Does National Independent Innovation Demonstration Zone Construction Help Improve Urban Green Total Factor Productivity? A Policy Assessment from China
Abstract
:1. Introduction
2. Literature Review
3. Policy Background and Theoretical Analysis
3.1. Policy Introduction
3.2. Theoretical Analysis
4. Econometric Model, Variable and Data
4.1. Regression Specifications
4.2. Variables
4.3. The Sample Selection and Data Description
5. Empirical Results Analysis
5.1. Benchmark Regression Results
5.2. Robustness Examination
5.2.1. Parallel Trend Test
5.2.2. Other Robustness Test
6. Mechanism Analysis and Heterogeneity Discussion
6.1. Influential Mechanism Analysis
6.2. Heterogeneity Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, W. Economic Growth and the Goal of Well-off Society in an All-Round Way under the Impact of Epidemic Situation. Manag. World 2020, 36, 1–8. (In Chinese) [Google Scholar]
- Tian, Y.; Feng, C. The internal-structural effects of different types of environmental regulations on China’s green total-factor productivity. Energy Econ. 2022, 113, 106246. [Google Scholar] [CrossRef]
- Li, W.; Jian, J. The spatial spillover effect of high-speed railway on CO2 emissions in China. Environ. Sustain. Ind. 2022, 16, 100204. [Google Scholar] [CrossRef]
- Li, G.; Liao, F. Input digitalization and green total factor productivity under the constraint of carbon emissions. J. Clean. Prod. 2022, 377, 134403. [Google Scholar] [CrossRef]
- Cheng, Z.; Li, X.; Zhu, Y.; Wang, M. The effects of agglomeration externalities on urban green total-factor productivity in China. Econ. Syst. 2022; 101025, in press. [Google Scholar] [CrossRef]
- Li, K.; Lin, B. Economic growth model, structural transformation, and green productivity in China. Appl. Energy 2017, 187, 489–500. [Google Scholar] [CrossRef]
- Magnani, M. Innovation: Engine of Economic Growth (and Employment). In Making the Global Economy Work for Everyone: Lessons of Sustainability from the Tech Revolution and the Pandemic; Magnani, M., Ed.; Springer International Publishing: Cham, Switzerland, 2022; pp. 1–16. [Google Scholar]
- Pece, A.M.; Simona, O.E.O.; Salisteanu, F. Innovation and Economic Growth: An Empirical Analysis for CEE Countries. Procedia Econ. Financ. 2015, 26, 461–467. [Google Scholar] [CrossRef]
- Prokop, V.; Hajek, P.; Stejskal, J. Configuration Paths to Efficient National Innovation Ecosystems. Technol. Forecast. Soc. 2021, 168, 120787. [Google Scholar] [CrossRef]
- Wang, R.; Tan, J. Exploring the coupling and forecasting of financial development, technological innovation, and economic growth. Technol. Forecast. Soc. 2021, 163, 120466. [Google Scholar] [CrossRef]
- Pradhan, R.P.; Arvin, M.B.; Bahmani, S. Are innovation and financial development causative factors in economic growth? Evidence from a panel granger causality test. Technol. Forecast. Soc. 2018, 132, 130–142. [Google Scholar] [CrossRef]
- Sohag, K.; Begum, R.A.; Abdullah, S.M.S.; Jaafar, M. Dynamics of energy use, technological innovation, economic growth and trade openness in Malaysia. Energy 2015, 90, 1497–1507. [Google Scholar] [CrossRef]
- Li, W.; Wang, J.; Chen, R.; Xi, Y.; Liu, S.Q.; Wu, F.; Masoud, M.; Wu, X. Innovation-driven industrial green development: The moderating role of regional factors. J. Clean. Prod. 2019, 222, 344–354. [Google Scholar] [CrossRef]
