Circular Economy and Buildings as Material Banks in Mitigation of Environmental Impacts from Construction and Demolition Waste
Abstract
:1. Introduction
Research Objective and Contribution of this Article
2. Theoretical Review
2.1. Mitigation of Environmental Impacts of Construction and Demolition Waste
2.2. Circular Economy in Construction
2.3. Buildings as Material Banks
3. Materials and Methods
4. Results
4.1. Quantitative Analysis of Articles
4.2. Qualitative Analysis
5. Discussion
5.1. Methodologies Adopted in the Literature to Implement Buildings as Material Banks
5.2. Potential Applications of Buildings as Material Banks in Mitigating the Environmental Impacts of Construction and Demolition Waste
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kaza, S.; Yao, L.; Bhada-Tata, P.; Van Woerden, F. What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050, 1st ed.; World Bank: Washington, DC, USA, 2018; pp. 1–38. Available online: http://hdl.handle.net/10986/30317 (accessed on 14 May 2024).
- Associação Brasileira de Empresas de Limpeza Pública e Resíduos Especiais. Panorama Dos Resíduos Sólidos no Brasil, 1st ed.; ABRELPE: São Paulo, Brazil, 2022; pp. 1–64. Available online: https://abrelpe.org.br/download-panorama-2022/ (accessed on 14 May 2024).
- Cairns, S.; Ogden, M.; McFatridge, S. Getting to a Circular Economy: A Primer for Canadian Policymakers, 1st ed.; Smart Prosperity Institute: Ottawa, ON, Canada, 2018; pp. 1–34. Available online: https://institute.smartprosperity.ca/sites/default/files/spipolicybrief-circulareconomy.pdf (accessed on 14 May 2024).
- Ossio, F.; Salinas, C.; Hernández, H. Circular Economy in the Built Environment: A Systematic Literature Review and Definition of the Circular Construction Concept. J. Clean. Prod. 2023, 414, 137738. [Google Scholar] [CrossRef]
- Akanbi, L.A.; Oyedele, L.O.; Omoteso, K.; Bilal, M.; Akinade, O.O.; Ajayi, A.O.; Davila Delgado, J.M.; Owolabi, H.A. Disassembly and Deconstruction Analytics System (D-DAS) for Construction in a Circular Economy. J. Clean. Prod. 2019, 223, 386–396. [Google Scholar] [CrossRef]
- About BAMB. Available online: https://www.bamb2020.eu/about-bamb/ (accessed on 14 May 2024).
- Gepts, B.; Meex, E.; Nuyts, E.; Knapen, E.; Verbeeck, G. Existing Databases as Means to Explore the Potential of the Building Stock as Material Bank. In Proceedings of the SBE19 Brussels—BAMB-CIRCPATH “Buildings as Material Banks—A Pathway For A Circular Future”, Brussels, Belgium, 5–7 February 2019; IOP Conference Series: Earth and Environmental Science. IOP Publishing: Bristol, UK, 2019. [Google Scholar] [CrossRef]
- Kleemann, F.; Lederer, J.; Rechberger, H.; Fellner, J. GIS-Based Analysis of Vienna’s Material Stock in Buildings. J. Ind. Ecol. 2017, 21, 368–380. [Google Scholar] [CrossRef]
- Bean, F.; De, M.; Tsakiris, A.; Farrell, T.; Morgado, D.; Abergel, T.; Staniszewski, A.; Evans, M.; Yu -Pacific, S.; Lemmet, S.; et al. Global Status Report 2016: Towards Zero-Emission and Resilient Buildings, 1st ed.; UNEP: Nairobi, Kenya, 2016; pp. 1–32. Available online: https://wedocs.unep.org/handle/20.500.11822/10618 (accessed on 14 May 2024).
- Elbers, U. Ressourcenschonendes Bauen–Wege Und Strategien Der Tragwerksplanung. Bautechnik 2022, 99, 57–64. [Google Scholar] [CrossRef]
- Schützenhofer, S.; Kovacic, I.; Rechberger, H.; Mack, S. Improvement of Environmental Sustainability and Circular Economy through Construction Waste Management for Material Reuse. Sustainability 2022, 14, 11087. [Google Scholar] [CrossRef]
- Bogoviku, L.; Waldmann, D. Modelling of Mineral Construction and Demolition Waste Dynamics through a Combination of Geospatial and Image Analysis. J. Environ. Manag. 2021, 282, 14. [Google Scholar] [CrossRef]
- Política Nacional de Resíduos Sólidos. Available online: https://www.planalto.gov.br/ccivil_03/_ato2007-2010/2010/lei/l12305.htm (accessed on 14 May 2024).
