Towards Sustainable Industry: A Comprehensive Review of Energy–Economy–Environment System Analysis and Future Trends
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Procedure
2.2. Data Analysis
3. Industry 3E System Bibliometric Analysis
4. Industry 3E Research Trends
4.1. Main Research Object of Industry 3E
4.2. Main Research Purpose of Industrial 3E
4.3. Main Research Methods of Industrial 3E
5. Future Research Prospects of Industry 3E
5.1. The Areas in Future Industrial 3E Research
5.2. Industry 3E Methodology Innovation
5.3. Expansion of Industry 3E Research Scale
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Donoghue, S.; Oordt, V.C.; Strydom, N. Consumers’ subjective and objective consumerism knowledge and subsequent complaint behaviour concerning consumer electronics: A South African perspective. Int. J. Consum. Stud. 2016, 40, 385–399. [Google Scholar] [CrossRef]
- Li, Y.; Lim, K.M.; Hu, J.Y.; Tseng, L.M. Investigating the effect of carbon tax and carbon quota policy to achieve low carbon logistics operations. Resour. Conserv. Recycl. 2020, 154, 104535. [Google Scholar] [CrossRef]
- Wianwiwat, S.; Asafu-Adjaye, J. Modelling the promotion of biomass use: A case study of Thailand. Energy 2010, 36, 1735–1748. [Google Scholar] [CrossRef]
- Barsky, B.R.; Kilian, L. Oil and the Macroeconomy since the 1970s. J. Econ. Perspect. 2004, 18, 115–134. [Google Scholar] [CrossRef]
- Warr, B.; Ayres, R. Evidence of causality between the quantity and quality of energy consumption and economic growth. Energy 2009, 35, 1688–1693. [Google Scholar] [CrossRef]
- Aranya, V.; Paulina, J.; Michael, W.G. Implications of near-term coal power plant retirement for SO2 and NOX and life cycle GHG emissions. Environ. Sci. Technol. 2012, 46, 9838–9845. [Google Scholar] [CrossRef] [PubMed]
- Freitas, C.L.; Kaneko, S. Decomposition of CO2 Emissions Change from Energy Consumption in Brazil: Challenges and Policy Implications. Energy Policy 2011, 39, 1495–1504. [Google Scholar] [CrossRef]
- Liu, Y.Q.; Zhang, J.C.; Zhu, Z.S.; Zhao, G.H. Impacts of the 3E (economy, energy and environment) coordinated development on energy mix in China: The multi-objective optimisation perspective. Struct. Chang. Econ. Dyn. 2019, 50, 56–64. [Google Scholar] [CrossRef]
- Tiba, S.; Omri, A. Literature survey on the relationships between energy, environment and economic growth. Renew. Sustain. Energy Rev. 2016, 69, 1129–1146. [Google Scholar] [CrossRef]
- Yonghun, J.; Hoon, S.L. Electrification and productivity growth in Korean manufacturing plants. Energy Econ. 2014, 45, 333–339. [Google Scholar] [CrossRef]
- Ang, B.J. CO2 emissions, energy consumption and output in France. Energy Policy 2007, 35, 4772–4778. [Google Scholar] [CrossRef]
- Apergis, N.; Payne, E.J. Renewable energy, output, CO2 emissions, and fossil fuel prices in Central America: Evidence from a non linear panel smooth transition vector error correction model. Energy Econ. 2014, 42, 226–232. [Google Scholar] [CrossRef]
- Kasman, A.; Duman, S.Y. CO2 emissions, economic growth, energy consumption, trade and urbanization in new EU member and candidate countries: A panel data analysis. Econ. Model. 2015, 44, 97–103. [Google Scholar] [CrossRef]
- Chen, W.H.; Lei, Y.L. The impacts of renewable energy and technological innovation on environment-energy-growth nexus: New evidence from a panel quantile regression. Renew. Energy 2018, 123, 1–14. [Google Scholar] [CrossRef]
