Examining the Impact of Frontline Service Robots Service Competence on Hotel Frontline Employees from a Collaboration Perspective
Abstract
:1. Introduction
2. Literature Review
2.1. The Importance of Employee–FLSR Collaboration in the Tourism Industry
2.2. An FLE Perspective on Collaboration with FLSRs
2.3. Technology Acceptance Model (TAM)
2.4. Hypotheses Development and Conceptual Framework
3. Materials and Methods
3.1. Data Collection
3.2. Measurement
3.3. Data Analysis
4. Results
4.1. Characteristics of the Sample
4.2. Common Method Variance (CMV)
4.3. Measurement (Outer) Model Analysis
4.4. Structural (Inner) Model Analysis
4.5. Mediation Test
5. Discussion
6. Implications
6.1. Theoretical Implications
6.2. Managerial Implications
7. Limitations and Future Research
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wirtz, J.; Patterson, P.G.; Kunz, W.H.; Gruber, T.; Lu, V.N.; Paluch, S.; Martins, A. Brave new world: Service robots in the frontline. J. Serv. Manag. 2018, 29, 907–931. [Google Scholar] [CrossRef]
- Shin, H. A critical review of robot research and future research opportunities: Adopting a service ecosystem perspective. Int. J. Contemp. Hosp. Manag. 2022, 34, 2337–2358. [Google Scholar] [CrossRef]
- Vatan, A.; Dogan, S. What do hotel employees think about service robots? A qualitative study in Turkey. Tour. Manag. Perspect. 2021, 37, 100775. [Google Scholar] [CrossRef]
- Lu, V.N.; Wirtz, J.; Kunz, W.H.; Paluch, S.; Gruber, T.; Martins, A.; Patterson, P.G. Service robots, customers and service employees: What can we learn from the academic literature and where are the gaps? J. Serv. Theory Pract. 2020, 30, 361–391. [Google Scholar] [CrossRef]
- Ivanov, S.; Webster, C. Robots in tourism: A research agenda for tourism economics. Tour. Econ. 2020, 26, 1065–1085. [Google Scholar] [CrossRef]
- Tung, V.W.S.; Au, N. Exploring customer experiences with robotics in hospitality. Int. J. Contemp. Hosp. Manag. 2018, 30, 2680–2697. [Google Scholar] [CrossRef]
- Choi, Y.; Choi, M.; Oh, M.; Kim, S. Service robots in hotels: Understanding the service quality perceptions of human-robot interaction. J. Hosp. Mark. Manag. 2020, 29, 613–635. [Google Scholar] [CrossRef]
- Qiu, H.; Li, M.; Shu, B.; Bai, B. Enhancing hospitality experience with service robots: The mediating role of rapport building. J. Hosp. Mark. Manag. 2019, 29, 247–268. [Google Scholar] [CrossRef]
- Yoganathan, V.; Osburg, V.S.; Kunz, W.H.; Toporowski, W. Check-in at the Robo-desk: Effects of automated social presence on social cognition and service implications. Tour. Manag. 2021, 85, 104309. [Google Scholar] [CrossRef]
- Çakar, K.; Aykol, Ş. Understanding travellers’ reactions to robotic services: A multiple case study approach of robotic hotels. J. Hosp. Tour. Technol. 2021, 12, 155–174. [Google Scholar] [CrossRef]
- Lin, I.Y.; Mattila, A.S. The Value of service robots from the hotel guest’s perspective: A mixed-method approach. Int. J. Hosp. Manag. 2021, 94, 102876. [Google Scholar] [CrossRef]
- Tung, V.W.S.; Law, R. The potential for tourism and hospitality experience research in human-robot interactions. Int. J. Contemp. Hosp. Manag. 2017, 29, 2498–2513. [Google Scholar] [CrossRef]
- Koo, B.; Curtis, C.; Ryan, B. Examining the impact of artificial intelligence on hotel employees through job insecurity perspectives. Int. J. Hosp. Manag. 2021, 95, 102763. [Google Scholar] [CrossRef]
- Li, J.; Bonn, M.A.; Ye, B.H. Hotel employee’s artificial intelligence and robotics awareness and its impact on turnover intention: The moderating roles of perceived organizational support and competitive psychological climate. Tour. Manag. 2019, 73, 172–181. [Google Scholar] [CrossRef]
- Prentice, C.; Dominique Lopes, S.; Wang, X. Emotional intelligence or artificial intelligence—An employee perspective. J. Hosp. Mark. Manag. 2020, 29, 377–403. [Google Scholar] [CrossRef]
- Yu, H.; Shum, C.; Alcorn, M.; Sun, J.; He, Z. Robots can’t take my job: Antecedents and outcomes of Gen Z employees’ service robot risk awareness. Int. J. Contemp. Hosp. Manag. 2022, 34, 2971–2988. [Google Scholar] [CrossRef]
- Paluch, S.; Tuzovic, S.; Holz, H.F.; Kies, A.; Jörling, M. “My colleague is a robot”—Exploring frontline employees’ willingness to work with collaborative service robots. J. Serv. Manag. 2022, 33, 363–388. [Google Scholar] [CrossRef]
