The Impact of Information Infrastructure Construction on Carbon Emissions
Abstract
:1. Introduction
2. Literature Review
2.1. Direct and Indirect Impact of Information Infrastructure Development on Carbon Emissions
2.2. The Impact of Information Infrastructure Construction on Carbon Emissions through Technological Innovation
3. Materials and Methods
3.1. Variables
3.1.1. Explained Variable
3.1.2. Core Explanatory Variable
3.1.3. Mediating Variable
3.1.4. Control Variables
3.2. Model Construction
3.2.1. Basic Regression Model
3.2.2. Intermediary Effect Model
4. Results
4.1. Panel Data Correlation Test
4.2. Basic Regression Results
4.3. Intermediary Effect Results
4.4. Robustness Tests
4.4.1. Reconstructing the Dependent Variables
4.4.2. Instrumental Variable Regression
5. Heterogeneity Analysis
5.1. Regional Heterogeneity
5.2. Heterogeneity in Technology
5.3. Heterogeneity in Carbon Emission Intensity
6. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Borowski, P. Innovative Processes in Managing an Enterprise from the Energy and Food Sector in the Era of Industry 4.0. Processes 2021, 9, 381. [Google Scholar] [CrossRef]
- Cheng, Z.; Li, L.; Liu, J.; Zhang, H. Total-Factor Carbon Emission Efficiency of China’s Provincial Industrial Sector and Its Dynamic Evolution. Renew. Sustain. Energy Rev. 2018, 94, 330–339. [Google Scholar] [CrossRef]
- Lu, Y.; Cui, P.; Li, D. Carbon Emissions and Policies in China’s Building and Construction Industry: Evidence from 1994 to 2012. Build. Environ. 2016, 95, 94–103. [Google Scholar] [CrossRef]
- Tang, D.; Zhang, Y.; Bethel, B.J. A Comprehensive Evaluation of Carbon Emission Reduction Capability in the Yangtze River Economic Belt. Int. J. Environ. Res. Public Health 2020, 17, 545. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Yang, X.; Wen, J.; Wang, H.; Fenf, Y.; Lu, J.; Chen, H.; Wu, J.; Wamh, J. Drivers of China’s carbon dioxide emissions: Based on the combination model of structural decomposition analysis and input-output subsystem method. Environ. Impact Assess. Rev. 2023, 100, 107043. [Google Scholar] [CrossRef]
- Latief, R.; Kong, Y.; Javeed, S.A.; Sattar, U. Carbon Emissions in the SAARC Countries with Causal Effects of FDI, Economic Growth and Other Economic Factors: Evidence from Dynamic Simultaneous Equation Models. Int. J. Environ. Res. Public Health 2021, 18, 4605. [Google Scholar] [CrossRef]
- Wei, L.; Liu, Z. Spatial heterogeneity of demographic structure effects on urban carbon emissions. Environ. Impact Assess. Rev. 2022, 95, 106790. [Google Scholar] [CrossRef]
- Ji, X.; Chen, B. Assessing the Energy-Saving Effect of Urbanization in China Based on Stochastic Impacts by Regression on Population, Affluence and Technology (STIRPAT) Model. J. Clean. Prod. 2017, 163, S306–S314. [Google Scholar] [CrossRef]
- Huang, H.; Yi, M. Impacts and mechanisms of heterogeneous environmental regulations on carbon emissions: An empirical research based on DID method. Environ. Impact Assess. Rev. 2023, 99, 107039. [Google Scholar] [CrossRef]
- Pei, Y.; Zhu, Y.; Liu, S.; Wang, X.; Cao, J. Environmental Regulation and Carbon Emission: The Mediation Effect of Technical Efficiency. J. Clean. Prod. 2019, 236, 117599. [Google Scholar] [CrossRef]