- Rajesh, S.; Muhammad, S.; Pradeep, K.; Vinh, X.V. Does energy consumption reinforce environmental pollution? Evidence from emerging Asian economies. J. Environ. Manag. 2021, 297, 113272. [Google Scholar] [CrossRef] [PubMed]
- Wen, J.; Nafeesa, M.; Zhao, J.; Shahzad, M.S.; Gniewko, N.; Vipin, J.; Ahsan, A. Does globalization matter for environmental degradation? Nexus among energy consumption, economic growth, and carbon dioxide emission. Energy Policy 2021, 153, 112230. [Google Scholar] [CrossRef]
- Li, K.; Lin, B.Q. Impacts of urbanization and industrialization on energy consumption/CO2 emissions: Does the level of development matter? Renew. Sustain. Energy Rev. 2015, 52, 1107–1122. [Google Scholar] [CrossRef]
- Zhao, J.; Zhao, Z.R.; Zhang, H. The impact of growth, energy and financial development on environmental pollution in China: New evidence from a spatial econometric analysis. Energy Econ. 2021, 93, 104506. [Google Scholar] [CrossRef]
- Paramati, R.S.; Mo, D.; Huang, H. The role of financial deepening and green technology on carbon emissions: Evidence from major OECD economies. Financ. Res. Lett. 2021, 41, 101794. [Google Scholar] [CrossRef]
- He, Y.X.; Xie, C. Internal adjustment and digital transformation of intermediate inputs: Economic performance and environmental effects. J. Clean. Prod. 2023, 419, 138155. [Google Scholar] [CrossRef]
- Oliveira, C.; Antunes, H.C. A multiple objective model to deal with economy–energy–environment interactions. Eur. J. Oper. Res. 2004, 153, 370–385. [Google Scholar] [CrossRef]
- Zhang, S.; Yu, Y.D.; Kharrazi, A.; Ren, H.B.; Ma, T.J. Quantifying the synergy and trade-offs among economy–energy–environment–social targets: A perspective of industrial restructuring. J. Environ. Manag. 2022, 316, 115285. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.S.; Ning, S. Dynamic assessment of urban economy-environment-energy system using system dynamics model: A case study in Beijing. Environ. Res. 2018, 164, 70–84. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.T.; Chai, J.; Lu, Q.Y.; Zheng, J.T.; Wang, S.Y. The impact of China’s low-carbon transition on economy, society and energy in 2030 based on CO2 emissions drivers. Energy 2022, 239, 122336. [Google Scholar] [CrossRef]
- Lu, Y.L.; Zhang, Y.Q.; Cao, X.H.; Wang, C.C.; Wang, Y.C.; Zhang, M.; Ferrier, R.C.; Jenkins, A.; Yuan, J.J.; Bailey, M.J.; et al. Forty years of reform and opening up: China’s progress toward a sustainable path. Sci. Adv. 2019, 5, 9413. [Google Scholar] [CrossRef] [PubMed]
- Shahbaz, M.; Khraief, N.; Uddin, S.G.; Ozturk, I. Environmental Kuznets curve in an open economy: A bounds testing and causality analysis for Tunisia. Renew. Sustain. Energy Rev. 2014, 34, 325–336. [Google Scholar] [CrossRef]
- Akalpler, E.; Hove, S. Carbon emissions, energy use, real GDP per capita and trade matrix in the Indian economy-an ARDL approach. Energy 2019, 168, 1081–1093. [Google Scholar] [CrossRef]
- Liu, J.G.; Kong, Y.D.; Li, S.J.; Wu, J.J. Sustainability assessment of port cities with a hybrid model-empirical evidence from China. Sustain. Cities Soc. 2021, 75, 103301. [Google Scholar] [CrossRef]
- Oliveira, C.; Antunes, H.C. A multi-objective multi-sectoral economy-energy-environment model: Application to Portugal. Energy 2011, 36, 2856–2866. [Google Scholar] [CrossRef]