- Song, Y.; Zhang, M.; Hu, J.; Cao, X. Dancing with service robots: The impacts of employee-robot collaboration on hotel employees’ job crafting. Int. J. Hosp. Manag. 2022, 103, 103220. [Google Scholar] [CrossRef]
- Marler, J.H.; Fisher, S.L.; Ke, W. Employee self-service technology acceptance: A comparison of pre-implementation and post-implementation relationships. Pers. Psychol. 2009, 62, 327–358. [Google Scholar] [CrossRef]
- Xu, S.; Stienmetz, J.; Ashton, M. How will service robots redefine leadership in hotel management? A Delphi approach. Int. J. Contemp. Hosp. Manag. 2020, 32, 2217–2237. [Google Scholar] [CrossRef]
- Bankins, S.; Formosa, P. When AI meets PC: Exploring the implications of workplace social robots and a human-robot psychological contract. Eur. J. Work Organ. Psychol. 2020, 29, 215–229. [Google Scholar] [CrossRef]
- Redmond, J.; Sharafizad, J. Discretionary effort of regional hospitality small business employees: Impact of non-monetary work factors. Int. J. Hosp. Manag. 2020, 86, 102452. [Google Scholar] [CrossRef]
- Le, K.B.Q.; Sajtos, L.; Fernandez, K.V. Employee-(ro)bot collaboration in service: An interdependence perspective. J. Serv. Manag. 2022, 34, 176–207. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, F.X.; Chiang, J.T.J.; Wang, Z.; Liu, H. Asking how to fish vs. asking for fish: Antecedents and outcomes of different types of help-seeking at work. Pers. Psychol. 2022, 75, 1–31. [Google Scholar] [CrossRef]
- Orlowski, M.; Bufquin, D.; Nalley, M.E. The influence of social perceptions on restaurant employee work engagement and extra-Role customer service behavior: A moderated mediation model. Cornell Hosp. Q. 2021, 62, 261–275. [Google Scholar] [CrossRef]
- Legris, P.; Ingham, J.; Collerette, P. Why do people use information technology? A critical review of the technology acceptance model. Inf. Manag. 2003, 40, 191–204. [Google Scholar] [CrossRef]
- Scherer, R.; Teo, T. Unpacking teachers’ intentions to integrate technology: A meta-analysis. Educ. Res. Rev. 2019, 27, 90–109. [Google Scholar] [CrossRef]
- Paillé, P. Do coworkers make the service customer? A field study in the public sector. Rev. Public Pers. Adm. 2013, 33, 28–57. [Google Scholar] [CrossRef]
- Reuter, K.; Löschke, J.; Betzler, M. What is a colleague? The descriptive and normative dimension of a dual character concept. Philos. Psychol. 2020, 33, 997–1017. [Google Scholar] [CrossRef]
- Wolgast, A.; Fischer, N. You are not alone: Colleague support and goal-oriented cooperation as resources to reduce teachers’ stress. Soc. Psychol. Educ. 2017, 20, 97–114. [Google Scholar] [CrossRef]
- Kim, H.K.; Baik, K.; Kim, N. How korean leadership style cultivates employees’ creativity and voice in hierarchical organizations. SAGE Open 2019, 9, 2158244019876281. [Google Scholar] [CrossRef]
- Chon, K.; Park, E.O. The asian paradigm in hospitality and tourism. J. Hosp. Tour. Res. 2020, 44, 1183–1202. [Google Scholar] [CrossRef]
- International Federation of Robotics Robot Race: The World´s Top 10 Automated Countries. Available online: https://ifr.org/ifr-press-releases/news/robot-race-the-worlds-top-10-automated-countries (accessed on 28 March 2023).
- Lee, G.; Kim, Y. Effects of resistance barriers to service robots on alternative attractiveness and intention to use. SAGE Open 2022, 12, 215824402210992. [Google Scholar] [CrossRef]
- Ivanov, S.; Seyitoğlu, F.; Markova, M. Hotel managers’ perceptions towards the use of robots: A mixed-methods approach. Inf. Technol. Tour. 2020, 22, 505–535. [Google Scholar] [CrossRef]
- Bard, J.F. An assessment of industrial robots: Capabilities, economics, and impacts. J. Oper. Manag. 1986, 6, 99–124. [Google Scholar] [CrossRef]
- Jordan, S.; Haidegger, T.; Kovacs, L.; Felde, I.; Rudas, I. The rising prospects of cloud robotic applications. In Proceedings of the 2013 IEEE 9th International Conference on Computational Cybernetics (ICCC), Tihany, Hungary, 8–10 July 2013; IEEE: Manhattan, NY, USA, 2013; pp. 327–332. [Google Scholar]
- Chan, A.P.H.; Tung, V.W.S. Examining the effects of robotic service on brand experience: The moderating role of hotel segment. J. Travel Tour. Mark. 2019, 36, 458–468. [Google Scholar] [CrossRef]
- ISO ISO 8373:2021(en) Robotics—Vocabulary. Available online: https://www.iso.org/obp/ui/#iso:std:iso:8373:ed-3:v1:en (accessed on 14 December 2022).