- da Cunha, K.S.; Roberto, J.C.A.; Souto, S.P.; Lima, S.C. Resíduos Sólidos na Construção Civil no Brasil. Revista de Gestão e Secretariado 2023, 14, 8671–8692. [Google Scholar] [CrossRef]
- Angulo, S.C.; Oliveira, L.S.; Machado, L. Pesquisa Setorial ABRECON 2020: A Reciclagem de Resíduos de Construção e Demolição no Brasil, 1st ed.; Epusp: São Paulo, Brazil, 2022; pp. 1–102. Available online: https://doi.org/10.11606/9786589190103 (accessed on 14 May 2024).
- Paulino, R.S.; Lazari, C.H.; Miranda, L.F.R.; Vogt, V. Atualização do Cenário Da Reciclagem de Resíduos de Construção e Demolição No Brasil: 2008–2020. Ambiente Construído 2023, 23, 83–97. [Google Scholar] [CrossRef]
- Zhang, C.; Hu, M.; Di Maio, F.; Sprecher, B.; Yang, X.; Tukker, A. An Overview of the Waste Hierarchy Framework for Analyzing the Circularity in Construction and Demolition Waste Management in Europe. Sci. Total Environ. 2022, 803, 149892. [Google Scholar] [CrossRef]
- Gálvez-Martos, J.L.; Styles, D.; Schoenberger, H.; Zeschmar-Lahl, B. Construction and Demolition Waste Best Management Practice in Europe. Resour. Conserv. Recycl. 2018, 136, 166–178. [Google Scholar] [CrossRef]
- Heisel, F.; Rau-Oberhuber, S. Calculation and Evaluation of Circularity Indicators for the Built Environment Using the Case Studies of UMAR and Madaster. J. Clean. Prod. 2020, 243, 118482. [Google Scholar] [CrossRef]
- Aldebei, F.; Dombi, M. Mining the Built Environment: Telling the Story of Urban Mining. Buildings 2021, 11, 388. [Google Scholar] [CrossRef]
- Shojaei, A.; Ketabi, R.; Razkenari, M.; Hakim, H.; Wang, J. Enabling a Circular Economy in the Built Environment Sector through Blockchain Technology. J. Clean. Prod. 2021, 294, 126352. [Google Scholar] [CrossRef]
- Geissdoerfer, M.; Savaget, P.; Bocken, N.M.P.; Hultink, E.J. The Circular Economy–A New Sustainability Paradigm? J. Clean. Prod. 2017, 143, 757–768. [Google Scholar] [CrossRef]
- Potting, J.; Hekkert, M.P.; Worrell, E. Circular Economy: Measuring Innovation in the Product Chain, 1st ed.; PBL Netherlands Environmental Assessment Agency: The Hague, Brazil, 2017; pp. 1–47. Available online: https://www.researchgate.net/publication/319314335_Circular_Economy_Measuring_innovation_in_the_product_chain (accessed on 14 May 2024).
- Ababio, B.K.; Lu, W. Barriers and Enablers of Circular Economy in Construction: A Multi-System Perspective towards the Development of a Practical Framework. Constr. Manag. Econ. 2022, 41, 3–21. [Google Scholar] [CrossRef]
- Hentges, T.I.; Machado da Motta, E.A.; Valentin de Lima Fantin, T.; Moraes, D.; Fretta, M.A.; Pinto, M.F.; Spiering Böes, J. Circular Economy in Brazilian Construction Industry: Current Scenario, Challenges and Opportunities. Waste Manag. Res. 2022, 40, 642–653. [Google Scholar] [CrossRef] [PubMed]
- Mhatre, P.; Gedam, V.V.; Unnikrishnan, S.; Raut, R.D. Circular Economy Adoption Barriers in Built Environment- a Case of Emerging Economy. J. Clean. Prod. 2023, 392, 136201. [Google Scholar] [CrossRef]
- Kaewunruen, S.; Teuffel, P.; Donmez Cavdar, A.; Valta, O.; Tambovceva, T.; Bajare, D. Comparisons of Stakeholders’ Influences, Inter-Relationships, and Obstacles for Circular Economy Implementation on Existing Building Sectors. Sci. Rep. 2024, 14, 11046. [Google Scholar] [CrossRef] [PubMed]
- Charef, R. The Use of Building Information Modelling in the Circular Economy Context: Several Models and a New Dimension of BIM (8D). Clean. Eng. Technol. 2022, 7, 100414. [Google Scholar] [CrossRef]
- Arrigoni, A.; Zucchinelli, M.; Collatina, D.; Dotelli, G. Life Cycle Environmental Benefits of a Forward-Thinking Design Phase for Buildings: The Case Study of a Temporary Pavilion Built for an International Exhibition. J. Clean. Prod. 2018, 187, 974–983. [Google Scholar] [CrossRef]