- Mazur, A. Does increasing energy or electricity consumption improve quality of life in industrial nations? Energy Policy 2011, 39, 2568–2572. [Google Scholar] [CrossRef]
- Wing, S.I. The synthesis of bottom-up and top-down approaches to climate policy modeling: Electric power technologies and the cost of limiting US CO2 emissions. Energy Policy 2006, 34, 3847–3869. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, X.; Wang, W.W.; Zhou, M. Decomposition analysis of CO2 emissions from electricity generation in China. Energy Policy 2013, 52, 159–165. [Google Scholar] [CrossRef]
- Mehrara, M. Energy consumption and economic growth: The case of oil exporting countries. Energy Policy 2007, 35, 2939–2945. [Google Scholar] [CrossRef]
- Guo, Q.R.; Abbas, S.; AbdulKareem, K.K.H.; Shuaibu, S.M.; Khudoykulov, K.; Sinha, A. Devising strategies for sustainable development in sub-Saharan Africa: The roles of renewable, non-renewable energy, and natural resources. Energy 2023, 284, 128713. [Google Scholar] [CrossRef]
- Njindan, B.I. Climate change, energy security risk, and clean energy investment. Energy Econ. 2024, 129, 107225. [Google Scholar] [CrossRef]
- Phillis, Y.A.; Kouikoglou, V.S.; Verdugo, C. Urban sustainability assessment and ranking of cities. Comput. Environ. Urban Syst. 2017, 64, 254–265. [Google Scholar] [CrossRef]
- Akkemik, A.K.; Göksal, K.; Li, J. Energy consumption and income in Chinese provinces: Heterogeneous panel causality analysis. Appl. Energy 2012, 99, 445–454. [Google Scholar] [CrossRef]
- Vicente, E.; Cecilio, T. Threshold cointegration and nonlinear adjustment between CO and income: The Environmental Kuznets Curve in Spain, 1857–2007. Energy Econ. 2012, 34, 2148–2156. [Google Scholar] [CrossRef]
- Liang, X.D.; Si, D.Y.; Zhang, X.L. Regional sustainable development analysis based on information entropy—Sichuan province as an example. Int. J. Environ. Res. Public Health 2017, 14, 1219. [Google Scholar] [CrossRef]
- Wang, Q.S.; Xu, Z.P.; Qian, Y.; Yuan, X.L.; Zuo, J.; Song, Y.Z.; Wang, M.S. Evaluation and countermeasures of sustainable development for urban energy-economy-environment system: A case study of Jinan in China. Sustain. Dev. 2020, 28, 1663–1677. [Google Scholar] [CrossRef]
- Kilkis, S. Sustainable development of energy, water and environment systems index for southeast European cities. J. Clean. Prod. 2016, 130, 222–234. [Google Scholar] [CrossRef]
- Guan, D.J.; Gao, W.J.; SU, W.C.; Li, H.F.; Hokao, K. Modeling and dynamic assessment of urban economy-resource-environment system with a coupled system dynamics-geographic information system model. Ecol. Indic. 2011, 11, 1333–1344. [Google Scholar] [CrossRef]
- Zhu, B.Z.; Jiang, M.X.; Wang, K.F.; Chevallier, J.; Wang, P.; Wei, Y.M. On the road to China’s 2020 carbon intensity target from the perspective of “double control”. Energy Policy 2018, 119, 377–387. [Google Scholar] [CrossRef]
- Duan, H.B.; Zhou, S.; Jiang, K.J.; Christoph, B.; Mathijs, H.; Elmar, K.; van Vuuren, D.P.; Wang, S.Y.; Shinichiro, F.; Massimo, T.; et al. Assessing China’s efforts to pursue the 1.5 °C warming limit. Science 2021, 372, 378–385. [Google Scholar] [CrossRef]
- Jaganath, B.; Kumar, A.M. Renewable and non-renewable energy consumption and economic growth in G7 countries: Evidence from panel autoregressive distributed lag (P-ARDL) model. Int. Econ. Econ. Policy 2020, 17, 241–258. [Google Scholar] [CrossRef]