- Wirtz, J.; Zeithaml, V. Cost-effective service excellence. J. Acad. Mark. Sci. 2018, 46, 59–80. [Google Scholar] [CrossRef]
- Osei, B.A.; Ragavan, N.A.; Mensah, H.K. Prospects of the fourth industrial revolution for the hospitality industry: A literature review. J. Hosp. Tour. Technol. 2020, 11, 479–494. [Google Scholar] [CrossRef]
- Rodriguez-Lizundia, E.; Marcos, S.; Zalama, E.; Gómez-García-Bermejo, J.; Gordaliza, A. A bellboy robot: Study of the effects of robot behaviour on user engagement and comfort. Int. J. Hum. Comput. Stud. 2015, 82, 83–95. [Google Scholar] [CrossRef]
- Reichow, D.; Friemel, T.N. Mobile communication, social presence, and perceived security on public transport. Mob. Media Commun. 2020, 8, 268–292. [Google Scholar] [CrossRef]
- Song, J.H.; Hollenbeck, C.R. The value of social presence in mobile communications. Serv. Ind. J. 2015, 35, 611–632. [Google Scholar] [CrossRef]
- Song, J.; Moon, H.; Kim, M. When do customers engage in brand pages? Effects of social presence. Int. J. Contemp. Hosp. Manag. 2019, 31, 3627–3645. [Google Scholar] [CrossRef]
- van Doorn, J.; Mende, M.; Noble, S.M.; Hulland, J.; Ostrom, A.L.; Grewal, D.; Petersen, J.A. Domo arigato Mr. Roboto: Emergence of automated social presence in organizational frontlines and customers’ service experiences. J. Serv. Res. 2017, 20, 43–58. [Google Scholar] [CrossRef]
- Shin, H.H.; Jeong, M. Guests’ perceptions of robot concierge and their adoption intentions. Int. J. Contemp. Hosp. Manag. 2020, 32, 2613–2633. [Google Scholar] [CrossRef]
- Prentice, C.; Dominique Lopes, S.; Wang, X. The impact of artificial intelligence and employee service quality on customer satisfaction and loyalty. J. Hosp. Mark. Manag. 2020, 29, 739–756. [Google Scholar] [CrossRef]
- McLeay, F.; Osburg, V.S.; Yoganathan, V.; Patterson, A. Replaced by a robot: Service implications in the age of the machine. J. Serv. Res. 2021, 24, 104–121. [Google Scholar] [CrossRef]
- Tuomi, A.; Tussyadiah, I.P.; Stienmetz, J. Applications and Implications of Service Robots in Hospitality. Cornell Hosp. Q. 2021, 62, 232–247. [Google Scholar] [CrossRef]
- Fu, S.; Zheng, X.; Wong, I.K.A. The perils of hotel technology: The robot usage resistance model. Int. J. Hosp. Manag. 2022, 102, 103174. [Google Scholar] [CrossRef]
- Li, M.; Yin, D.; Qiu, H.; Bai, B. Examining the effects of AI contactless services on customer psychological safety, perceived value, and hospitality service quality during the COVID-19 pandemic. J. Hosp. Mark. Manag. 2022, 31, 24–48. [Google Scholar] [CrossRef]
- Qiu, H.; Li, M.; Bai, B.; Wang, N.; Li, Y. The impact of AI-enabled service attributes on service hospitableness: The role of employee physical and psychological workload. Int. J. Contemp. Hosp. Manag. 2022, 34, 1374–1398. [Google Scholar] [CrossRef]
- Stankov, U.; Gretzel, U. Tourism 4.0 technologies and tourist experiences: A human-centered design perspective. Inf. Technol. Tour. 2020, 22, 477–488. [Google Scholar] [CrossRef]
- Kim, J.S.; Ausar, K. The impact of using a virtual employee engagement platform (VEEP) on employee engagement and intention to stay. Int. J. Contemp. Hosp. Manag. 2018, 30, 242–259. [Google Scholar] [CrossRef]
- Davis, F.D. Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Q. Manag. Inf. Syst. 1989, 13, 319–340. [Google Scholar] [CrossRef]
- Fathali, S.; Okada, T. Technology acceptance model in technology-enhanced OCLL contexts: A self-determination theory approach. Australas. J. Educ. Technol. 2018, 34, 138–154. [Google Scholar] [CrossRef]
- Ahn, T.; Ik Suh, Y.; Lee, J.K.; Pedersen, P.M. Understanding purchasing intentions in secondary sports ticket websites. Int. J. Sport. Mark. Spons. 2014, 16, 35–49. [Google Scholar] [CrossRef]