- Giorgi, S.; Lavagna, M.; Campioli, A. LCA and LCC as Decision-Making Tools for a Sustainable Circular Building Process. In Proceedings of the SBE19—Resilient Built Environment for Sustainable Mediterranean Countries, Milan, Italy, 4–5 September 2019; IOP Conference Series: Earth and Environmental Science. IOP Publishing: Bristol, UK, 2019. [Google Scholar] [CrossRef]
- Guidetti, E.; Ferrara, M. Embodied Energy in Existing Buildings as a Tool for Sustainable Intervention on Urban Heritage. Sustain. Cities Soc. 2023, 88, 104284. [Google Scholar] [CrossRef]
- Ghisellini, P.; Ripa, M.; Ulgiati, S. Exploring Environmental and Economic Costs and Benefits of a Circular Economy Approach to the Construction and Demolition Sector. A Literature Review. J. Clean. Prod. 2018, 178, 618–643. [Google Scholar] [CrossRef]
- Bellini, A.; Andersen, B.; Klungseth, N.J.; Tadayon, A. Achieving a Circular Economy through the Effective Reuse of Construction Products: A Case Study of a Residential Building. J. Clean. Prod. 2024, 450, 141753. [Google Scholar] [CrossRef]
- Harala, L.; Alkki, L.; Aarikka-Stenroos, L.; Al-Najjar, A.; Malmqvist, T. Industrial Ecosystem Renewal towards Circularity to Achieve the Benefits of Reuse-Learning from Circular Construction. J. Clean. Prod. 2023, 389, 135885. [Google Scholar] [CrossRef]
- Furlan, C.; Mazzarella, C.; Arlati, A.; Arciniegas, G.; Obersteg, A.; Wandl, A.; Cerreta, M. Exploring a Geodesign Approach for Circular Economy Transition of Cities and Regions: Three European Cases. Cities 2024, 149, 104930. [Google Scholar] [CrossRef]
- Elghaish, F.; Matarneh, S.T.; Edwards, D.J.; Pour Rahimian, F.; El-Gohary, H.; Ejohwomu, O. Applications of Industry 4.0 Digital Technologies towards a Construction Circular Economy: Gap Analysis and Conceptual Framework. Constr. Innov. 2022, 22, 647–670. [Google Scholar] [CrossRef]
- de Tudela, A.R.P.; Rose, C.M.; Stegemann, J.A. Quantification of Material Stocks in Existing Buildings Using Secondary Data—A Case Study for Timber in a London Borough. Resour. Conserv. Recycl. X 2020, 5, 100027. [Google Scholar] [CrossRef]
- Racine, I.; Christofferson, C.; Sutt-Wiebe, N.; Cairns, S.; Patel, S.C.; Schoemer, M. Circular Economy Global Sector Best Practices Series: Background Materials for Circular Economy Sectoral Roadmaps, 1st ed.; Smart Prosperity Institute: Ottawa, ON, Canada, 2021; pp. 1–20. Available online: https://institute.smartprosperity.ca/BestPractices (accessed on 14 May 2024).
- Çetin, S.; De Wolf, C.; Bocken, N. Circular Digital Built Environment: An Emerging Framework. Sustainability 2021, 13, 6348. [Google Scholar] [CrossRef]
- Sanchez, B.; Haas, C. Capital Project Planning for a Circular Economy. Constr. Manag. Econ. 2018, 36, 303–312. [Google Scholar] [CrossRef]
- Bertin, I.; Mesnil, R.; Jaeger, J.M.; Feraille, A.; Le Roy, R. A BIM-Based Framework and Databank for Reusing Load-Bearing Structural Elements. Sustainability 2020, 12, 3147. [Google Scholar] [CrossRef]
- Hu, M.; Bergsdal, H.; Van Der Voet, E.; Huppes, G.; Muller, D.B. Dynamics of Urban and Rural Housing Stocks in China. Build. Res. Inf. 2010, 38, 301–317. [Google Scholar] [CrossRef]
- Marques, E.; Minarelli, G. Trajetória Do Estoque Residencial Formal–São Paulo, 2000/2020. urbe. Revista Brasileira de Gestão Urbana 2023, 15, e20220275. [Google Scholar] [CrossRef]
- Ortlepp, R.; Gruhler, K.; Schiller, G. Materials in Germany’s Domestic Building Stock: Calculation Model and Uncertainties. Build. Res. Inf. 2018, 46, 164–178. [Google Scholar] [CrossRef]
- Marin, J.; Alaerts, L.; Van Acker, K. A Materials Bank for Circular Leuven: How to Monitor ‘Messy’ Circular City Transition Projects. Sustainability 2020, 12, 10351. [Google Scholar] [CrossRef]
- Rose, C.M.; Stegemann, J.A. Characterising Existing Buildings as Material Banks (E-BAMB) to Enable Component Reuse. Proc. Inst. Civ. Eng. Eng. Sustain. 2018, 172, 129–140. [Google Scholar] [CrossRef]
- PRISMA 2020 Checklist. Available online: http://www.prisma-statement.org/documents/PRISMA_2020_checklist.pdf (accessed on 14 May 2024).