- Xie, P.J.; Li, H.; Sun, F.H.; Tian, H.Z. Analysis of the dependence of economic growth on electric power input and its influencing factors in China. Energy Policy 2021, 158, 112528. [Google Scholar] [CrossRef]
- Xu, M.Y.; Chen, C.T.; Deng, X.Y. Systematic analysis of the coordination degree of China’s economy-ecological environment system and its influencing factor. Environ. Sci. Pollut. Res. Int. 2019, 26, 29722–29735. [Google Scholar] [CrossRef] [PubMed]
- Shen, L.Y.; Huang, Y.L.; Huang, Z.H.; Lou, Y.L.; Ye, G.; Wong, S.W. Improved coupling analysis on the coordination between socio-economy and carbon emission. Ecol. Indic. 2018, 94, 357–366. [Google Scholar] [CrossRef]
- Sun, Q.; Zhang, X.H.; Zhang, H.W.; Niu, H.P. Coordinated development of a coupled social economy and resource environment system: A case study in Henan province, China. Environ. Dev. Sustain. 2018, 20, 1385–1404. [Google Scholar] [CrossRef]
- Dong, Q.; Zhong, K.Y.; Liao, Y.J.; Xiong, R.L.; Wang, F.B.; Pang, M. Coupling coordination degree of environment, energy, and economic growth in resource-based provinces of China. Resour. Policy 2023, 81, 103308. [Google Scholar] [CrossRef]
- Li, W.W.; Yi, P.T.; Zhang, D.N.; Zhou, Y. Assessment of coordinated development between social economy and ecological environment: Case study of resource-based cities in Northeastern China. Sustain. Cities Soc. 2020, 59, 102208. [Google Scholar] [CrossRef]
- Hondroyiannis, G.; Lolos, S.; Papapetrou, E. Energy consumption and economic growth: Assessing the evidence from Greece. Energy Econ. 2002, 24, 319–336. [Google Scholar] [CrossRef]
- Xue, B.; Chen, X.P.; Geng, Y.; Guo, X.J.; Lu, C.P.; Zhang, Z.L.; Lu, C.Y. Survey of officials’ awareness on circular economy development in China: Based on municipal and county level. Resour. Conserv. Recycl. 2010, 54, 1296–1302. [Google Scholar] [CrossRef]
- Lu, X.; Xue, M.G.; Hu, M.S. Dynamic simulation and assessment of the coupling coordination degree of the economy–resource–environment system: Case of Wuhan city in China. J. Environ. Manag. 2019, 230, 474–487. [Google Scholar] [CrossRef] [PubMed]
- Jiang, B.; Ding, L.; Fang, X.J. Sustainable development of new urbanization from the perspective of coordination: A new complex system of Urbanization-Technology innovation and the atmospheric environment. Atmosphere 2019, 10, 652. [Google Scholar] [CrossRef]
- McCann, P. Sketching Out a Model of Innovation, Face-to-face Interaction and Economic Geography. Spat. Econ. Anal. 2007, 2, 117–134. [Google Scholar] [CrossRef]
- Fang, G.C.; Wang, Q.L.; Tian, L.X. Green development of Yangtze River Delta in China under Population-Resources-Environment-Development-Satisfaction perspective. Sci. Total Environ. 2020, 727, 138710. [Google Scholar] [CrossRef]
- Yang, Y.L.; Kong, J.; Yang, L.; Yang, Z.W. Sequential Big Data-Based Macroeconomic Forecast for Industrial Value Added. Commun. Math. Stat. 2019, 7, 445–457. [Google Scholar] [CrossRef]
- Liu, X.R.; Guo, W. Dynamic nonlinear effects of urbanization on wastewater discharge based on inertial characteristics of wastewater discharge. Sci. Total Environ. 2023, 904, 166514. [Google Scholar] [CrossRef]
- Liu, K.; Lin, B.Q. Research on influencing factors of environmental pollution in China: A spatial econometric analysis. J. Clean. Prod. 2019, 206, 356–364. [Google Scholar] [CrossRef]