- Jain, S. Examining the moderating role of perceived risk and web atmospherics in online luxury purchase intention. J. Fash. Mark. Manag. 2020, 25, 585–605. [Google Scholar] [CrossRef]
- Huh, H.J.; Kim, T.T.; Law, R. A comparison of competing theoretical models for understanding acceptance behavior of information systems in upscale hotels. Int. J. Hosp. Manag. 2009, 28, 121–134. [Google Scholar] [CrossRef]
- Kaushik, A.K.; Kumar, V. Investigating consumers’ adoption of SSTs—A case study representing India’s hospitality industry. J. Vacat. Mark. 2018, 24, 275–290. [Google Scholar] [CrossRef]
- Lee, L.Y.-S. Hospitality industry web-based self-service technology adoption model. J. Hosp. Tour. Res. 2016, 40, 162–197. [Google Scholar] [CrossRef]
- Lien, C.-H.; Hsu, M.K.; Shang, J.-Z.; Wang, S.W. Self-service technology adoption by air passengers: A case study of fast air travel services in Taiwan. Serv. Ind. J. 2021, 41, 671–695. [Google Scholar] [CrossRef]
- Chuang, C.-M. A current travel model: Smart tour on mobile guide application services. Curr. Issues Tour. 2020, 23, 2333–2352. [Google Scholar] [CrossRef]
- tom Dieck, M.C.; Jung, T. A theoretical model of mobile augmented reality acceptance in urban heritage tourism. Curr. Issues Tour. 2018, 21, 154–174. [Google Scholar] [CrossRef]
- Yang, H.; Song, H.; Cheung, C.; Guan, J. How to enhance hotel guests’ acceptance and experience of smart hotel technology: An examination of visiting intentions. Int. J. Hosp. Manag. 2021, 97, 103000. [Google Scholar] [CrossRef]
- Choe, J.Y.; Kim, J.J.; Hwang, J. Innovative robotic restaurants in Korea: Merging a technology acceptance model and theory of planned behaviour. Asian J. Technol. Innov. 2022, 30, 466–489. [Google Scholar] [CrossRef]
- de Kervenoael, R.; Hasan, R.; Schwob, A.; Goh, E. Leveraging human-robot interaction in hospitality services: Incorporating the role of perceived value, empathy, and information sharing into visitors’ intentions to use social robots. Tour. Manag. 2020, 78, 104042. [Google Scholar] [CrossRef]
- Venkatesh; Morris; Davis; Davis User acceptance of information technology: Toward a unified view. MIS Q. 2003, 27, 425. [CrossRef]
- Venkatesh; Thong; Xu Consumer acceptance and use of information technology: Extending the unified Theory of acceptance and use of technology. MIS Q. 2012, 36, 157. [CrossRef]
- Hong, S.J.; Thong, J.Y.L.; Tam, K.Y. Understanding continued information technology usage behavior: A comparison of three models in the context of mobile internet. Decis. Support Syst. 2006, 42, 1819–1834. [Google Scholar] [CrossRef]
- Moon, Y.J.; Kim, W.; Ham, S. Users’ intentions to employ a Point-Of-Sale system. Serv. Ind. J. 2014, 34, 901–921. [Google Scholar] [CrossRef]
- Nguyen, T.-M.; Malik, A. Employee acceptance of online platforms for knowledge sharing: Exploring differences in usage behaviour. J. Knowl. Manag. 2022, 26, 1985–2006. [Google Scholar] [CrossRef]
- Chu, A.Z.-C.; Chu, R.J.-C. The intranet’s role in newcomer socialization in the hotel industry in Taiwan—Technology acceptance model analysis. Int. J. Hum. Resour. Manag. 2011, 22, 1163–1179. [Google Scholar] [CrossRef]
- Akhtar Shareef, M.; Kumar, V.; Kumar, U.; Dwivedi, Y. Factors affecting citizen adoption of transactional electronic government. J. Enterp. Inf. Manag. 2014, 27, 385–401. [Google Scholar] [CrossRef]
- Balouchi, M.; Aziz, Y.A.; Hasangholipour, T.; Khanlari, A.; Abd Rahman, A.; Raja-Yusof, R.N. Explaining and predicting online tourists’ behavioural intention in accepting consumer generated contents. J. Hosp. Tour. Technol. 2017, 8, 168–189. [Google Scholar] [CrossRef]
- Brandon-Jones, A.; Kauppi, K. Examining the antecedents of the technology acceptance model within e-procurement. Int. J. Oper. Prod. Manag. 2018, 38, 22–42. [Google Scholar] [CrossRef]