- Ge, P.; Huang, X.; Han, X. Innovation-driven and “the Belt and Road” green total factor productivity improvement: An analysis of heterogeneous innovation based on the new economic growth model. Econ. Sci. 2018, 1, 37–51. (In Chinese) [Google Scholar]
- Wang, S.; Gu, S. Basic Innovation or Applied Innovation? Which One Drives High-quality Development of Economy: Based on the Research of Countries along the “Belt and Road”. Financ. Econ. 2020, 11, 108–121. (In Chinese) [Google Scholar]
- Yang, Y.; Wu, D.; Xu, M.; Yang, M.; Zou, W. Capital misallocation, technological innovation, and green development efficiency: Empirical analysis based on China provincial panel data. Environ. Sci. Pollut. R 2022, 29, 65535–65548. [Google Scholar] [CrossRef]
- Wang, H.; Cui, H.; Zhao, Q. Effect of green technology innovation on green total factor productivity in China: Evidence from spatial durbin model analysis. J. Clean. Prod. 2021, 288, 125624. [Google Scholar] [CrossRef]
- Du, K.; Li, J. Towards a green world: How do green technology innovations affect total-factor carbon productivity. Energy Policy 2019, 131, 240–250. [Google Scholar] [CrossRef]
- Liu, F.; Fan, Y.; Yang, S. Environmental benefits of innovation policy: China’s national independent innovation demonstration zone policy and haze control. J. Environ. Manag. 2022, 317, 115465. [Google Scholar] [CrossRef]
- We, L.; Bu, W. Research on the Economic Growth Promoting Effect of National Innovation Demonstration Zone. Sci. Technol. Prog. Policy 2018, 35, 48–56. (In Chinese) [Google Scholar]
- Jiakui, C.; Abbas, J.; Najam, H.; Liu, J.; Abbas, J. Green technological innovation, green finance, and financial development and their role in green total factor productivity: Empirical insights from China. J. Clean. Prod. 2023, 382, 135131. [Google Scholar] [CrossRef]
- Wu, J.; Xia, Q.; Li, Z. Green innovation and enterprise green total factor productivity at a micro level: A perspective of technical distance. J. Clean. Prod. 2022, 344, 131070. [Google Scholar] [CrossRef]
- Yu, Y.; Chen, X.; Zhang, N. Innovation and energy productivity: An empirical study of the innovative city pilot policy in China. Technol. Forecast. Soc. 2022, 176, 121430. [Google Scholar] [CrossRef]
- Zhao, X.; Nakonieczny, J.; Jabeen, F.; Shahzad, U.; Jia, W. Does green innovation induce green total factor productivity? Novel findings from Chinese city level data. Technol. Forecast. Soc. 2022, 185, 122021. [Google Scholar] [CrossRef]
- Solow, R.M. Technical Change and the Aggregate Production Function. Rev. Econ. Stat. 1957, 39, 312–320. [Google Scholar] [CrossRef]
- Ten Raa, T.; Shestalova, V. The Solow residual, Domar aggregation, and inefficiency: A synthesis of TFP measures. J. Prod. Anal. 2011, 36, 71–77. [Google Scholar] [CrossRef]
- Zhai, R.; Lou, Z. Chinese agricultural output and TFP: 1661–2019. Econ. Lett. 2022, 213, 110415. [Google Scholar] [CrossRef]
- Peng, Y.; Chen, Z.; Xu, J.; Lee, J. Analysis of green total factor productivity trend and its determinants for the countries along silk roads. Growth Chang. 2020, 51, 1711–1726. [Google Scholar] [CrossRef]
- Zhuang, W.; Wang, Y.; Lu, C.; Chen, X. The green total factor productivity and convergence in China. Energy Sci. Eng. 2022, 10, 2794–2807. [Google Scholar] [CrossRef]