- Wang, H.; Wei, W. Coordinating Technological Progress and Environmental Regulation in CO2 Mitigation: The Optimal Levels for OECD Countries & Emerging Economies. Energy Econ. 2020, 87, 104510. [Google Scholar]
- Madlener, R.; Sunak, Y. Impacts of Urbanization on Urban Structures and Energy Demand: What Can We Learn for Urban Energy Planning and Urbanization Management? Sustain. Cities Soc. 2011, 1, 45–53. [Google Scholar] [CrossRef]
- Wu, Y.; Li, C.; Shi, K.; Liu, S.; Chang, Z. Exploring the effect of urban sprawl on carbon dioxide emissions: An urban sprawl model analysis from remotely sensed nighttime light data. Environ. Impact Assess. Rev. 2022, 93, 106731. [Google Scholar] [CrossRef]
- Duggal, V.G.; Saltzman, C.; Klein, L.R. Infrastructure and productivity: An extension to private infrastructure and it productivity. J. Econom. 2007, 140, 485–502. [Google Scholar] [CrossRef]
- Roller, L.H.; Waverman, L. Telecommunications infrastructure and economic development: A simultaneous approach. Am. Econ. Rev. 2001, 91, 909–923. [Google Scholar] [CrossRef]
- Dong, F.; Dai, Y.; Zhang, S.; Zhang, X.; Long, R. Can a carbon emission trading scheme generate the Porter effect? Evidence from pilot areas in China. Sci. Total Environ. 2019, 653, 565–577. [Google Scholar] [CrossRef]
- Lyytinen, K.; Yoo, Y.; Bol, R.J., Jr. Digital product innovation within four classes of innovation networks. Inf. Syst. J. 2016, 26, 47–75. [Google Scholar] [CrossRef]
- Tan, K.H.; Ji, G.; Lim, C.P.; Tseng, M.L. Using big data to make better decisions in the digital economy. Int. J. Prod. Res. 2017, 55, 4998–5000. [Google Scholar] [CrossRef]
- Sutherl, W.; Jarrahi, M.H. The sharing economy and digital platforms: A review and research agenda. Int. J. Inf. Manag. 2018, 43, 328–341. [Google Scholar] [CrossRef]
- Fichman, R.G.; Dos Santos, B.L.; Zheng, Z. Digital innovation as a fundamental and powerful concept in the information systems curriculum. MIS Q. 2014, 38, 329–353. [Google Scholar] [CrossRef]
- Abramovay, R. Decarbonizing the growth model of Brazil: Addressing both carbon and energy intensity. J. Environ. Dev. 2010, 19, 358–374. [Google Scholar] [CrossRef]
- Zhou, K.; Fu, C.; Yang, S. Big data driven smart energy management: From big data to big insights. Renew. Sustain. Energy Rev. 2016, 56, 215–225. [Google Scholar] [CrossRef]
- Li, S.; Zhou, C.; Wang, S. Does modernization affect carbon dioxide emissions A panel data analysis. Sci. Total Environ. 2019, 663, 426–435. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Wei, X.; Wei, J.; Gao, X. Industrial Structure Upgrading, Green Total Factor Productivity and Carbon Emissions. Sustainability 2022, 14, 1009. [Google Scholar] [CrossRef]
- Zhang, P.; Chen, P.; Xiao, F.; Sun, Y.; Ma, S.; Zhao, Z. The impact of information infrastructure on air pollution: Empirical evidence from China. Int. J. Environ. Res. Public Health 2022, 19, 14351. [Google Scholar] [CrossRef]
- Kou, J.; Xu, X. Does internet infrastructure improve or reduce carbon emission performance?—A dual perspective based on local government intervention and market segmentation. J. Clean. Prod. 2022, 379, 134789. [Google Scholar] [CrossRef]