- Gu, J.-C.; Lee, S.-C.; Suh, Y.-H. Determinants of behavioral intention to mobile banking. Expert Syst. Appl. 2009, 36, 11605–11616. [Google Scholar] [CrossRef]
- Alalwan, A.A.; Dwivedi, Y.K.; Rana, N.P.P.; Williams, M.D. Consumer adoption of mobile banking in Jordan. J. Enterp. Inf. Manag. 2016, 29, 118–139. [Google Scholar] [CrossRef]
- Guchait, P. The mediating effect of team engagement between team cognitions and team outcomes in service-management teams. J. Hosp. Tour. Res. 2016, 40, 139–161. [Google Scholar] [CrossRef]
- Pizam, A.; Shani, A. The nature of the hospitality industry: Present and future managers’ perspectives. Anatolia 2009, 20, 134–150. [Google Scholar] [CrossRef]
- Beehr, T.A.; Farmer, S.J.; Glazer, S.; Gudanowski, D.M.; Nair, V.N. The enigma of social support and occupational stress: Source congruence and gender role effects. J. Occup. Health Psychol. 2003, 8, 220–231. [Google Scholar] [CrossRef]
- ten Brummelhuis, L.L.; Johns, G.; Lyons, B.J.; ter Hoeven, C.L. Why and when do employees imitate the absenteeism of co-workers? Organ. Behav. Hum. Decis. Process. 2016, 134, 16–30. [Google Scholar] [CrossRef]
- Boughzala, I.; de Vreede, G.-J. Evaluating team collaboration quality: The development and field application of a collaboration maturity model. J. Manag. Inf. Syst. 2015, 32, 129–157. [Google Scholar] [CrossRef]
- Shin, S.Y.; Kim, C.Y. Does a competent member always obtain good results? The social identity perspective. SAGE Open 2021, 11, 21582440211006144. [Google Scholar] [CrossRef]
- Wu, Y.-C.; Tsai, C.-S.; Hsiung, H.-W.; Chen, K.-Y. Linkage between frontline employee service competence scale and customer perceptions of service quality. J. Serv. Mark. 2015, 29, 224–234. [Google Scholar] [CrossRef]
- Zopiatis, A. Is it art or science? Chef’s competencies for success. Int. J. Hosp. Manag. 2010, 29, 459–467. [Google Scholar] [CrossRef]
- Bufquin, D.; DiPietro, R.; Orlowski, M.; Partlow, C. The influence of restaurant co-workers’ perceived warmth and competence on employees’ turnover intentions: The mediating role of job attitudes. Int. J. Hosp. Manag. 2017, 60, 13–22. [Google Scholar] [CrossRef]
- Gjerald, O.; Øgaard, T. Exploring the measurement of basic assumptions about guests and co-workers in the hospitality industry. Int. J. Contemp. Hosp. Manag. 2010, 22, 887–909. [Google Scholar] [CrossRef]
- Zhang, M.J.; Law, K.S.; Wang, L. The risks and benefits of initiating change at work: Social consequences for proactive employees who take charge. Pers. Psychol. 2021, 74, 721–750. [Google Scholar] [CrossRef]
- Guan, X.; Gong, J.; Li, M.; Huan, T.-C. Exploring key factors influencing customer behavioral intention in robot restaurants. Int. J. Contemp. Hosp. Manag. 2022, 34, 3482–3501. [Google Scholar] [CrossRef]
- Dowling, G.R.; Staelin, R. A model of perceived risk and intended risk-handling activity. J. Consum. Res. 1994, 21, 119. [Google Scholar] [CrossRef]
- Tang, Z.; Chen, X.; Wu, Z. Using behavior theory to investigate individual-level determinants of employee involvement in TQM. Total Qual. Manag. Bus. Excell. 2010, 21, 1231–1260. [Google Scholar] [CrossRef]
- Yu, J.; Xie, C.; Huang, S.S. Effect of perceived job risk on organizational conflict in tourism organizations: Examining the roles of employee responsible behavior and employee silence. J. Hosp. Tour. Manag. 2022, 53, 21–31. [Google Scholar] [CrossRef]
- Brown, E.A.; Thomas, N.J.; Bosselman, R.H. Are they leaving or staying: A qualitative analysis of turnover issues for Generation Y hospitality employees with a hospitality education. Int. J. Hosp. Manag. 2015, 46, 130–137. [Google Scholar] [CrossRef]
- Zhao, X.R.; Ghiselli, R. Why do you feel stressed in a “smile factory”? Int. J. Contemp. Hosp. Manag. 2016, 28, 305–326. [Google Scholar] [CrossRef]
