Impact of Drip Irrigation with Recycled Wastewater on Aromatic Compound Composition in Capia Pepper (Capsicum annum L.)
Abstract
:1. Introduction
2. Materials and Methods
- Location and design of experiment
- Plant and water materials
- Primary treated wastewater (physical treatment) (WW1).
- Secondary treated wastewater (physical + biological treatment) (WW2) obtained from the Ankara Kalecik Wastewater Treatment Plant.
- Tap water (MW).
- Plant analysis
3. Results and Discussion
3.1. Chemical Analysis of Capia Pepper
3.2. Aromatic Compounds of Capia Pepper
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kelebek, H.; Sevindik, O.; Uzlasir, T.; Selli, S. LC-DAD/ESI MS/MS characterization of fresh and cooked Capia and Aleppo red peppers (Capsicum annuum L.) phenolic profiles. Eur. Food Res. Technol. 2020, 246, 1971–1980. [Google Scholar] [CrossRef]
- Govindarajan, V.S.; Salzer, U.J. Capsicum-production, technology, chemistry, and quality part 1: History, botany, cultivation, and primary processing. Crit. Rev. Food Sci. Nutr. 1985, 22, 109–176. [Google Scholar] [CrossRef] [PubMed]
- Materska, M. Flavone C-glycosides from Capsicum annuum L.: Relationships between antioxidant activity and lipophilicity. Eur. Food Res. Technol. 2015, 240, 549–557. [Google Scholar] [CrossRef]
- Korkmaz, A.; Hayaloglu, A.A.; Atasoy, A.F. Evaluation of the volatile compounds of fresh ripened Capsicum annuum and its spice pepper (dried red pepper flakes and isot). LWT 2017, 84, 842–850. [Google Scholar] [CrossRef]
- Uçkan Çakır, M.; Özbay, G. A Short History of Spices: An Overview on Pepper History. In Proceedings of the International Pepper and Spices Conference, Villahermosa, Mexico, 26 April 2022; pp. 23–35. [Google Scholar]
- Cui, M.; Wang, F.; Xu, H. Response of Physiological-biochemical Characters of Sweet Pepper Seedlings. Chin. Agric. Sci. Bull. 2005, 21, 225. [Google Scholar]
- Reyes, L.M.; Sanders, D.C.; Buhler, W.G. Evaluation of slow-release fertilizers on bell pepper. HortTechnology 2008, 18, 393–396. [Google Scholar] [CrossRef]
- Berke, T.; Black, L.; Morris, R.; Talekar, N.; Wang, J. Suggested cultural practices for sweet pepper. Int. Coop. Guide AVRDC Publ. 2003, 5, 99–497. [Google Scholar]
- Yadav, P.K.; Kumar, S.; Dwivedi, D.K.; Turkar, G.P. Soil Requirements for Horticultural Crop. In Modern Trends in Horticulture, 1st ed.; Golden Leaf Publishers: Lucknow, India, 2023; Chapter 3. [Google Scholar]
- Khatun, M.; Sarkar, S.; Era, F.M.; Islam, A.M.; Anwar, M.P.; Fahad, S.; Islam, A.A. Drought stress in grain legumes: Effects, tolerance mechanisms and management. Agronomy 2021, 11, 2374. [Google Scholar] [CrossRef]
- FAO. Making agrifood systems more resilient to shocks and stresses. In The State of Food and Agriculture 2021; FAO: Rome, Italy, 2021. [Google Scholar] [CrossRef]
- TSI. Sebze Üretim İstatistikleri (Vegetable Production Statistics). 2023. Available online: https://data.tuik.gov.tr/Bulten/Index?p=Bitkisel-Uretim-1.Tahmini-2023-49534 (accessed on 3 February 2024).