- Dong, F.; Li, Y.; Qin, C.; Zhang, X.; Chen, Y.; Zhao, X.; Wang, C. Information infrastructure and greenhouse gas emission performance in urban China: A difference-in-differences analysis. J. Environ. Manag. 2022, 316, 115252. [Google Scholar] [CrossRef]
- Salahuddin, M.; Alam, K. Internet usage, electricity consumption and economic growth in Australia: A time series evidence. Telemat. Inform. 2015, 32, 862–878. [Google Scholar] [CrossRef]
- Hamdi, H.; Sbia, R.; Shahbaz, M. The nexus between electricity consumption and economic growth in Bahrain. Econ. Model. 2014, 38, 227–237. [Google Scholar] [CrossRef]
- Porter, M. America’s green strategy. Bus. Environ. Read. 1996, 33, 1072. [Google Scholar]
- Fan, Y.; Liu, L.C.; Wu, G.; Wei, Y.M. Analyzing impact factors of CO2 emissions using the STIRPAT model. Environ. Impact Assess. Rev. 2006, 26, 377–395. [Google Scholar] [CrossRef]
- Apergis, N.; Eleftheriou, S.; Payne, J.E. The relationship between international financial reporting standards, carbon emissions, and R&D expenditures: Evidence from European manufacturing firms. Ecol. Econ. 2013, 88, 57–66. [Google Scholar]
- Font Vivanco, D.; Kemp, R.; van der Voet, E.; Heijungs, R. Using LCA-based decomposition analysis to study the multidimensional contribution of technological innovation to environmental pressures. J. Ind. Ecol. 2014, 18, 380–392. [Google Scholar] [CrossRef]
- Acemoglu, D.; Aghion, P.; Hémous, D. The environment and directed technical change in a North–South model. Oxf. Rev. Econ. Policy 2014, 30, 513–530. [Google Scholar] [CrossRef]
- Shaikh, S.A.; Taiyyeba, Z.; Khan, K. The nexus between technological innovation and carbon dioxide emissions: Evidence from China. Nice Res. J. 2018, 11, 181–193. [Google Scholar] [CrossRef]
- Anwar, A.; Chaudhary, A.R.; Malik, S.; Bassim, M. Modelling the macroeconomic determinants of carbon dioxide emissions in the G-7 countries: The roles of technological innovation and institutional quality improvement. Glob. Bus. Rev. 2021. [Google Scholar] [CrossRef]
- Liu, Y.; Tang, L.; Liu, G. Carbon Dioxide Emissions Reduction through Technological Innovation: Empirical Evidence from Chinese Provinces. Int. J. Environ. Res. Public Health 2022, 19, 9543. [Google Scholar] [CrossRef]
- Statistical Bureau of the People’s Republic of China. China Statistical Yearbook; China Statistical Publishing House: Beijing, China, 2021. Available online: https://data.stats.gov.cn/ (accessed on 18 March 2023).
- Statistical Bureau of the People’s Republic of China. China Energy Statistics Yearbook; China Statistical Publishing House: Beijing, China, 2021.
- China Emission Accounts and Datasets. Available online: https://www.ceads.net.cn/ (accessed on 18 March 2023).
- Statistical Bureau of the People’s Republic of China. China Environmental Statistics Yearbook; China Statistical Publishing House: Beijing, China, 2021.
- Internet Information Center of the People’s Republic of China. China Internet Development Report; People’s Post and Telecommunications Publishing House: Beijing, China, 2021.