- Wang, M.; Pang, S.; Hmani, I.; Hmani, I.; Li, C.; He, Z. Towards sustainable development: How does technological innovation drive the increase in green total factor productivity? Sustain. Dev. 2021, 29, 217–227. [Google Scholar] [CrossRef]
- Wu, G.; Baležentis, T.; Sun, C.; Xu, S. Source control or end-of-pipe control: Mitigating air pollution at the regional level from the perspective of the Total Factor Productivity change decomposition. Energy Policy 2019, 129, 1227–1239. [Google Scholar] [CrossRef]
- Chen, K.; Huang, Y.; Yang, C. Analysis of regional productivity growth in China: A generalized metafrontier MPI approach. China Econ. Rev. 2009, 20, 777–792. [Google Scholar] [CrossRef]
- Chung, Y.H.; Färe, R.; Grosskopf, S. Productivity and Undesirable Outputs: A Directional Distance Function Approach. J. Environ. Manag. 1997, 51, 229–240. [Google Scholar] [CrossRef]
- Tian, P.; Lin, B. Promoting green productivity growth for China’s industrial exports: Evidence from a hybrid input-output model. Energy Policy 2017, 111, 394–402. [Google Scholar] [CrossRef]
- Xu, X.; Huang, X.; Huang, J.; Gao, X.; Chen, L. Spatial-Temporal Characteristics of Agriculture Green Total Factor Productivity in China, 1998–2016: Based on More Sophisticated Calculations of Carbon Emissions. Int. J. Environ. Res. Public Health 2019, 16, 3932. [Google Scholar] [CrossRef] [PubMed]
- Tone, K. A slacks-based measure of efficiency in data envelopment analysis. Eur. J. Oper. Res. 2001, 130, 498–509. [Google Scholar] [CrossRef]
- Oh, D. A global Malmquist-Luenberger productivity index. J. Prod. Anal. 2010, 34, 183–197. [Google Scholar] [CrossRef]
- Gu, B.; Liu, J.; Ji, Q. The effect of social sphere digitalization on green total factor productivity in China: Evidence from a dynamic spatial Durbin model. J. Environ. Manag. 2022, 320, 115946. [Google Scholar] [CrossRef]
- Li, C.; Qi, Y.; Liu, S.; Wang, X. Do carbon ETS pilots improve cities’ green total factor productivity? Evidence from a quasi-natural experiment in China. Energy Econ. 2022, 108, 105931. [Google Scholar] [CrossRef]
- Wang, S.; Li, G.; Fang, C. Urbanization, economic growth, energy consumption, and CO2 emissions: Empirical evidence from countries with different income levels. Renew. Sustain. Energy Rev. 2018, 81, 2144–2159. [Google Scholar] [CrossRef]
- Zhou, Y.; Xu, Y.; Liu, C.; Fang, Z.; Fu, X.; He, M. The Threshold Effect of China’s Financial Development on Green Total Factor Productivity. Sustainability 2019, 11, 3776. [Google Scholar] [CrossRef]
- Luo, Y.; Lu, Z.; Salman, M.; Song, S. Impacts of heterogenous technological innovations on green productivity: An empirical study from 261 cities in China. J. Clean. Prod. 2022, 334, 130241. [Google Scholar] [CrossRef]
- Zhang, D.; Vigne, S.A. How does innovation efficiency contribute to green productivity? A financial constraint perspective. J. Clean. Prod. 2021, 280, 124000. [Google Scholar] [CrossRef]
- Cao, J.; Law, S.H.; Bin Abdul Samad, A.R.; Binti W Mohamad, W.N.; Wang, J.; Yang, X. Effect of financial development and technological innovation on green growth—Analysis based on spatial Durbin model. J. Clean. Prod. 2022, 365, 132865. [Google Scholar] [CrossRef]
- Wei, L.; Lin, B.; Zheng, Z.; Wu, W.; Zhou, Y. Does fiscal expenditure promote green technological innovation in China? Evidence from Chinese cities. Environ. Impact. Assess 2023, 98, 106945. [Google Scholar] [CrossRef]