- Özdikmenli, S.; Zorba, N.N.D. Közlenmiş kırmızı biber (kapya) konservesi üretiminde gıda güvenliği. Tekirdağ Ziraat Fakültesi Derg. 2015, 12, 55–64. [Google Scholar]
- Corcoran, E.; Nellemann, C.; Baker, E.; Bos, R.; Osborn, D.; Savelli, H. The central role of wastewater management in sustainable development. A Rapid Response Assessment. United Nations Environment Programme, UN-HABITAT, GRID-Arendal. J. Environ. Prot 2010, 3, 12–29. [Google Scholar]
- Wada, Y.; Flörke, M.; Hanasaki, N.; Eisner, S.; Fischer, G.; Tramberend, S.; Satoh, Y.; Van Vliet, M.T.H.; Yillia, P.; Ringler, C. Modeling global water use for the 21st century: The Water Futures and Solutions (WFaS) initiative and its approaches. Geosci. Model Dev. 2016, 9, 175–222. [Google Scholar] [CrossRef]
- Nouri, M.; Homaee, M.; Pereira, L.S.; Bybordi, M. Water management dilemma in the agricultural sector of Iran: A review focusing on water governance. Agric. Water Manag. 2023, 288, 108480. [Google Scholar] [CrossRef]
- Koç, D.L.; Kapur, B.; Mustafa, Ü.; Kanber, R. The Situation of Water Resources and Agricultural Irrigation in Turkey. Çukurova Tarım Gıda Bilim. Derg. 2022, 37, 112–122. [Google Scholar]
- Dorji, K.; Behboudian, M.; Zegbe-Dominguez, J. Water relations, growth, yield, and fruit quality of hot pepper under deficit irrigation and partial rootzone drying. Sci. Hortic. 2005, 104, 137–149. [Google Scholar] [CrossRef]
- Kumari, R.; Kaushal, A. Drip fertigation in sweet pepper: A review. Int. J. Eng. Res. Appl. 2014, 4, 144–149. [Google Scholar]
- Demirel, K.; Genç, L.; Saçan, M. Effects of different irrigation levels on pepper (Capsicum annum cv. kapija) yield and quality parameters in semi-arid conditions. J. Tekirdag Agric. Fac. 2012, 9, 7–15. [Google Scholar]
- Candido, V.; Miccolis, V.; Rivelli, A.R. Yield traits and water and nitrogen use efficiencies of bell pepper grown in plastic-greenhouse. Ital. J. Agron. 2009, 4, 91–100. [Google Scholar] [CrossRef]
- Dalla Costa, L.; Gianquinto, G. Water stress and watertable depth influence yield, water use efficiency, and nitrogen recovery in bell pepper: Lysimeter studies. Aust. J. Agric. Res. 2002, 53, 201–210. [Google Scholar] [CrossRef]
- Tanaskovik, V.; Cukaliev, O.; Romić, D.; Ondrašek, G. The influence of drip fertigation on water use efficiency in tomato crop production. Agric. Conspec. Sci. 2011, 76, 57–63. [Google Scholar]
- Çolak, Y.B.; Yazar, A.; Çolak, İ.; Akça, H.; Duraktekin, G. Evaluation of crop water stress index (CWSI) for eggplant under varying irrigation regimes using surface and subsurface drip systems. Agric. Agric. Sci. Procedia 2015, 4, 372–382. [Google Scholar] [CrossRef]
- Sezen, S.M.; Yazar, A.; Tekin, S. Physiological response of red pepper to different irrigation regimes under drip irrigation in the Mediterranean region of Turkey. Sci. Hortic. 2019, 245, 280–288. [Google Scholar] [CrossRef]
- Gisbert-Mullor, R.; Martín-García, R.; Bažon Zidarić, I.; Pascual-Seva, N.; Pascual, B.; Padilla, Y.G.; Calatayud, Á.; López-Galarza, S. A Water Stress–Tolerant Pepper Rootstock Improves the Behavior of Pepper Plants under Deficit Irrigation through Root Biomass Distribution and Physiological Adaptation. Horticulturae 2023, 9, 362. [Google Scholar] [CrossRef]
- Keleş, D. Biber Yetiştiriciliği. 2015. Available online: https://arastirma.tarimorman.gov.tr/alata/Belgeler/Diger-belgeler/BiberYeti%C5%9Ftiricili%C4%9FiDKele%C5%9F.pdf (accessed on 3 February 2024).