- Guo, M.J.; Meng, J. Exploring the driving factors of carbon dioxide emission from transport sector in Beijing-Tianjin-Hebei region. J. Clean. Prod. 2019, 226, 692–705. [Google Scholar] [CrossRef]
- Nain, Z.M.; Ahmad, W.; Kamaiah, B. Economic growth, energy consumption and CO2 emissions in India: A disaggregated causal analysis. Int. J. Sustain. Energy 2017, 36, 807–824. [Google Scholar] [CrossRef]
- Miketa, A.; Mulder, P. Energy productivity across developed and developing countries in 10 manufacturing sectors: Patterns of growth and convergence. Energy Econ. 2005, 27, 429–453. [Google Scholar] [CrossRef]
- Chu, L.; Grafton, Q.R.; Keenan, R. Increasing Conservation Efficiency While Maintaining Distributive Goals With the Payment for Environmental Services. Ecol. Econ. 2019, 156, 202–210. [Google Scholar] [CrossRef]
- He, C.Y.; Liu, Z.F.; Wu, J.G.; Pan, X.H.; Fang, Z.H.; Li, J.W.; Bryan, B.A. Future global urban water scarcity and potential solutions. Nat. Commun. 2021, 12, 4667. [Google Scholar] [CrossRef] [PubMed]
- Bateman, J.I.; Mace, M.G. The natural capital framework for sustainably efficient and equitable decision making. Nat. Sustain. 2020, 3, 776–783. [Google Scholar] [CrossRef]
- Englert, N. Fine particles and human health—A review of epidemiological studies. Toxicol. Lett. 2004, 149, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Calvert, K. From ‘energy geography’ to ‘energy geographies’. Prog. Hum. Geogr. 2015, 40, 105–125. [Google Scholar] [CrossRef]
- Carvalho, D.L.A.; Antunes, H.C.; Freire, F.; Henriques, C. A hybrid input–output multi-objective model to assess economic–energy–environment trade-offs in Brazil. Energy 2015, 82, 769–785. [Google Scholar] [CrossRef]
- Nisar, A.; Aghdam, R.F.; Irfan, B.; Amjad, A. Citation-based systematic literature review of energy-growth nexus: An overview of the field and content analysis of the top 50 influential papers. Energy Econ. 2020, 86, 104642. [Google Scholar]
- Odhiambo, M.N. Energy Consumption And Economic Growth Nexus In Tanzania: An Ardl Bounds Testing Approach. Energy Policy 2009, 37, 617–622. [Google Scholar] [CrossRef]
- Matus, K.; Nam, K.M.; Selin, N.E.; Lamsal, L.N.; Reilly, J.M.; Paltsev, S. Health damages from air pollution in China. Glob. Environ. Chang. 2012, 22, 55–66. [Google Scholar] [CrossRef]
- Jeon, J.; Lee, J.H.; Seo, J.; Jeong, S.J.; Kim, S. Application of PCM thermal energy storage system to reduce building energy consumption. J. Therm. Anal. Calorim. 2013, 111, 279–288. [Google Scholar] [CrossRef]
- Basty, R.; Celik, A.; Said, H. The Academic Discipline of Information Technology: A Systematic Literature Review. Issues Informing Sci. Inf. Technol. 2023, 20, 1–23. [Google Scholar] [CrossRef]
- Kaufmann, K.R. The Mechanisms for Autonomous Energy Efficiency Increases: A Cointegration Analysis of the US Energy/GDP Ratio. Energy J. 2004, 25, 63–86. [Google Scholar] [CrossRef]
- Riep, R.J.; Akanbi, K.; Said, H. The Role of the Discipline of Information Technology: A Systematic Literature Review. Issues Informing Sci. Inf. Technol. 2023, 20, 23–38. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Li, X.; Zhao, J.S.; Kang, X.Y.; Liu, L.; Wang, M.X.; Wu, C.F. Coupling and coordinated evolution characteristics of regional economy-energy-carbon emission multiple systems: A case study of main China’s Basin. J. Environ. Sci. 2023, 140, 204–218. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; David, R.H.; Wang, C.; Cai, W.J. China’s income gap and inequality under clean energy transformation: A CGE model assessment. J. Clean. Prod. 2020, 251, 119626. [Google Scholar] [CrossRef]