- Sampaio, R.F.; Mancini, M.C. Estudos de revisão sistemática: Um guia para síntese criteriosa da evidência científica. Rev. Bras. Fisioter 2007, 11, 83–89. [Google Scholar] [CrossRef]
- Hahladakis, J.N.; Purnell, P.; Aljabri, H.M.S.J. Assessing the Role and Use of Recycled Aggregates in the Sustainable Management of Construction and Demolition Waste via a Mini-Review and a Case Study. Waste Manag. Res. 2020, 38, 460–471. [Google Scholar] [CrossRef] [PubMed]
- Cristiano, S.; Ghisellini, P.; D’Ambrosio, G.; Xue, J.; Nesticò, A.; Gonella, F.; Ulgiati, S. Construction and Demolition Waste in the Metropolitan City of Naples, Italy: State of the Art, Circular Design, and Sustainable Planning Opportunities. J. Clean. Prod. 2021, 293, 125856. [Google Scholar] [CrossRef]
- Aslam, M.S.; Huang, B.; Cui, L. Review of Construction and Demolition Waste Management in China and USA. J. Environ. Manag. 2020, 264, 110445. [Google Scholar] [CrossRef] [PubMed]
- Osobajo, O.A.; Oke, A.; Omotayo, T.; Obi, L.I. A Systematic Review of Circular Economy Research in the Construction Industry. Smart Sustain. Built Environ. 2022, 11, 39–64. Available online: https://www.emerald.com/insight/publication/issn/2046-6099 (accessed on 14 May 2024). [CrossRef]
- Ferronato, N.; Fuentes Sirpa, R.C.; Guisbert Lizarazu, E.G.; Conti, F.; Torretta, V. Construction and Demolition Waste Recycling in Developing Cities: Management and Cost Analysis. Environ. Sci. Pollut. Res. 2023, 30, 24377–24397. [Google Scholar] [CrossRef]
- Schiller, G.; Gruhler, K.; Ortlepp, R. Continuous Material Flow Analysis Approach for Bulk Nonmetallic Mineral Building Materials Applied to the German Building Sector. J. Ind. Ecol. 2017, 21, 673–688. [Google Scholar] [CrossRef]
- Stephan, A.; Athanassiadis, A. Quantifying and Mapping Embodied Environmental Requirements of Urban Building Stocks. Build. Environ. 2017, 114, 187–202. [Google Scholar] [CrossRef]
- Lu, W.; Lou, J.; Webster, C.; Xue, F.; Bao, Z.; Chi, B. Estimating Construction Waste Generation in the Greater Bay Area, China Using Machine Learning. Waste Manag. 2021, 134, 78–88. [Google Scholar] [CrossRef] [PubMed]
- Rahla, K.M.; Mateus, R.; Bragança, L. Selection Criteria for Building Materials and Components in Line with the Circular Economy Principles in the Built Environment—A Review of Current Trends. Infrastructures 2021, 6, 49. [Google Scholar] [CrossRef]
- Augiseau, V.; Kim, E. Spatial Characterization of Construction Material Stocks: The Case of the Paris Region. Resour. Conserv. Recycl. 2021, 170, 105512. [Google Scholar] [CrossRef]
- Marinova, S.; Deetman, S.; van der Voet, E.; Daioglou, V. Global Construction Materials Database and Stock Analysis of Residential Buildings between 1970–2050. J. Clean. Prod. 2020, 247, 119146. [Google Scholar] [CrossRef]
- Gherman, I.-E.; Lakatos, E.-S.; Clinci, S.D.; Lungu, F.; Constandoiu, V.V.; Cioca, L.I.; Rada, E.C. Circularity Outlines in the Construction and Demolition Waste Management: A Literature Review. Recycling 2023, 8, 69. [Google Scholar] [CrossRef]
- Yuan, L.; Lu, W.; Xue, F.; Li, M. Building Feature-Based Machine Learning Regression to Quantify Urban Material Stocks: A Hong Kong Study. J. Ind. Ecol. 2023, 27, 336–349. [Google Scholar] [CrossRef]
- Mohammadiziazi, R.; Bilec, M.M. Building Material Stock Analysis Is Critical for Effective Circular Economy Strategies: A Comprehensive Review. Environ. Res. Infrastruct. Sustain. 2022, 2, 032001. [Google Scholar] [CrossRef]
- Küpfer, C.; Bertola, N.; Brütting, J.; Fivet, C. Decision Framework to Balance Environmental, Technical, Logistical, and Economic Criteria When Designing Structures With Reused Components. Front. Sustain. 2021, 2, 1–20. [Google Scholar] [CrossRef]
- Mollaei, A.; Bachmann, C.; Haas, C. Estimating the Recoverable Value of In-Situ Building Materials. Sustain. Cities Soc. 2023, 91, 104455. [Google Scholar] [CrossRef]