- Şen, E. The Effect of Drip Irrigation Applications of Some Yield and Quality Parameters of Processing Pepper (Capsicum annuum L.). Master’s Dissertation, Adnan Menderes University, Aydın, Türkiye, 2015; p. 57. [Google Scholar]
- Liu, Y.; Yang, Y. Advances in the quality of global soil moisture products: A review. Remote Sens. 2022, 14, 3741. [Google Scholar] [CrossRef]
- Cakmakcı, T.; Sahın, U. Yield, Physiological Responses and Irrigation Water Productivity of Capia Pepper (Capsicum annuum L.) at Deficit Irrigation and Different Biochar Levels. Gesunde Pflanz. 2023, 75, 317–327. [Google Scholar] [CrossRef]
- Hashem, M.S.; Qi, X. Treated Wastewater Irrigation—A Review. Water 2021, 13, 1527. [Google Scholar] [CrossRef]
- Polat, A. Su kaynaklarının sürdürülebilirliği için arıtılan atıksuların yeniden kullanımı. Türk Bilimsel Derlemeler Derg. 2013, 6, 58–62. [Google Scholar]
- Erel, R.; Eppel, A.; Yermiyahu, U.; Ben-Gal, A.; Levy, G.; Zipori, I.; Schaumann, G.E.; Mayer, O.; Dag, A. Long-term irrigation with reclaimed wastewater: Implications on nutrient management, soil chemistry and olive (Olea europaea L.) performance. Agric. Water Manag. 2019, 213, 324–335. [Google Scholar] [CrossRef]
- Arora, S.; Kazmi, A.A. The effect of seasonal temperature on pathogen removal efficacy of vermifilter for wastewater treatment. Water Res. 2015, 74, 88–99. [Google Scholar] [CrossRef] [PubMed]
- Jaramillo, M.F.; Restrepo, I. Wastewater reuse in agriculture: A review about its limitations and benefits. Sustainability 2017, 9, 1734. [Google Scholar] [CrossRef]
- Saraoglu, E. Reuse of Treated Waste Water in Agricultureal Irrigation—Successful Examples from Our Country and the World and Implementation Suggestions for Türkiye. Environment and Urbanization. Expertise Thesis, Republic of Türkiye Ministry of Environment, Urbanization and Climate Change, Ankara, Türkiye, 2014; p. 104. [Google Scholar]
- Zambi, O. Bazı Sebzelerde Atık Sularla Sulamanın Kalite Üzerine Etkisi. Ph.D. Thesis, Bursa Uludag University, Bursa, Turkey, 2022. [Google Scholar]
- Hamilton, K.; Hamilton, M.; Johnson, W.; Jjemba, P.; Bukhari, Z.; LeChevallier, M.; Haas, C. Health risks from exposure to Legionella in reclaimed water aerosols: Toilet flushing, spray irrigation, and cooling towers. Water Res. 2017, 134, 261–279. [Google Scholar] [CrossRef] [PubMed]
- Becerra-Castro, C.; Lopes, A.R.; Vaz-Moreira, I.; Silva, E.F.; Manaia, C.M.; Nunes, O.C. Wastewater reuse in irrigation: A microbiological perspective on implications in soil fertility and human and environmental health. Environ. Int. 2015, 75, 117–135. [Google Scholar] [CrossRef]
- Cui, B.; Hu, C.; Fan, X.; Cui, E.; Li, Z.; Ma, H.; Gao, F. Changes of endophytic bacterial community and pathogens in pepper (Capsicum annuum L.) as affected by reclaimed water irrigation. Appl. Soil Ecol. 2020, 156, 103627. [Google Scholar] [CrossRef]
- Hamilton, K.A. Quantitative Microbial Risk Assessment for Sustainable Water Resources. 2016. Available online: https://www.proquest.com/dissertations-theses/quantitative-microbial-risk-assessment/docview/1859928829/se-2 (accessed on 7 February 2024).