- Wu, L.; Zhang, Z.G. Impact and threshold effect of Internet technology upgrade on forestry green total factor productivity: Evidence from China. J. Clean. Prod. 2020, 271, 122657. [Google Scholar] [CrossRef]
- Dusyk, N.; Berkhout, T.; Burch, S.; Coleman, S.; Robinson, J. Transformative energy efficiency and conservation: A sustainable development path approach in British Columbia, Canada. Energy Effic. 2009, 2, 387–400. [Google Scholar] [CrossRef]
- Kevork, S.I.; Pange, J.; Tzeremes, P. Estimating Malmquist productivity indexes using probabilistic directional distances: An application to the European banking sector. Eur. J. Oper. Res. 2017, 261, 1125–1140. [Google Scholar] [CrossRef]
- Nadejda, V.; Christopher, N.; Charles, Z. The U.S. power sector decarbonization: Investigating technology options with MARKAL nine-region model. Energy Econ. 2018, 73, 410–425. [Google Scholar] [CrossRef]
- Ma, X.J.; Wang, Y.; Wang, C. Low-carbon development of China’s thermal power industry based on an international comparison: Review, analysis and forecast. Renew. Sustain. Energy Rev. 2017, 80, 942–970. [Google Scholar] [CrossRef]
- Naughten, B. Economic assessment of combined cycle gas turbines in Australia. Energy Policy 2003, 31, 225–245. [Google Scholar] [CrossRef]
- Hamed, A.T.; Bressler, L. Energy security in Israel and Jordan: The role of renewable energy sources. Renew. Energy 2019, 135, 378–389. [Google Scholar] [CrossRef]
- Liang, Q.M.; Wei, Y.M. Distributional impacts of taxing carbon in China: Results from the CEEPA model. Appl. Energy 2012, 92, 545–551. [Google Scholar] [CrossRef]
- Liang, Q.M.; Wei, Y.M.; Fan, Y. The effect of energy end-use efficiency improvement on China’s energy use and CO2 emissions: A CGE model-based analysis. Energy Effic. 2009, 2, 243–262. [Google Scholar] [CrossRef]
- Xu, Z.W.; Wen, Q.; Zhang, T. Trade policy and air pollution: Evidence from the adjustment of the export tax rebate in China. Econ. Model. 2023, 128, 106497. [Google Scholar] [CrossRef]
- Jiang, H.D.; Hao, W.T.; Xu, Q.Y.; Liang, Q.M. Socio-economic and environmental impacts of the iron ore resource tax reform in China: A CGE-based analysis. Resour. Policy 2020, 68, 101775. [Google Scholar] [CrossRef]
- Jiang, H.D.; Liu, L.J.; Dong, K.Y.; Fu, Y.W. How will sectoral coverage in the carbon trading system affect the total oil consumption in China: A CGE-based analysis. Energy Econ. 2022, 110, 105996. [Google Scholar] [CrossRef]
- Chappin, E.; Dijkema, G. On the impact of CO2 emission-trading on power generation emissions. Technol. Forecast. Soc. Chang. 2009, 76, 358–370. [Google Scholar] [CrossRef]
- Cuce, E.; Cuce, M.P.; Wood, J.C.; Riffat, S.B. Optimizing insulation thickness and analysing environmental impacts of aerogel-based thermal superinsulation in buildings. Energy Build. 2014, 77, 28–39. [Google Scholar] [CrossRef]
- Zeng, M.; Zhang, K.; Dong, J. Overall review of China’s wind power industry: Status quo, existing problems and perspective for future development. Renew. Sustain. Energy Rev. 2013, 24, 379–386. [Google Scholar] [CrossRef]