- Luciano, A.; Cutaia, L.; Cioffi, F.; Sinibaldi, C. Demolition and Construction Recycling Unified Management: The DECORUM Platform for Improvement of Resource Efficiency in the Construction Sector. Environ. Sci. Pollut. Res. 2021, 28, 24558–24569. [Google Scholar] [CrossRef]
- Nußholz, J.L.K.; Nygaard Rasmussen, F.; Milios, L. Circular Building Materials: Carbon Saving Potential and the Role of Business Model Innovation and Public Policy. Resour. Conserv. Recycl. 2019, 141, 308–316. [Google Scholar] [CrossRef]
- Meglin, R.; Kytzia, S.; Habert, G. Regional Circular Economy of Building Materials: Environmental and Economic Assessment Combining Material Flow Analysis, Input-Output Analyses, and Life Cycle Assessment. J. Ind. Ecol. 2022, 26, 562–576. [Google Scholar] [CrossRef]
- Malabi Eberhardt, L.C.; Rønholt, J.; Birkved, M.; Birgisdottir, H. Circular Economy Potential within the Building Stock-Mapping the Embodied Greenhouse Gas Emissions of Four Danish Examples. J. Build. Eng. 2021, 33, 101845. [Google Scholar] [CrossRef]
- Çimen, Ö. Construction and Built Environment in Circular Economy: A Comprehensive Literature Review. J. Clean. Prod. 2021, 305, 127180. [Google Scholar] [CrossRef]
- Honarvar, S.M.H.; Golabchi, M.; Ledari, M.B. Building Circularity as a Measure of Sustainability in the Old and Modern Architecture: A Case Study of Architecture Development in the Hot and Dry Climate. Energy Build. 2022, 275, 112469. [Google Scholar] [CrossRef]
- Eberhardt, L.C.M.; Birgisdóttir, H.; Birkved, M. Life Cycle Assessment of a Danish Office Building Designed for Disassembly. Build. Res. Inf. 2019, 47, 666–680. [Google Scholar] [CrossRef]
- Brambilla, G.; Lavagna, M.; Vasdravellis, G.; Castiglioni, C.A. Environmental Benefits Arising from Demountable Steel-Concrete Composite Floor Systems in Buildings. Resour. Conserv. Recycl. 2019, 141, 133–142. [Google Scholar] [CrossRef]
- Cinquepalmi, F.; Paris, S.; Pennacchia, E.; Tiburcio, V.A. Efficiency and Sustainability: The Role of Digitization in Re-Inhabiting the Existing Building Stock. Energies 2023, 16, 3613. [Google Scholar] [CrossRef]
- Munaro, M.R.; Tavares, S.F. Design for Adaptability and Disassembly: Guidelines for Building Deconstruction. Constr. Innov. 2023, 24, 1–23. [Google Scholar] [CrossRef]
- Nie, P.; Dahanayake, K.C.; Sumanarathna, N. Exploring UAE’s Transition towards Circular Economy through Construction and Demolition Waste Management in the Pre-Construction Stage–A Case Study Approach. Smart Sustain. Built Environ. 2023, 13, 1–21. [Google Scholar] [CrossRef]
- Melella, R.; Di Ruocco, G.; Sorvillo, A. Circular Construction Process: Method for Developing a Selective, Low Co2eq Disassembly and Demolition Plan. Sustainability 2021, 13, 8815. [Google Scholar] [CrossRef]
- Lausselet, C.; Urrego, J.P.F.; Resch, E.; Brattebø, H. Temporal Analysis of the Material Flows and Embodied Greenhouse Gas Emissions of a Neighborhood Building Stock. J. Ind. Ecol. 2021, 25, 419–434. [Google Scholar] [CrossRef]
- Santos, M.M.; Lanzinha, J.C.G.; Ferreira, A.V. Proposal for a Methodology for Sustainable Rehabilitation Strategies of the Existing Building Stock—The Ponte Gêa Neighborhood. Designs 2021, 5, 26. [Google Scholar] [CrossRef]
- Wu, P.Y.; Mjörnell, K.; Mangold, M.; Sandels, C.; Johansson, T. A Data-Driven Approach to Assess the Risk of Encountering Hazardous Materials in the Building Stock Based on Environmental Inventories. Sustainability 2021, 13, 7836. [Google Scholar] [CrossRef]
- Iodice, S.; Garbarino, E.; Cerreta, M.; Tonini, D. Sustainability Assessment of Construction and Demolition Waste Management Applied to an Italian Case. Waste Manag. 2021, 128, 83–98. [Google Scholar] [CrossRef]
- Tirado, R.; Aublet, A.; Laurenceau, S.; Thorel, M.; Louërat, M.; Habert, G. Component-Based Model for Building Material Stock and Waste-Flow Characterization: A Case in the Île-de-France Region. Sustainability 2021, 13, 13159. [Google Scholar] [CrossRef]