- Öztürk, A.; Çolak, M.S. A Quantitative and Qualitative Assessment of Türkiye’s Water Resources Potential. J. Agric. Sci. 2024, 30, 1–34. [Google Scholar] [CrossRef]
- Ayers, R.S.; Westcot, D.W. Water Quality for Agriculture; Irrigation and Drainage Paper; Food and Agriculture Organization (FAO): Rome, Italy, 1985; Volume 29, p. 174. [Google Scholar]
- Turkes, M. Climate and drought in Turkey. In Water Resources of Turkey; Springer: Boston, MA, USA, 2020; pp. 85–125. [Google Scholar]
- Siyal, A.A.; Bristow, K.L.; Šimůnek, J. Minimizing nitrogen leaching from furrow irrigation through novel fertilizer placement and soil surface management strategies. Agric. Water Manag. 2012, 115, 242–251. [Google Scholar] [CrossRef]
- Flores, J.H.N.; Faria, L.C.; Rettore Neto, O.; Diotto, A.V.; Colombo, A. Methodology for determining the emitter local head loss in drip irrigation systems. J. Irrig. Drain. Eng. 2021, 147, 06020014. [Google Scholar] [CrossRef]
- Yang, P.; Wu, L.; Cheng, M.; Fan, J.; Li, S.; Wang, H.; Qian, L. Review on drip irrigation: Impact on crop yield, quality, and water productivity in China. Water 2023, 15, 1733. [Google Scholar] [CrossRef]
- Abou Zakhem, B.; Al Ain, F.; Hafez, R. Assessment of field water budget components for increasing water productivity under drip irrigation in arid and semi-arid areas, Syria. Irrig. Drain. 2019, 68, 452–463. [Google Scholar] [CrossRef]
- Chen, X.; Qi, Z.; Gui, D.; Gu, Z.; Ma, L.; Zeng, F.; Li, L.; Sima, M.W. A model-based real-time decision support system for irrigation scheduling to improve water productivity. Agronomy 2019, 9, 686. [Google Scholar] [CrossRef]
- Lau, H.; Liu, S.Q.; Xu, Y.Q.; Lassabliere, B.; Sun, J.; Yu, B. Characterising volatiles in tea (Camellia sinensis). Part I: Comparison of headspace-solid phase microextraction and solvent assisted flavour evaporation. LWT 2018, 94, 178–189. [Google Scholar] [CrossRef]
- Cliff, M.A.; King, M.C.; Schlosser, J. Anthocyanin, phenolic composition, colour measurement and sensory analysis of BC commercial red wines. Food Res. Int. 2007, 40, 92–100. [Google Scholar] [CrossRef]
- Doğanlar, C.; Vural, G.E.; Zengin, S.; Karakuş, T.; Ellialtıoğlu, Ş.Ş. Determination of Eggplant Pure Lines Suitable for Drying by Different Methods. Ekin J. Crop Breed. Genet. 2023, 9, 1–18. [Google Scholar]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Dagianta, E.; Goumas, D.; Manios, T.; Tzotzakis, N. The use of treated wastewater and fertigation in greenhouse pepper crop as affecting growth and fruit quality. J. Water Reuse Desalination 2014, 4, 92–99. [Google Scholar] [CrossRef]
- Al-Lahham, O.; El Assi, N.M.; Fayyad, M. Impact of treated wastewater irrigation on quality attributes and contamination of tomato fruit. Agric. Water Manag. 2003, 61, 51–62. [Google Scholar] [CrossRef]
- Bozkurt, S.B. The Effect of Organic Fertilizers Used in Red Pepper (Capsicum annuum L. cv. Kapya) Cultivation on Plant Growth and Fruit Quality. Master’s Thesis, Bursa Uludağ University, Bursa, Türkiye, 2019. [Google Scholar]
- Rehman, Z.U.; Sardar, K.; Shah, M.T.; Brusseau, M.L.; Khan, S.A.; Mainhagu, J. Transfer of heavy metals from soils to vegetables and associated human health risks at selected sites in Pakistan. Pedosphere 2018, 28, 666–679. [Google Scholar] [CrossRef]
- Mohammadi, A.; Zarei, A.; Esmaeilzadeh, M.; Taghavi, M.; Yousefi, M.; Yousefi, Z.; Sedighi, F.; Javan, S. Assessment of heavy metal pollution and human health risks assessment in soils around an industrial zone in Neyshabur, Iran. Biol Trace Elem Res. 2020, 195, 343–352. [Google Scholar] [CrossRef] [PubMed]
- BYJUS. BYJU’S, Para Dichlorobenzene—C6H4Cl2. 2024. Available online: https://byjus.com/chemistry/para-dichlorobenzene/ (accessed on 3 February 2024).