- Wang, X.; Guchait, P.; Khoa, D.T.; Paşamehmetoğlu, A. Experience of shame in service failure context among restaurant frontline employees: Does industry tenure matter? Int. J. Contemp. Hosp. Manag. 2021, 33, 2817–2838. [Google Scholar] [CrossRef]
- Loi, L.T.I.; So, A.S.I.; Lo, I.S.; Fong, L.H.N. Does the quality of tourist shuttles influence revisit intention through destination image and satisfaction? The case of Macao. J. Hosp. Tour. Manag. 2017, 32, 115–123. [Google Scholar] [CrossRef]
- Hummel, E.; Murphy, K.S. Using service blueprinting to analyze restaurant service efficiency. Cornell Hosp. Q. 2011, 52, 265–272. [Google Scholar] [CrossRef]
- Xu, Y.; Tan, T.F.; Netessine, S. The impact of workload on operational risk: Evidence from a commercial bank. Manage. Sci. 2022, 68, 2668–2693. [Google Scholar] [CrossRef]
- Vashdi, D.R.; Katz–Navon, T.; Delegach, M. Service priority climate and service performance among hospitality employees: The role of emotional labor and workload pressure. Cornell Hosp. Q. 2022, 63, 504–518. [Google Scholar] [CrossRef]
- Ötting, S.K.; Masjutin, L.; Steil, J.J.; Maier, G.W. Let’s work together: A meta-analysis on robot design features that enable successful human–robot interaction at work. Hum. Factors 2020, 64, 1027–1050. [Google Scholar] [CrossRef]
- Wrzesniewski, A.; Dutton, J.E. Crafting a job: Revisioning employees as active crafters of their work. Acad. Manag. Rev. 2001, 26, 179–201. [Google Scholar] [CrossRef]
- Hotelrating. Available online: https://www.hotelrating.or.kr/main.do (accessed on 7 January 2023).
- Pelet, J.-É.; Lick, E.; Taieb, B. The internet of things in upscale hotels: Its impact on guests’ sensory experiences and behavior. Int. J. Contemp. Hosp. Manag. 2021, 33, 4035–4056. [Google Scholar] [CrossRef]
- Douglas, S.P.; Craig, C.S. Collaborative and iterative translation: An alternative approach to back translation. J. Int. Mark. 2007, 15, 30–43. [Google Scholar] [CrossRef]
- Zhang, M.; Gursoy, D.; Zhu, Z.; Shi, S. Impact of anthropomorphic features of artificially intelligent service robots on consumer acceptance: Moderating role of sense of humor. Int. J. Contemp. Hosp. Manag. 2021, 33, 3883–3905. [Google Scholar] [CrossRef]
- do Valle, P.O.; Assaker, G. Using Partial least squares structural equation modeling in tourism research. J. Travel Res. 2016, 55, 695–708. [Google Scholar] [CrossRef]
- Spector, P.E.; Brannick, M.T. Common method issues: An introduction to the feature topic in organizational research methods. Organ. Res. Methods 2010, 13, 403–406. [Google Scholar] [CrossRef]
- Baumgartner, H.; Weijters, B. Dealing with common method variance in international marketing research. J. Int. Mark. 2021, 29, 7–22. [Google Scholar] [CrossRef]
- Podsakoff, P.M.; MacKenzie, S.B.; Lee, J.Y.; Podsakoff, N.P. Common method biases in behavioral research: A critical review of the literature and recommended remedies. J. Appl. Psychol. 2003, 88, 879–903. [Google Scholar] [CrossRef]
- Podsakoff, P.M.; MacKenzie, S.B.; Podsakoff, N.P. Sources of method bias in social science research and recommendations on how to control it. Annu. Rev. Psychol. 2012, 63, 539–569. [Google Scholar] [CrossRef]
- Henseler, J.; Ringle, C.M.; Sarstedt, M. A new criterion for assessing discriminant validity in variance-based structural equation modeling. J. Acad. Mark. Sci. 2015, 43, 115–135. [Google Scholar] [CrossRef]
- Hair, J.F.; Ringle, C.M.; Sarstedt, M. PLS-SEM: Indeed a silver bullet. J. Mark. Theory Pract. 2011, 19, 139–152. [Google Scholar] [CrossRef]
- Henseler, J.; Hubona, G.; Ray, P.A. Using PLS path modeling in new technology research: Updated guidelines. Ind. Manag. Data Syst. 2016, 116, 2–20. [Google Scholar] [CrossRef]