Variables | Unit | Data Source |
---|---|---|
The length of long-distance fiber-optic cable lines | Million kilometres | National Bureau of Statistics of China |
The Internet penetration rate | The proportion of Internet users to the population at the end of the year | China Internet Development Status Report and Internet Development Report by province |
The mobile phone penetration rate | The number of mobile phone users per 100 people | National Bureau of Statistics of China |
The proportion of Internet broadband access ports | The number of Internet broadband access ports per capita | National Bureau of Statistics of China |
Variables | Symbol | Mean | Min. | Max. | Standard Deviation | Data Source |
---|---|---|---|---|---|---|
Carbon emission intensity | 2.397 | 0.199 | 12.832 | 2.282 | China Carbon Data Accounting Database | |
Information infrastructure construction | −1.914 | −2.957 | −1.106 | 0.402 | Same as Section 3.1.2 | |
Technological innovation | 10.532 | 6.400 | 13.602 | 1.453 | National Bureau of Statistics of China | |
Foreign direct investment | 9.411 | 7.214 | 10.631 | 0.657 | National Bureau of Statistics of China | |
Energy consumption | 9.680 | 7.042 | 11.573 | 0.894 | China Energy Statistics Yearbook | |
Openness | 16.055 | 8.330 | 20.199 | 2.515 | National Bureau of Statistics of China and provincial statistical offices | |
Level of economic development | −3.272 | −9.041 | −0.035 | 1.927 | National Bureau of Statistics of China and provincial statistical offices | |
Environmental Regulation | 0.524 | 0 | 2.585 | 00.535 | China Statistical Yearbook and China Environmental Statistics Yearbook |
IIC | CEI | lnFDI | lnEnergy | lnOpen | lnTI | lnGDP | ER | |
---|---|---|---|---|---|---|---|---|
1 | ||||||||
−0.305 | 1 | |||||||
0.264 | −0.447 | 1 | ||||||
0.122 | −0.057 | 0.315 | 1 | |||||
0.206 | −0.374 | 0.772 | 0.143 | 1 | ||||
0.361 | −0.516 | 0.619 | 0.401 | 0.423 | 1 | |||
0.303 | −0.455 | 0.573 | 0.576 | 0.347 | 0.749 | 1 | ||
−0.005 | 0.101 | 0.162 | 0.685 | 0.02 | 0.204 | 0.368 | 1 |
Coefficient | ||||
---|---|---|---|---|
(b) | (B) | (b − B) | sqrt(diag(Vb − VB)) | |
fe | re | Difference | Std. Err. | |
IIC | −0.106 | 0.400 | −0.507 | 0.215 |
lnTI | −0.593 | −0.726 | 0.133 | 0.061 |
lnEnergy | 1.294 | 1.745 | −0.450 | 0.244 |
lnGDP | 0.151 | −0.434 | 0.586 | 0.300 |
lnFDI | −0.518 | −0.475 | −0.042 | 0.093 |
lnOpen | 0.713 | 0.617 | 0.095 | 0.119 |
ER | −0.434 | −0.367 | −0.067 | 00.039 |
chi2(7) = (b − B)′[(Vb − VB) − 1](b − B) = 16.46 | ||||
Prob > chi2 = 0.0212 |
Pesaran’s CD Test | Friedman Test | Frees Test | |
---|---|---|---|
Test value | 1.458 | 17.571 | 3.616 |
p-value | 0.144 | 0.952 | 1% threshold: 0.5198 |
Variables | Fixed Effects Model CEI | Fixed Effects Model CEI | Driscoll-Kraay Model CEI |
---|---|---|---|
−1.134 ** | −0.949 ** | −0.949 *** | |
(0.441) | (0.425) | (0.371) | |
5.870 *** | 5.870 ** | ||
(1.727) | (2.515) | ||
1.792 *** | 1.792 *** | ||
(0.448) | (0.371) | ||
−5.636 *** | −5.636 ** | ||
(1.730) | (2.465) | ||
−0.664 *** | −0.664 *** | ||
(0.165) | (0.114) | ||
3.936 ** | 3.936 | ||
(1.738) | (2.190) | ||
−0.348 ** | −0.348 | ||
(0.183) | (0.244) | ||
Constant | −1.303 | 61.57 *** | 61.16 ** |
(0.886) | (17.74) | (25.66) | |
0.948 | 0.958 | ||
Adjusted | 0.938 | 0.950 | |