- Ma, Y.; Zhang, Q.; Yin, Q. Top management team faultlines, green technology innovation and firm financial performance. J. Environ. Manag. 2021, 285, 112095. [Google Scholar] [CrossRef]
- Kleinknecht, A.; Van Montfort, K.; Brouwer, E. The Non-Trivial Choice between Innovation Indicators. Econ. Innov. New Technol. 2002, 11, 109–121. [Google Scholar] [CrossRef]
- Borghesi, S.; Cainelli, G.; Mazzanti, M. Linking emission trading to environmental innovation: Evidence from the Italian manufacturing industry. Res. Policy 2015, 44, 669–683. [Google Scholar] [CrossRef]
- Qin, H.; Xiao, H.; Wu, J.; Zhang, X. National Independent Innovation Demonstration Zone, Government Innovation Preferences, and Regional Innovation Capability. East China Econ. Manag. 2021, 35, 52–62. [Google Scholar]
- Xu, N.; Zhao, D.; Zhang, W.; Zhang, H.; Chen, W.; Ji, M.; Liu, M. Innovation-Driven Development and Urban Land Low-Carbon Use Efficiency: A Policy Assessment from China. Land 2022, 11, 1634. [Google Scholar] [CrossRef]
- Fang, L.; Tang, H.; Li, J. Impacts of National Independent Innovation Demonstration Zone Construction on Urban Air Pollution: Evidence from a Quasi-Natural Experiment. J. Xi’an Jiaotong Univ. 2022, 42, 49–62. (In Chinese) [Google Scholar]
- Cohen, W.M.; Levinthal, D.A. Innovation and Learning: The Two Faces of R&D. Econ. J. 1989, 99, 569–596. [Google Scholar]
- Yang, C.; Lin, H. Openness, Absorptive Capacity, and Regional Innovation in China. Environ. Plan. A Econ. Space 2012, 44, 333–355. [Google Scholar] [CrossRef]
- Ning, L.; Wang, F.; Li, J. Urban innovation, regional externalities of foreign direct investment and industrial agglomeration: Evidence from Chinese cities. Res. Policy 2016, 45, 830–843. [Google Scholar] [CrossRef]
- Che, D.; Wu, C.; Ren, X.; Wu, F. How Does Fiscal Technology Expenditure Affect Enterprise Technology Innovation? Heterogeneity, Macro-micro mechanism and Government Incentive Structure. China Soft Sci. 2020, 3, 171–182. (In Chinese) [Google Scholar]
- Zhou, Z.; Li, J.; Qin, Y.; Duan, D. The Influence of Fiscal Technology Expenditure on Total Factor Productivity and Its Mechanism. Econ. Geogr. 2022, 42, 108–116. (In Chinese) [Google Scholar]
- Baron, R.M.; Kenny, D.A. The moderator–mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. J. Pers. Soc. Psychol. 1986, 51, 1173. [Google Scholar] [CrossRef]
- Tone, K.; Tsutsui, M. An epsilon-based measure of efficiency in DEA–A third pole of technical efficiency. Eur. J. Oper. Res. 2010, 207, 1554–1563. [Google Scholar] [CrossRef]
- Lee, C.; Lee, C. How does green finance affect green total factor productivity? Evidence from China. Energy Econ. 2022, 107, 105863. [Google Scholar] [CrossRef]
- Wang, M.; Xu, M.; Ma, S. The effect of the spatial heterogeneity of human capital structure on regional green total factor productivity. Struct. Chang. Econ. D 2021, 59, 427–441. [Google Scholar] [CrossRef]
- Tan, R.; Pan, L.; Xu, M.; He, X. Transportation infrastructure, economic agglomeration and non-linearities of green total fac tor productivity growth in China: Evidence from partially linear functional coefficient model. Transp. Policy 2022, 129, 1–13. [Google Scholar] [CrossRef]
Index | Specific Index | Indicator Description |
---|---|---|
Input | Energy input | Urban power consumption (unit: 10,000 kw·h) |