- Fuentes-Moraleda, L.; Díaz-Pérez, P.; Orea-Giner, A.; Muñoz- Mazón, A.; Villacé-Molinero, T. Interaction between hotel service robots and humans: A hotel-specific Service Robot Acceptance Model (sRAM). Tour. Manag. Perspect. 2020, 36, 100751. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Lawrence Erlbaum: Mahwah, NJ, USA, 1988. [Google Scholar]
- Van Maele, D.; Van Houtte, M. Collegial trust and the organizational context of the teacher workplace: The role of a homogeneous teachability culture. Am. J. Educ. 2011, 117, 437–464. [Google Scholar] [CrossRef]
- Jeong, M.; Lee, M.; Nagesvaran, B. Employees’ use of mobile devices and their perceived outcomes in the workplace: A case of luxury hotel. Int. J. Hosp. Manag. 2016, 57, 40–51. [Google Scholar] [CrossRef]
- Alcántara-Pilar, J.M.; del Barrio-García, S.; Crespo-Almendros, E.; Porcu, L. Toward an understanding of online information processing in e-tourism: Does national culture matter? J. Travel Tour. Mark. 2017, 34, 1128–1142. [Google Scholar] [CrossRef]
- Van Der Schaft, A.H.T.; Lub, X.D.; Van Der Heijden, B.; Solinger, O.N. How employees experience digital transformation: A dynamic and multi-layered sensemaking perspective. J. Hosp. Tour. Res. 2022, 10963480221123098. [Google Scholar] [CrossRef]
- Gerber, P.; El-Geneidy, A.; Manaugh, K.; Lord, S. From workplace attachment to commuter satisfaction before and after a workplace relocation. Transp. Res. Part F Traffic Psychol. Behav. 2020, 71, 168–181. [Google Scholar] [CrossRef]
- Houston, L.; Ferris, D.L.; Crossley, C. Does value similarity Matter? Influence of ethical leadership on employee engagement and deviance. Gr. Organ. Manag. 2022, 105960112211247. [Google Scholar] [CrossRef]
- Omuris, E. Workplace friendship in hospitality organizations: A scale development. Int. J. Contemp. Hosp. Manag. 2019, 31, 1390–1411. [Google Scholar] [CrossRef]
Variables | Frequency | Ratio (%) |
---|---|---|
Gender | ||
Male | 75 | 52.4 |
Female | 68 | 47.6 |
Age | ||
20–29 years old | 31 | 21.7 |
30–39 years old | 57 | 39.9 |
40–49 years old | 42 | 29.4 |
50 years old and above | 13 | 9.1 |
Educational Level | ||
High school diploma | 2 | 1.4 |
Associate’s degree | 40 | 28.0 |
Bachelor’s degree | 89 | 62.2 |
Graduate degree | 12 | 8.4 |
Marriage | ||
Single | 57 | 39.9 |
Married | 86 | 60.1 |
Position | ||
Rank and file level | 32 | 22.4 |
Supervisor level | 60 | 42.0 |
Assistant manager level | 31 | 21.7 |
Manager level | 20 | 14.0 |
Department | ||
Rooms | 66 | 46.2 |
Food and beverage | 77 | 53.8 |
Tenure at the current hotel | ||
1–5 years | 46 | 32.2 |
6–10 years | 48 | 33.6 |
11–15 years | 29 | 20.3 |
16 years and above | 20 | 14.0 |
Measurement Items (Cronbach’s α) | Mean (SD) | Loading | ρn (AVE) |
---|---|---|---|
Service Competence (SC) (α = 0.86) | 0.89 (0.69) | ||
The FLSR in this hotel is competent. | 3.66 (1.60) | 0.82 | |
The FLSR in this hotel is intelligent. | 3.95 (1.62) | 0.87 | |
The FLSR in this hotel can do its job accurately. | 3.84 (1.61) | 0.77 | |
The FLSR in this hotel can do its job efficiently. | 3.95 (1.53) | 0.83 | |
The FLSR in this hotel can handle customers’ needs. | 4.41 (1.67) | 0.85 | |
Perceived Risk (PR) (α = 0.83) | 0.85 (0.60) | ||
Collaborating with the FLSR requires dealing with more uncertain work. | 4.15 (1.40) | 0.71 | |
Collaborating with the FLSR is not as efficient as I had expected. | 3.90 (1.27) | 0.82 | |
Collaborating with the FLSR requires extra time and energy. | 4.16 (1.46) | 0.80 | |
The FLSR often make mistakes, which makes my work more passive. | 4.24 (1.43) | 0.74 | |
I am frustrated that FLSR’s service was not so intelligent. | 4.05 (1.32) | 0.78 | |
Perceived Ease of Use (PEU) (α = 0.93) | 0.93 (0.83) | ||