- HMDB. Showing Metabocard for Docosane (HMDB0061865) and P-Dichlorobenzene (HMDB0041971). 2024. Available online: https://hmdb.ca/metabolites/HMDB0061865 (accessed on 7 February 2024).
- TGSCa. The Goods Cents Company, (-)-Alpha-Cubebene, Alpha-Copaene. 2024. Available online: http://www.thegoodscentscompany.com/data/rw1054531.html (accessed on 3 February 2024).
- Li, Z.; Howell, K.; Fang, Z.; Zhang, P. Sesquiterpenes in grapes and wines: Occurrence, biosynthesis, functionality, and influence of winemaking processes. Compr. Rev. Food Sci. Food Saf. 2020, 19, 247–281. [Google Scholar] [CrossRef]
- El Hadi, M.A.M.; Zhang, F.J.; Wu, F.F.; Zhou, C.H.; Tao, J. Advances in Fruit Aroma Volatile Research. Molecules 2013, 18, 8200–8229. [Google Scholar] [CrossRef] [PubMed]
- Dennis, E.G.; Keyzers, R.A.; Kalua, C.M.; Maffei, S.M.; Nicholson, E.L.; Boss, P.K. Grape contribution to wine aroma: Production of hexyl acetate, octyl acetate, and benzyl acetate during yeast fermentation is dependent upon precursors in the must. J. Agric. Food Chem. 2012, 60, 2638–2646. [Google Scholar] [CrossRef]
- NIH. National Library of Medicine, Limonene, (+/-)-. 2024. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Limonene (accessed on 20 February 2024).
- Javidnia, K.; Miri, R.; Soltani, M.; Khosravi, A.R. Essential oil composition of Tripleurospermum disciforme from Iran. Chem. Nat. Compd. 2008, 44, 800–801. [Google Scholar] [CrossRef]
- El Henshir, A.K. The Fractionation of Crude Petroleum using Chromatography, Extrography and Supercritical Fluid Extraction. Ph.D. Thesis, University of South Wales, Wales, UK, 1997. [Google Scholar]
- Sobel, A. What Is Limonene? Everything You Need to Know. Healthline 2023. Available online: https://www.healthline.com/nutrition/d-limonene (accessed on 22 February 2024).
- TGSCb. The Goods Cents Company, 3-Methylbutyl Butanoate. 2023. Available online: http://www.thegoodscentscompany.com/data/rw1006752.html (accessed on 5 February 2024).
- Matthews, A.C. Beverage flavourings and their applications. In Food Flavourings; Ashurst, P.R., Ed.; Springer: Boston, MA, USA, 1991. [Google Scholar] [CrossRef]
- FOODB. Food Browse, Showing Compound Hexadecane (FDB011952). 2020. Available online: https://foodb.ca/compounds/FDB011952 (accessed on 5 February 2024).