- Peng, Z.; Lu, W.; Webster, C. Identifying the Impacts of Trading Construction Waste across Jurisdictions: A Simulation of the Greater Bay Area, China, Using Non-Linear Optimization. Environ. Sci. Pollut. Res. 2023, 30, 46884–46899. [Google Scholar] [CrossRef]
- Schützenhofer, S.; Kovacic, I.; Rechberger, H. Assessment of Sustainable Use of Material Resources in the Architecture, Engineering and Construction Industry—A Conceptual Framework Proposal for Austria. J. Sustain. Dev. Energy Water Environ. Syst. 2022, 10, 1–21. [Google Scholar] [CrossRef]
- Yang, Y.; Guan, J.; Nwaogu, J.M.; Chan, A.P.C.; Chi, H.-L.; Luk, C.W.H. Attaining Higher Levels of Circularity in Construction: Scientometric Review and Cross-Industry Exploration. J. Clean. Prod. 2022, 375, 133934. [Google Scholar] [CrossRef]
- Volk, R.; Müller, R.; Reinhardt, J.; Schultmann, F. An Integrated Material Flows, Stakeholders and Policies Approach to Identify and Exploit Regional Resource Potentials. Ecol. Econ. 2019, 161, 292–320. [Google Scholar] [CrossRef]
- Li, S.; Rismanchi, B.; Aye, L. A Simulation-Based Bottom-up Approach for Analysing the Evolution of Residential Buildings’ Material Stocks and Environmental Impacts–A Case Study of Inner Melbourne. Appl. Energy 2022, 314, 118941. [Google Scholar] [CrossRef]
- Zandonella Callegher, C.; Grazieschi, G.; Wilczynski, E.; Oberegger, U.F.; Pezzutto, S. Assessment of Building Materials in the European Residential Building Stock: An Analysis at EU27 Level. Sustainability 2023, 15, 8840. [Google Scholar] [CrossRef]
- Arora, M.; Raspall, F.; Cheah, L.; Silva, A. Buildings and the Circular Economy: Estimating Urban Mining, Recovery and Reuse Potential of Building Components. Resour. Conserv. Recycl. 2020, 154, 1–8. [Google Scholar] [CrossRef]
- Oluleye, B.I.; Chan, D.W.M.; Antwi-Afari, P. Adopting Artificial Intelligence for Enhancing the Implementation of Systemic Circularity in the Construction Industry: A Critical Review. Sustain. Prod. Consum. 2023, 35, 509–524. [Google Scholar] [CrossRef]
- Norouzi, M.; Chàfer, M.; Cabeza, L.F.; Jiménez, L.; Boer, D. Circular Economy in the Building and Construction Sector: A Scientific Evolution Analysis. J. Build. Eng. 2021, 44, 102704. [Google Scholar] [CrossRef]
- Kovacic, I.; Honic, M.; Sreckovic, M. Digital Platform for Circular Economy in AEC Industry. Eng. Proj. Organ. J. 2020, 9, 1–16. [Google Scholar] [CrossRef]
- Honic, M.; Kovacic, I.; Rechberger, H. Improving the Recycling Potential of Buildings through Material Passports (MP): An Austrian Case Study. J. Clean. Prod. 2019, 217, 787–797. [Google Scholar] [CrossRef]
- Mercader-Moyano, P.; Camporeale, P.E.; López-López, J. A Construction and Demolition Waste Management Model Applied to Social Housing to Trigger Post-Pandemic Economic Recovery in Mexico. Waste Manag. Res. 2022, 40, 1027–1038. [Google Scholar] [CrossRef]
- Zatta, E.; Condotta, M. Assessing the Sustainability of Architectural Reclamation Processes: An Evaluation Procedure for the Early Design Phase. Build. Res. Inf. 2023, 51, 21–38. [Google Scholar] [CrossRef]
- Rakhshan, K.; Morel, J.C.; Alaka, H.; Charef, R. Components Reuse in the Building Sector–A Systematic Review. Waste Manag. Res. 2020, 38, 347–370. [Google Scholar] [CrossRef] [PubMed]
- Medina, E.M.; Fu, F. A New Circular Economy Framework for Construction Projects. Proc. Inst. Civ. Eng. Eng. Sustain. 2021, 174, 304–315. [Google Scholar] [CrossRef]
- Berge, S.; von Blottnitz, H. An Estimate of Construction and Demolition Waste Quantities and Composition Expected in South Africa. S. Afr. J. Sci. 2022, 118, 12485. [Google Scholar] [CrossRef] [PubMed]