Learning to collaborate with the FLSR is easy for me. | 4.83 (1.67) | 0.91 | |
It is easy to find information on collaboration with the FLSR. | 4.83 (1.51) | 0.90 | |
My role in collaboration with FLSR is clear and understandable. | 4.86 (1.55) | 0.92 | |
It is easy to collaborate with the FLSR to do what I want it to do. | 4.92 (1.55) | 0.91 | |
Perceived Usefulness (PU) (α = 0.87) | 0.87 (0.71) | ||
Collaboration with the FLSR improves the performance of my work. | 4.41 (1.50) | 0.82 | |
Collaboration with the FLSR enables me to provide more accurate and trustworthy service to customers. | 4.11 (1.62) | 0.86 | |
Collaboration with FLSR enables me to work effectively with coworkers and manager. | 4.08 (1.64) | 0.84 | |
Collaboration with the FLSR enables me to accomplish my work more quickly with other employees and manager. | 4.20 (1.62) | 0.86 | |
Willingness to Collaboration (WC) (α = 0.88) | 0.89 (0.81) | ||
I will feel happy to collaborate with the FLSR. | 4.14 (1.87) | 0.90 | |
I am willing to collaborate with the FLSR to improve customer satisfaction. | 4.09 (1.85) | 0.91 | |
I am likely to collaborate with the FLSR. | 4.20 (1.86) | 0.88 |
SC | PR | PEU | PU | |
---|---|---|---|---|
PR | 0.69 | |||
PEU | 0.56 | 0.27 | ||
PU | 0.75 | 0.43 | 0.47 | |
WC | 0.74 | 0.40 | 0.51 | 0.89 |
Path | β | t | p | VIF | f2 |
---|---|---|---|---|---|
Hypotheses test | |||||
H1: SC → PR | −0.61 | 11.30 | 0.000 *** | 1.04 | 0.58 |
H2a: PR → PEU | −0.24 | 2.62 | 0.009 ** | 1.02 | 0.06 |
H2b: PR → PU | −0.29 | 3.55 | 0.000 *** | 1.09 | 0.10 |
H3: PEU → PU | 0.33 | 4.10 | 0.000 *** | 1.12 | 0.13 |
H4a: PEU → WC | 0.14 | 2.32 | 0.021 * | 1.25 | 0.04 |
H4b: PU → WC | 0.72 | 15.14 | 0.000 *** | 1.24 | 1.16 |
Control variables | |||||
POS → PR | 0.10 | 0.45 | 0.654 | 1.03 | 0.00 |
POS → PEU | −0.16 | 0.67 | 0.506 | 1.02 | 0.01 |
POS → PU | −0.12 | 0.54 | 0.589 | 1.03 | 0.00 |
POS → WC | −0.03 | 0.18 | 0.860 | 1.02 | 0.00 |
DEPT → PR | −0.39 | 1.02 | 0.308 | 1.01 | 0.01 |
DEPT → PEU | −0.20 | 2.58 | 0.010 * | 1.00 | 0.04 |
DEPT → PU | −0.15 | 1.39 | 0.164 | 1.04 | 0.00 |
DEPT → WC | −0.15 | 1.41 | 0.158 | 1.05 | 0.02 |
Specific Indirect Effects | β | t | p |
---|---|---|---|
PR → PEU → WC | −0.03 | 1.63 | 0.102 |
SC → PR → PEU → WC | 0.02 | 1.55 | 0.121 |
PR → PU → WC | −0.21 | 3.37 | 0.001 ** |
SC → PR → PU → WC | 0.13 | 2.84 | 0.005 ** |
PR → PEU → PU → WC | −0.06 | 2.10 | 0.036 * |
SC → PR → PEU → PU → WC | 0.04 | 2.02 | 0.044 * |
Control variables | |||
POS → PR → PEU → WC | −0.01 | 0.36 | 0.72 |
POS → PR → PU → WC | −0.02 | 0.44 | 0.66 |
POS → PEU → PU → WC | −0.04 | 0.63 | 0.53 |
POS → PR → PEU → PU → WC | −0.01 | 0.38 | 0.71 |
DEPT → PR → PEU → WC | 0.01 | 0.75 | 0.45 |
DEPT → PR → PU → WC | 0.03 | 0.97 | 0.34 |
DEPT → PEU → PU → WC | −0.09 | 1.97 | 0.05 * |
DEPT → PR → PEU → PU → WC | 0.01 | 0.84 | 0.40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, Y. Examining the Impact of Frontline Service Robots Service Competence on Hotel Frontline Employees from a Collaboration Perspective. Sustainability 2023, 15, 7563. https://doi.org/10.3390/su15097563
Kim Y. Examining the Impact of Frontline Service Robots Service Competence on Hotel Frontline Employees from a Collaboration Perspective. Sustainability. 2023; 15(9):7563. https://doi.org/10.3390/su15097563
Chicago/Turabian StyleKim, Yunsik. 2023. "Examining the Impact of Frontline Service Robots Service Competence on Hotel Frontline Employees from a Collaboration Perspective" Sustainability 15, no. 9: 7563. https://doi.org/10.3390/su15097563
APA StyleKim, Y. (2023). Examining the Impact of Frontline Service Robots Service Competence on Hotel Frontline Employees from a Collaboration Perspective. Sustainability, 15(9), 7563. https://doi.org/10.3390/su15097563