Labor input | Total urban employment (unit: ten thousand people) | |
Capital input | Urban capital stock (unit: CNY ten thousand) | |
Expected output | Economic benefit output | Urban GDP (unit: CNY ten thousand) |
Unexpected output | Wastewater discharge | Total industrial wastewater discharge of a city (unit: 10,000 tons) |
Exhaust emissions | SO2 emission from urban industry (unit: 10,000 tons) | |
Emission of urban industrial smoke (powder) dust (unit: 10,000 tons) |
Variable | Definitions | |
---|---|---|
Explained Variable | GTFP | Urban green total factor productivity, which is calculated by super EBM-GML index |
Explanatory variable | Treated | Treated = pilot × time; the pilot equals 1 if the city covers an innovation pilot and 0 otherwise; the time equals 1 if the innovation pilot has been established in the city and 0 otherwise. |
Mediating variable | AGG | The location entropy index of people engaged in finance, computer services and software, scientific research, education, culture, sports and entertainment and leasing and commercial services (The location entropy measurement formula is: (Number of employees of finance, computer services and software, scientific research, education, culture, sports and entertainment, leasing and commercial services in the city/number of all employees in the city)/(Number of employees of finance, computer services and software, scientific research, education, culture, sports and entertainment, leasing and commercial services in the country/Number of all employees in the country). |
Exp | Fiscal expenditure on science and technology/GDP | |
Control variables | Fin | Year-end loan balance/GDP |
Hum | Number of students in ordinary colleges and universities/Number of laborers | |
Er | The comprehensive index of sulfur dioxide removal rate, industrial smoke (powder) dust removal rate and comprehensive utilization rate of industrial solid waste, which is synthesized by the entropy method | |
Scale | Population of municipal districts at the end of the year | |
Res | Proportion of employees in mining industry/Total population at the end of the year | |
Urb | Urban resident population/Total population | |
Dev | Natural logarithm of the per capita GDP | |
Open | Actual foreign direct investment/GDP |
Variable | N | Mean | S.D. | Min | Max |
---|---|---|---|---|---|
GTFP | 3679 | 1.080 | 0.330 | 0.280 | 3.300 |
Fin | 3679 | 0.800 | 0.480 | 0.080 | 7.450 |
Hum | 3679 | 0.020 | 0.020 | 0.000 | 0.130 |
Er | 3679 | 0.550 | 0.210 | 0.060 | 0.990 |
Scale | 3679 | 4.580 | 0.770 | 2.660 | 7.800 |
Res | 3679 | 0.010 | 0.020 | 0.000 | 0.240 |
Urb | 3679 | 0.780 | 5.580 | 0.010 | 89.600 |
Dev | 3679 | 9.870 | 0.740 | 4.340 | 12.780 |
Open | 3679 | 0.020 | 0.020 | 0.000 | 0.150 |
Variable | (1) | (2) | (3) |
---|---|---|---|
GTFP | GTFP | GTFP | |
Treated | 0.396 *** | 0.131 *** | 0.126 *** |
(8.28) | (3.03) | (2.82) | |
Fin | −0.060 * | ||
(−1.95) | |||
Hum | 3.567 *** | ||
(2.96) | |||
Er | 0.078 ** | ||
(2.00) | |||
Scale | −0.001 | ||
(−0.02) | |||
Res | −3.199 ** | ||
(−1.99) | |||
Urb | 0.003 *** | ||
(4.69) | |||
Dev | 0.263 *** | ||
(4.01) | |||
Open | −0.922 ** | ||
(−2.30) | |||
Constant | 1.069 *** | 0.979 *** | −1.414 ** |
(198.36) | (74.27) | (−2.26) | |
Regional fixed effect | No | Yes | Yes |
Time fixed effect | No | Yes | Yes |
N | 3679 | 3679 | 3679 |
R2 | 0.035 | 0.252 | 0.307 |