- Huang, Z.R.; Lin, Y.K.; Fang, J.Y. Biological and pharmacological activities of squalene and related compounds: Potential uses in cosmetic dermatology. Molecules 2009, 14, 540–554. [Google Scholar] [CrossRef]
- Lull, C.; Gil-Ortiz, R.; Cantín, Á. A Chemical Approach to Obtaining α-copaene from Clove Oil and Its Application in the Control of the Medfly. Appl. Sci. 2023, 13, 5622. [Google Scholar] [CrossRef]
Depth (cm) | 0–30 | 30–60 |
---|---|---|
Texture | Clay | Clay |
Sand (%) | 28.10817 | 24.07214 |
Silt (%) | 24.90601 | 22.94990 |
Clay (%) | 46.98581 | 49.97796 |
Clay + silt (%) | 71.89183 | 72.92786 |
OM (%) | 3.16 | 2.53 |
CaCO3 | 22.78 | 19.88 |
pH | 8.44 | 8.63 |
EC (dS m−1) | 0.397 | 0.439 |
Wastewater (WW) Analysis Parameters | Municipal Water (MW) Analysis Parameters | |||
---|---|---|---|---|
WW1 | WW2 | MW | ||
pH | 7.5 | 7.1 | Turbidity (NTU) | 0.30 |
Total hardness (CaCO3) (mg L−1) | 341.00 | 307.00 | Chlorine (mg L−1) | 0.20 |
Conductibility (EC) (25 °C, mS m−1) | 124.7 | 90.3 | Conductibility (EC) (25 °C, mS m−1) | 57.0 |
Total suspended solid matter (TSS) (mg L−1) | 451 | <10 | Ammonium (mg L−1) | <0.06 |
Total dissolved solids (TDS) (mg L−1) | 8119 | 9247 | Nitrite (mg L−1) | <0.006 |
K (mg L−1) | 13.2 | 13.1 | SO4 (mg L−1) | 47.1 |
Na (mg L−1) | 108.0 | 111.00 | ||
SO4 (mg L−1) | 73.1 | 81.30 | ||
Total N (T-N) (mg L−1) | 53.20 | 21.40 | ||
Total P (T–P) (mg L−1) | 0.88 | 0.93 |
Heavy Metals | |||||
---|---|---|---|---|---|
Irrigation Water | Cd | Pb | Ni | Co | Mn |
WW1 | 0.82 | 2.24 | 3.44 | 0.65 | 31.26 |
WW2 | 0.24 | 0.50 | 1.67 | 0.37 | 2.60 |
Threshold values, [40] | 10 | 5000 | 200 | 50 | 200 |
Parameter | January | February | March | April | May | June | July | August | September | October | November | December | Annual |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Avg. Temp. (°C) | 1.3 | 4.8 | 7.8 | 12.7 | 17.6 | 21.3 | 24.9 | 25.4 | 20.7 | 14.1 | 7.2 | 2.8 | 13.4 |
Highest Temp. (°C) | 19.1 | 22.7 | 25 | 31.9 | 35.9 | 37.5 | 41.7 | 39.8 | 40.8 | 34.1 | 25.4 | 17.6 | 41.7 |
Lowest Temp. (°C) | −19.3 | −13.2 | −8.4 | −3.4 | 3.4 | 6.1 | 9.6 | 11.2 | 0 | −1.9 | −9.6 | −12.9 | −19.3 |
Avg. Number of Rainy Days (mm) | 11.8 | 8.4 | 9.4 | 8.1 | 12.4 | 12.5 | 2.9 | 4.4 | 4.2 | 6.8 | 5.1 | 9 | 95 |
Monthly Avg. Total Precipitation (mm) | 5.37 | 23.05 | 42.4 | 18.62 | 57.68 | 68.71 | 8.53 | 20.84 | 19.13 | 18.59 | 19.51 | 33.61 | 376.04 |
Wastewater Application | Total Phenolic Matter (mg kg−1) | Water Soluble Dry Matter (%) | pH | Titratable Acidity (%) |
---|---|---|---|---|
AMFORA | ||||
MW | 149.26 ± 7.63 c | 8.00 ± 0.05 c | 5.06 ± 0.01 c | 1.37 ± 0.03 a |
WW2 | 230.31 ± 11.45 b | 8.50 ± 0.09 b | 5.20 ± 0.03 b | 1.13 ± 0.03 b |
WW1 | 303.49 ± 4.81 a | 9.37 ± 0.10 a | 5.36 ± 0.04 a | 1.20 ± 0.04 b |