Observations | 300 | 300 | 300 |
Fixed year | YES | YES | YES |
Fixed province | YES | YES | YES |
Variables | (1) CEI | (2) lnTI | (3) CEI |
---|---|---|---|
−1.309 *** | 0.542 *** | −0.949 *** | |
(0.427) | (0.158) | (0.371) | |
5.970 *** | −0.152 | 5.870 ** | |
(1.778) | (0.656) | (2.515) | |
1.277 *** | 0.775 *** | 1.792 *** | |
(0.441) | (0.163) | (0.371) | |
−5.661 *** | 0.0386 | −5.636 ** | |
(1.781) | (0.656) | (2.465) | |
−0.664 *** | |||
(0.114) | |||
3.400 * | 0.805 | 3.936 | |
(1.784) | (0.658) | (2.190) | |
−0.223 | −0.242 *** | −0.348 | |
(0.183) | (0.067) | (0.244) | |
Constant | 63.859 *** | −3.44 | 61.16 ** |
(18.251) | (6.736) | (25.66) | |
Observations | 300 | 300 | 300 |
Fixed year | YES | YES | YES |
Fixed province | YES | YES | YES |
Coefficient | SD | Z-Statistic | p-Value | |
---|---|---|---|---|
Coefficient a | 0.542 | 0.158 | 3.435 | 0.001 |
Coefficient b | −0.664 | 0.165 | −4.029 | 0.000 |
Indirect effect a ∗ b | −0.360 | 0.138 | −2.614 | 0.009 |
Direct effect c′ | −0.949 | 0.425 | −2.234 | 0.025 |
Total effect c | −1.309 | 0.428 | −3.062 | 0.003 |
Indirect effect as a percentage of total effect: 0.275 | ||||
The ratio of indirect effects to direct effects: 0.379 | ||||
Ratio of total effect to direct effect: 1.379 |
Variables | (1) SEI | (2) SEI | (3) 1st Stage | (4) 2nd Stage |
---|---|---|---|---|
−7.010 *** | −4.873 *** | −3.482 *** | ||
(−1.421) | (−1.411) | (0.921) | ||
L.Z | 0.090 *** | |||
(0.023) | ||||
Control variables | NO | YES | YES | |
Observations | 330 | 330 | 270 | 270 |
Fixed year | YES | YES | YES | YES |
Fixed province | YES | YES | YES | YES |
LM statistic | 6.870 | |||
p-value | 0.008 | |||
Wald F | 10.690 | |||
KP Wald F | 14.610 |
Variables | East (1) CEI | Central (2) CEI | West (3) CEI |
---|---|---|---|
−0.948 *** | −4.300 ** | 1.082 | |
(0.178) | (1.825) | (0.791) | |
Control variables | YES | YES | YES |
Observations | 110 | 80 | 110 |
Fixed year | YES | YES | YES |
Fixed province | YES | YES | YES |
Variables | Low-Tech Innovation (1) CEI | High-Tech Innovation (2) CEI |
---|---|---|
−0.725 | −0.602 *** | |
(1.339) | (−0.130) | |
Control variables | YES | YES |
Observations | 140 | 160 |
Fixed year | YES | YES |
Fixed province | YES | YES |
Variables | Low Carbon Emission (1) CEI | High Carbon Emission (2) CEI |
---|---|---|
−0.840 *** | −2.551 * | |
(−0.175) | (−1.580) | |
Control variables | YES | YES |
Observations | 200 | 100 |
Fixed year | YES | YES |
Fixed province | YES | YES |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, L.; Zhang, L.; Zhang, Z. The Impact of Information Infrastructure Construction on Carbon Emissions. Sustainability 2023, 15, 7693. https://doi.org/10.3390/su15097693
Fu L, Zhang L, Zhang Z. The Impact of Information Infrastructure Construction on Carbon Emissions. Sustainability. 2023; 15(9):7693. https://doi.org/10.3390/su15097693
Chicago/Turabian StyleFu, Lianyan, Luyang Zhang, and Zihan Zhang. 2023. "The Impact of Information Infrastructure Construction on Carbon Emissions" Sustainability 15, no. 9: 7693. https://doi.org/10.3390/su15097693
APA StyleFu, L., Zhang, L., & Zhang, Z. (2023). The Impact of Information Infrastructure Construction on Carbon Emissions. Sustainability, 15(9), 7693. https://doi.org/10.3390/su15097693