- Ferronato, N.; Guisbert Lizarazu, G.E.; Gorritty Portillo, M.A.; Moresco, L.; Conti, F.; Torretta, V. Environmental Assessment of Construction and Demolition Waste Recycling in Bolivia: Focus on Transportation Distances and Selective Collection Rates. Waste Manag. Res. 2022, 40, 793–805. [Google Scholar] [CrossRef] [PubMed]
- Verhagen, T.J.; Sauer, M.L.; van der Voet, E.; Sprecher, B. Matching Demolition and Construction Material Flows, an Urban Mining Case Study. Sustainability 2021, 13, 653. [Google Scholar] [CrossRef]
- Illankoon, C.; Vithanage, S.C. Closing the Loop in the Construction Industry: A Systematic Literature Review on the Development of Circular Economy. J. Build. Eng. 2023, 76, 107362. [Google Scholar] [CrossRef]
- Ramos, M.; Martinho, G.; Pina, J. Strategies to Promote Construction and Demolition Waste Management in the Context of Local Dynamics. Waste Manag. 2023, 162, 102–112. [Google Scholar] [CrossRef] [PubMed]
- Ding, Z.; Wen, X.; Zuo, J.; Chen, Y. Determinants of Contractor’s Construction and Demolition Waste Recycling Intention in China: Integrating Theory of Planned Behavior and Norm Activation Model. Waste Manag. 2023, 161, 213–224. [Google Scholar] [CrossRef]
- Véliz, K.D.; Ramírez-Rodríguez, G.; Ossio, F. Willingness to Pay for Construction and Demolition Waste from Buildings in Chile. Waste Manag. 2022, 137, 222–230. [Google Scholar] [CrossRef]
- Nunes, K.R.A.; Mahler, C.F. Comparison of Construction and Demolition Waste Management between Brazil, European Union and USA. Waste Manag. Res. 2020, 38, 415–422. [Google Scholar] [CrossRef] [PubMed]
- Joensuu, T.; Edelman, H.; Saari, A. Circular Economy Practices in the Built Environment. J. Clean. Prod. 2020, 276, 124215. [Google Scholar] [CrossRef]
- Meglin, R.; Kytzia, P.S.; Habert, P.G. Regional Environmental-Economic Assessment of Building Materials to Promote Circular Economy: Comparison of Three Swiss Cantons. Resour. Conserv. Recycl. 2022, 181, 106247. [Google Scholar] [CrossRef]
- Arora, M.; Raspall, F.; Fearnley, L.; Silva, A. Urban Mining in Buildings for a Circular Economy: Planning, Process and Feasibility Prospects. Resour. Conserv. Recycl. 2021, 174, 105754. [Google Scholar] [CrossRef]
- Mian, S.H.; Salah, B.; Ameen, W.; Moiduddin, K.; Alkhalefah, H. Adapting Universities for Sustainability Education in Industry 4.0: Channel of Challenges and Opportunities. Sustainability 2020, 12, 6100. [Google Scholar] [CrossRef]
- Moutinho, J. da A.; Fernandes, G.; Rabechini, R. Evaluation in Design Science: A Framework to Support Project Studies in the Context of University Research Centres. Eval. Program Plan. 2024, 102, 102366. [Google Scholar] [CrossRef]
Criteria | Description |
---|---|
CI1 | Materials for Construction Bank |
CI2 | Construction Circular Economy |
CI3 | Management of construction and demolition components and waste |
CI4 | End-of-life management of building stock |
CI5 | Studies on design and construction of residential, commercial, or industrial buildings |
CE1 | Does not study the construction industry |
CE2 | Does not study the management of construction and demolition components and waste |
CE3 | Studies on energy efficiency and water consumption in buildings and cities |
CE4 | Performance assessments of specific waste and materials |
Strengths |
ST1: recycled aggregates |
ST2: Design strategies for “x” |
ST3: Promotes urban mining and the circulation of construction products |
ST4: Savings in the extraction of natural resources and carbon emissions |
ST5: Sustainable urban planning tool |
ST6: Selection of more efficient materials |
ST7: Dry, prefabricated, and modular constructions, with mechanical connections |
ST8: Selective deconstruction |
ST9: Global building sustainability assessment |
ST10: Promotes industrial symbiosis |
ST11: Strengthens local businesses to reuse components |
ST12: Reduced construction costs by using more circular materials |
ST13: Reduces land use consumption for landfills |
ST14: Adaptive reuse of buildings |