- Wang, K.; Wang, C.; Chen, J.N. Analysis of the economic impact of different Chinese climate policy options based on a CGE model incorporating endogenous technological change. Energy Policy 2009, 37, 2930–2940. [Google Scholar] [CrossRef]
- El-Emam, S.R.; Dincer, I. Energy and exergy analyses of a combined molten carbonate fuel cell-Gas turbine system. Int. J. Hydrogen Energy 2011, 36, 8927–8935. [Google Scholar] [CrossRef]
- Han, Q.; Zhou, Y. The Relation between Energy, Economy and Environment in China’s Industrial Sector: Based on Energy Saving. Int. J. Online Eng. Ijoe 2013, 9, 49. [Google Scholar] [CrossRef]
- Rong, A.Y.; Lahdelma, R. Role of polygeneration in sustainable energy system development challenges and opportunities from optimization viewpoints. Renew. Sustain. Energy Rev. 2016, 53, 363–372. [Google Scholar] [CrossRef]
- Vera, S.; Sauma, E. Does a carbon tax make sense in countries with still a high potential for energy efficiency? Comparison between the reducing-emissions effects of carbon tax and energy efficiency measures in the Chilean case. Energy 2015, 88, 478–488. [Google Scholar] [CrossRef]
- Malinauskaite, J.; Jouhara, H.; Egilegor, B.; Al-Mansour, F.; Ahmad, L.; Pusnik, M. Energy efficiency in the industrial sector in the EU, Slovenia, and Spain. Energy 2020, 208, 118398. [Google Scholar] [CrossRef]
- Özel, M. Cost analysis for optimum thicknesses and environmental impacts of different insulation materials. Energy Build. 2012, 49, 552–559. [Google Scholar] [CrossRef]
- Scrieciu, S.; Rezai, A.; Mechler, R. On the economic foundations of green growth discourses: The case of climate change mitigation and macroeconomic dynamics in economic modeling. Wiley Interdiscip. Rev. Energy Environ. 2013, 2, 251–268. [Google Scholar] [CrossRef]
- Dai, Y.P.; Wang, J.F.; Gao, L. Parametric optimization and comparative study of organic Rankine cycle (ORC) for low grade waste heat recovery. Energy Convers. Manag. 2009, 50, 576–582. [Google Scholar] [CrossRef]
- Roy, J.P.; Misra, A. Parametric optimization and performance analysis of a regenerative Organic Rankine Cycle using R-123 for waste heat recovery. Energy 2012, 39, 227–235. [Google Scholar] [CrossRef]
- Saleh, B.; Koglbauer, G.; Wendland, M.; Fischer, J. Working fluids for low-temperature organic Rankine cycles. Energy 2007, 32, 1210–1221. [Google Scholar] [CrossRef]
- Xie, Q.C.; Xu, X.; Liu, X.Q. Is there an EKC between economic growth and smog pollution in China? New evidence from semiparametric spatial autoregressive models. J. Clean. Prod. 2019, 220, 873–883. [Google Scholar] [CrossRef]
- Yang, F.; Cheng, Y.Y.; Yao, X. Influencing factors of energy technical innovation in China: Evidence from fossil energy and renewable energy. J. Clean. Prod. 2019, 232, 57–66. [Google Scholar] [CrossRef]
- Khalid, M.A.; Muhammad, U.; Iqbal, D.J.; Shahzad, M.S.; Arshian, S.; Iqbal, M.T.; Bares, L.L. Does globalization affect the green economy and environment? The relationship between energy consumption, carbon dioxide emissions, and economic growth. Environ. Sci. Pollut. Res. 2021, 28, 51105–51118. [Google Scholar] [CrossRef] [PubMed]
- Cong, J.H.; Pei, Y.J.; Xu, T.; Zhao, Y.B.; Ren, L.J.; Schwarz, P.; Zhang, M.; Song, J.W.; Zhang, W.Q.; Yang, J. How does the carbon market impact the economy-energy-environment system in resource-based regions of China? Empirical evidence from Shanxi Province. J. Clean. Prod. 2022, 376, 134218. [Google Scholar] [CrossRef]