YALOVA YAGLIK | ||||
MW | 186.45 ± 4.29 c | 8.37 ± 0.12 b | 5.03 ± 0.02 b | 2.26 ± 0.03 a |
WW2 | 249.10 ± 7.77 b | 8.87 ± 0.03 ab | 5.12 ± 0.01 b | 1.39 ± 0.07 b |
WW1 | 319.31 ± 8.05 a | 9.03 ±0.18 a | 5.37 ± 0.05 a | 1.30 ± 0.01 b |
Cd | Pb | Ni | Mn | Co | |
---|---|---|---|---|---|
FAO/WHO | 0.2 | 0.03 | 67.9 | 50 | 50 |
Aromatic Compounds | Amfora | Yalova Yaglık | ||||
---|---|---|---|---|---|---|
WW1 | MW | WW2 | WW1 | MW | WW2 | |
para-dichlorobenzene | 18.02 | 18.04 | 22.33 | 27.55 | 22.87 | 24.64 |
nonanoic acid | - | - | 5.61 | - | - | - |
alpha-cubebene | 13.33 | 7.88 | 8.42 | 21.86 | 12.55 | 13.18 |
hexyl-hexanoate | 5.22 | 2.71 | 2.77 | 7.05 | 3.33 | 2.96 |
alpha-, trans-bergamotene | - | - | 1.1 | - | - | - |
alpha-farnesene | 21.86 | 10.37 | 4.16 | 8.91 | 6.74 | 6.99 |
squalene | 2.66 | 1.14 | 2.01 | - | - | - |
n-octadecane | 9.7 | - | 13.49 | - | - | - |
n-docosane | 2.57 | 1.42 | 1.92 | 1 | 1.44 | 1.79 |
Limonene | 1.42 | 1.1 | 1.02 | 2.66 | 2.02 | 1.81 |
butyl-hexanoate | 2.36 | - | - | 5.41 | 7.18 | - |
isoamyl butyrate | 1.96 | 1.47 | 1.24 | 5.16 | 3.87 | 2.02 |
n-pentadecane | 2.17 | - | - | - | - | - |
n-hexadecane | 16.58 | 15.77 | 17.44 | 14.96 | 16.61 | 20.9 |
n-heptadecane | 3.76 | - | - | - | - | - |
methyl-salicylate | - | 6.42 | - | - | - | 1.77 |
n-dodecane | - | 1.59 | - | - | - | 2.77 |
alpha-copaene | - | 9.96 | - | 1.02 | 1.22 | 1.41 |
hexyl-butyrate | - | - | - | - | - | - |
n-tridecane | - | - | - | - | - | - |
4-vinyl-guaiacol | - | - | - | - | - | - |
n-nonadecane | - | - | - | - | - | - |
naphthalene | - | - | - | 1.04 | 1.14 | - |
alpha-bulnesene | - | - | - | 1.76 | 2.01 | - |
(E)-dihydro apofarnesal | - | - | - | - | - | 1.56 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Polat, H.E.; Zambi, O.; Güçer, Y.; Anli, A.S. Impact of Drip Irrigation with Recycled Wastewater on Aromatic Compound Composition in Capia Pepper (Capsicum annum L.). Sustainability 2024, 16, 4992. https://doi.org/10.3390/su16124992
Polat HE, Zambi O, Güçer Y, Anli AS. Impact of Drip Irrigation with Recycled Wastewater on Aromatic Compound Composition in Capia Pepper (Capsicum annum L.). Sustainability. 2024; 16(12):4992. https://doi.org/10.3390/su16124992
Chicago/Turabian StylePolat, Havva Eylem, Ozan Zambi, Yalçın Güçer, and Alper Serdar Anli. 2024. "Impact of Drip Irrigation with Recycled Wastewater on Aromatic Compound Composition in Capia Pepper (Capsicum annum L.)" Sustainability 16, no. 12: 4992. https://doi.org/10.3390/su16124992
APA StylePolat, H. E., Zambi, O., Güçer, Y., & Anli, A. S. (2024). Impact of Drip Irrigation with Recycled Wastewater on Aromatic Compound Composition in Capia Pepper (Capsicum annum L.). Sustainability, 16(12), 4992. https://doi.org/10.3390/su16124992