F-value | 68.530 | 36.691 | 34.255 |
Variable | Reselect Samples | PSM-DID | GTFP Measured by SBM-GML | Traditional DID |
---|---|---|---|---|
(1) | (2) | (3) | (4) | |
Treated | 0.076 ** | 0.121 ** | 0.240 *** | |
(2.43) | (2.53) | (2.91) | ||
Treated0 | 0.422 *** | |||
(5.90) | ||||
Controls | Yes | Yes | Yes | Yes |
Constant | −1.536 *** | −2.647 *** | −1.407 | −1.630 *** |
(−2.36) | (−3.82) | (−1.97) | (−7.20) | |
Regional fixed effects | Yes | Yes | Yes | Yes |
Time fixed effects | Yes | Yes | Yes | Yes |
Observation | 3627 | 2122 | 3679 | 3159 |
R2 | 0.299 | 0.437 | 0.328 | 0.2874 |
F-value | 27.14 | 23.17 | 365.28 | 55.59 |
Variable | (1) | (2) | (3) | (4) |
---|---|---|---|---|
AGG | GTFP | Exp | GTFP | |
Treated | 0.063 *** | 0.117 *** | 0.009 *** | 0.118 *** |
(3.93) | (5.21) | (9.40) | (5.18) | |
AGG | 0.128 *** | |||
(5.37) | ||||
Exp | 0.747 ** | |||
(1.97) | ||||
Controls | Yes | Yes | Yes | Yes |
Constant | 2.704 *** | −1.865 *** | 0.026 | −1.539 *** |
(12.84) | (−6.24) | (2.02) | (−5.25) | |
Regional fixed effects | Yes | Yes | Yes | Yes |
Time fixed effects | Yes | Yes | Yes | Yes |
Observation | 3679 | 3679 | 3679 | 3679 |
R2 | 0.8527 | 0.7607 | 0.6763 | 0.7590 |
F-value | 64.49 | 35.29 | 23.27 | 34.95 |
Intermediary effect | 0.0081 | 0.1182 | ||
Intermediary effect/total effect | 0.0695 | 0.0607 | ||
Sobel Test | 3.172 | 1.929 | ||
0.0015 | 0.0500 |
Variable | Location | Population Scale | Resource Endowment | |||
---|---|---|---|---|---|---|
Eastern Cities | Central and Western Cities | Large Scale | Medium and Small Scale | Non-Resource-Based Cities | Resource-Based Cities | |
(1) | (2) | (3) | (4) | (5) | (6) | |
Treated | 0.112 ** | 0.162 *** | 0.109 ** | 0.034 | 0.115 *** | 0.068 * |
(2.12) | (3.69) | (2.41) | (0.27) | (2.65) | (1.76) | |
Controls | Yes | Yes | Yes | Yes | Yes | Yes |
Constant | −1.225 * | −1.626 *** | −0.418 | −1.554 *** | −0.850 | −1.730 * |
(−1.69) | (−1.85) | (−0.59) | (−1.91) | (−1.36) | (−1.66) | |
Regional fixed effect | Yes | Yes | Yes | Yes | Yes | Yes |
Time fixed effect | Yes | Yes | Yes | Yes | Yes | Yes |
Observation | 1547 | 2132 | 1820 | 1859 | 2197 | 1482 |
R2 | 0.4689 | 0.246 | 0.466 | 0.211 | 0.407 | 0.216 |
F-value | 30.66 | 15.32 | 24.34 | 12.22 | 25.73 | 12.81 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, H.; Zhang, J.; Xu, N. Does National Independent Innovation Demonstration Zone Construction Help Improve Urban Green Total Factor Productivity? A Policy Assessment from China. Sustainability 2023, 15, 7417. https://doi.org/10.3390/su15097417
Yu H, Zhang J, Xu N. Does National Independent Innovation Demonstration Zone Construction Help Improve Urban Green Total Factor Productivity? A Policy Assessment from China. Sustainability. 2023; 15(9):7417. https://doi.org/10.3390/su15097417
Chicago/Turabian StyleYu, Hong, Jianmin Zhang, and Ning Xu. 2023. "Does National Independent Innovation Demonstration Zone Construction Help Improve Urban Green Total Factor Productivity? A Policy Assessment from China" Sustainability 15, no. 9: 7417. https://doi.org/10.3390/su15097417
APA StyleYu, H., Zhang, J., & Xu, N. (2023). Does National Independent Innovation Demonstration Zone Construction Help Improve Urban Green Total Factor Productivity? A Policy Assessment from China. Sustainability, 15(9), 7417. https://doi.org/10.3390/su15097417