Weaknesses |
WK1: Unavailability of accurate data on construction materials and components |
WK2: Operating costs for deconstructing and maintaining databases |
WK3: Difficulty in transportation, logistics and narrow gap of use |
WK4: Residual Performance Characterization and Hazardous Waste Screening |
WK5: Waste underreporting |
WK6: Lack of standardized methodologies for quantifying and evaluating the environmental impact of CDW |
WK7: High prices and low profitability of using secondary materials |
WK8: High rates of recycling losses |
WK9: Low capacity to meet demand for materials with secondary materials |
WK10: Concrete structures |
WK11: Lack of regulation for reused materials |
WK12: Need to incorporate other materials to reuse recovered |
Opportunities |
OP1: Material and waste management with support from BIM |
OP2: Using Industry 4.0 technologies to promote circular construction |
OP3: Policies and enforcement of targets for value-added reduction, reuse, and recycling (upcycling), along with tax incentives for companies that meet targets |
OP4: Use of GIS systems, automated cadastral information systems and remote sensing |
OP5: Open and regulated digital platforms for management of construction, demolition, recycling, and commercialization of secondary materials |
OP6: Assessment, creation, and investment in local business models for CDW management |
OP7: Material passport |
OP8: Use of LCA to evaluate the impacts of production, replacement, and final disposal of components |
OP9: Industrial urban symbiosis |
OP10: Green public contracts |
OP11: Creation of new jobs |
OP12: Development of technologies for collection, transport, and processing of CDW |
OP13: Involvement of interested parties in the formulation of policies and analysis of material flow scenarios |
OP14: Encouragement of research and training in the areas of waste management and circular economy |
OP15: Public-Private Partnerships |
OP16: Pre-deconstructive audit protocols accessible to the initial design phase |
OP17: Product-service systems (material leasing) |
OP18: High cost and low availability of landfills for CDW disposal |
OP19: Identification of customer segments that value products with a lower environmental impact |
OP20: Smart cities |
OP21: Use of components in popular housing |
Threats |
TH1: Low cost of primary materials |
TH2: Market restrictions on the use of secondary materials |
TH3: Lack of regulation and supervision over CDW management |
TH4: Lack of support for LCA tools for managing the impacts of long-term reuse |
TH5: Lack of concern about scarcity of resources |
TH6: Uncertainty about the quality of secondary products |
TH7: Profit-oriented and change-resistant nature of the construction industry |
TH8: Uneven waste management policies around the world |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliveira, J.d.; Schreiber, D.; Jahno, V.D. Circular Economy and Buildings as Material Banks in Mitigation of Environmental Impacts from Construction and Demolition Waste. Sustainability 2024, 16, 5022. https://doi.org/10.3390/su16125022
Oliveira Jd, Schreiber D, Jahno VD. Circular Economy and Buildings as Material Banks in Mitigation of Environmental Impacts from Construction and Demolition Waste. Sustainability. 2024; 16(12):5022. https://doi.org/10.3390/su16125022
Chicago/Turabian StyleOliveira, Jordana de, Dusan Schreiber, and Vanusca Dalosto Jahno. 2024. "Circular Economy and Buildings as Material Banks in Mitigation of Environmental Impacts from Construction and Demolition Waste" Sustainability 16, no. 12: 5022. https://doi.org/10.3390/su16125022
APA StyleOliveira, J. d., Schreiber, D., & Jahno, V. D. (2024). Circular Economy and Buildings as Material Banks in Mitigation of Environmental Impacts from Construction and Demolition Waste. Sustainability, 16(12), 5022. https://doi.org/10.3390/su16125022