4 | Olea europaea L. | 26/4 | 16/5 | 16/5 |
23/3 | 19/3 | 18/3 | Platanaceae | 21/3 | 26/3 | 22/3 |
4/3 | 28/2 | 15/3 | Urticaceae | 28/2 | 29/3 | 22/2 |
flowering END (day/month) | ||||||
22/3 | 21/3 | 22/3 | Alnus spp. | 28/3 | 24/3 | 23/3 |
7/5 | 4/4 | 12/4 | Cupressaceae/Taxaceae | 19/4 | 24/4 | 2/4 |
16/7 | 21/7 | 12/7 | Castanea sativa Miller | 12/7 | 10/8 | 25/7 |
30/5 | 4/6 | 28/5 | Quercus spp. | 2/6 | 9/6 | 29/5 |
14/7 | 9/8 | 8/7 | Poaceae | 4/7 | 22/8 | 15/9 |
2/6 | 4/6 | 3/6 | Olea europaea L. | 7/6 | 19/6 | 9/6 |
21/4 | 21/4 | 17/4 | Platanaceae | 26/4 | 22/4 | 10/4 |
7/7 | 29/7 | 3/6 | Urticaceae | 3/7 | 25/9 | 26/9 |
flowering LENGTH (number of days) | ||||||
49 | 48 | 49 | Alnus spp. | 60 | 55 | 48 |
95 | 61 | 69 | Cupressaceae/Taxaceae | 81 | 86 | 57 |
34 | 39 | 30 | Castanea sativa Miller | 24 | 59 | 40 |
51 | 66 | 60 | Quercus spp. | 58 | 68 | 56 |
82 | 108 | 79 | Poaceae | 67 | 116 | 134 |
40 | 32 | 44 | Olea europaea L. | 43 | 35 | 25 |
30 | 34 | 31 | Platanaceae | 37 | 27 | 20 |
126 | 153 | 81 | Urticaceae | 127 | 181 | 218 |
max (day/month) | ||||||
20/3 | 26/2 | 20/2 | Alnus spp. | 12/2 | 13/2 | 23/2 |
21/2 | 26/2 | 25/2 | Cupressaceae/Taxaceae | 23/2 | 11/2 | 9/2 |
23/6 | 8/7 | 26/6 | Castanea sativa Miller | 20/6 | 20/6 | 20/6 |
15/5 | 22/5 | 11/5 | Quercus spp. | 17/5 | 25/5 | 18/5 |
17/5 | 19/5 | 13/5 | Poaceae | 21/5 | 30/5 | 25/5 |
7/5 | 26/5 | 25/5 | Olea europaea L. | 23/5 | 30/5 | 23/5 |
23/3 | 13/4 | 23/3 | Platanaceae | 28/3 | 1/4 | 29/3 |
11/4 | 15/3 | 23/3 | Urticaceae | 17/6 | 30/3 | 23/5 |
max (p/m3) | ||||||
72 | 70 | 59 | Alnus spp. | 9 | 4 | 3 |
425 | 2236 | 1562 | Cupressaceae/Taxaceae | 500 | 563 | 425 |
173 | 35 | 19 | Castanea sativa Miller | 366 | 126 | 146 |
522 | 205 | 405 | Quercus spp. | 279 | 191 | 144 |
291 | 103 | 88 | Poaceae | 179 | 121 | 38 |
669 | 194 | 144 | Olea europaea L. | 156 | 81 | 49 |
87 | 156 | 1289 | Platanaceae | 159 | 81 | 1076 |
336 | 156 | 207 | Urticaceae | 258 | 130 | 58 |
Annual Pollen Index (APIn) (p/m3) | ||||||
893 | 917 | 658 | Alnus spp. | 93 | 50 | 30 |
9117 | 26,717 | 15,703 | Cupressaceae/Taxaceae | 4641 | 6480 | 4443 |
1183 | 531 | 182 | Castanea sativa Miller | 1415 | 478 | 356 |
7980 | 2746 | 4630 | Quercus spp. | 4068 | 3005 | 1675 |
6159 | 1869 | 1793 | Poaceae | 3661 | 2393 | 776 |
5471 | 1362 | 1507 | Olea europaea L. | 1599 | 797 | 322 |
997 | 1144 | 15,483 | Platanaceae | 699 | 812 | 6975 |
9560 | 7365 | 5215 | Urticaceae | 4985 | 4583 | 1427 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miraglia, A.; Brighetti, M.A.; Franco, D.D.; Di Menno di Bucchianico, A.; Froio, F.; Travaglini, A. Multiple Monitoring Stations in Big Cities: First Example of Three Spore Traps in Rome. Sustainability 2023, 15, 4155. https://doi.org/10.3390/su15054155
Miraglia A, Brighetti MA, Franco DD, Di Menno di Bucchianico A, Froio F, Travaglini A. Multiple Monitoring Stations in Big Cities: First Example of Three Spore Traps in Rome. Sustainability. 2023; 15(5):4155. https://doi.org/10.3390/su15054155
Chicago/Turabian StyleMiraglia, Annarosa, Maria Antonia Brighetti, Denise De Franco, Alessandro Di Menno di Bucchianico, Francesca Froio, and Alessandro Travaglini. 2023. "Multiple Monitoring Stations in Big Cities: First Example of Three Spore Traps in Rome" Sustainability 15, no. 5: 4155. https://doi.org/10.3390/su15054155
APA StyleMiraglia, A., Brighetti, M. A., Franco, D. D., Di Menno di Bucchianico, A., Froio, F., & Travaglini, A. (2023). Multiple Monitoring Stations in Big Cities: First Example of Three Spore Traps in Rome. Sustainability, 15(5), 4155. https://doi.org/10.3390/su15054155