- Luong, D.N. A critical review on Energy Efficiency and Conservation policies and programs in Vietnam. Renew. Sustain. Energy Rev. 2015, 52, 623–634. [Google Scholar] [CrossRef]
- Giap, V.T.; Lee, D.Y.; Kim, S.Y.; Ahn, Y.K.; Kim, H.D.; Lee, I.J. System simulation and exergetic evaluation of hybrid propulsion system for crude oil tanker: A hybrid of solid-oxide fuel cell and gas engine. Energy Convers. Manag. 2020, 223, 113265. [Google Scholar] [CrossRef]
- Mehmeti, A.; Pérez-Trujillo, P.J.; Elizalde-Blancas, F.; Angelis-Dimakis, A.; McPhail, S.J. Exergetic, environmental and economic sustainability assessment of stationary Molten Carbonate Fuel Cells. Energy Convers. Manag. 2018, 168, 276–287. [Google Scholar] [CrossRef]
- Wu, B.S. Low-carbon development mechanism of energy industry from the perspective of carbon neutralization. Energy Environ. 2022, 35, 628–643. [Google Scholar] [CrossRef]
- Fumo, N.; Mago, P.; Luck, R. Methodology to estimate building energy consumption using EnergyPlus Benchmark Models. Energy Build. 2010, 42, 2331–2337. [Google Scholar] [CrossRef]
- Taleb, M.H.; Sharples, S. Developing sustainable residential buildings in Saudi Arabia: A case study. Appl. Energy 2010, 88, 383–391. [Google Scholar] [CrossRef]
- Czelej, K.; Cwieka, K.; Colmenares, C.J.; Krzysztof, J.K. Catalytic activity of NiO cathode in molten carbonate fuel cells. Appl. Catal. B-Environ. 2018, 222, 73–75. [Google Scholar] [CrossRef]
- Ajmi, A.N.; Inglesi-Lotz, R. Biomass energy consumption and economic growth nexus in OECD countries: A panel analysis. Renew. Energy 2020, 162, 1649–1654. [Google Scholar] [CrossRef]
- Li, H.; Wu, Z.X.; Yuan, X.; Yang, Y.X.; He, X.Q. The research on modeling and application of dynamic grey forecasting model based on energy price-energy consumption-economic growth. Energy 2022, 257, 124801. [Google Scholar] [CrossRef]
- De, C.L.A.; Antunes, H.C.; Freire, F.; Henriques, C. A multi-objective interactive approach to assess economic-energy-environment trade-offs in Brazil. Renew. Sustain. Energy Rev. 2016, 54, 1429–1442. [Google Scholar] [CrossRef]
- Zhou, X.Y.; Xu, Z.D.; Xi, Y.Q. Energy conservation and emission reduction (ECER): System construction and policy combination simulation. J. Clean. Prod. 2020, 267, 121969. [Google Scholar] [CrossRef]
- Wang, G.H.; Zhao, T.; Wang, Y.X. Analysis of interactions among the barriers to energy saving in China. Energy Policy 2008, 36, 1879–1889. [Google Scholar] [CrossRef]
- Chen, Q.Y.; Zhu, M.T.; Zhang, C.J.; Zhou, Q. The driving effect of spatial-temporal difference of water resources carrying capacity in the Yellow River Basin. J. Clean. Prod. 2023, 388, 135709. [Google Scholar] [CrossRef]
- Hou, H.C.; Shao, S.; Zhang, Y.; Kang, H.; Qin, C.L.; Sun, X.Y.; Zhang, S.S. Life cycle assessment of sea cucumber production: A case study, China. J. Clean. Prod. 2018, 213, 158–164. [Google Scholar] [CrossRef]
- He, X.Y.; Lin, J.; Xu, J.; Huang, J.B.; Wu, N.Y.; Zhang, Y.N.; Liu, S.L.; Jing, R.; Xie, S.J.; Zhao, Y.R. Long-term planning of wind and solar power considering the technology readiness level under China’s decarbonization strategy. Appl. Energy 2023, 348, 121517. [Google Scholar] [CrossRef]
- Klinglmair, M.; Sala, S.; Brandão, M. Assessing resource depletion in LCA: A review of methods and methodological issues. Int. J. Life Cycle Assess. 2014, 19, 580–592. [Google Scholar] [CrossRef]
- Luo, Z.X.; Yang, L.; Liu, J.P. Embodied carbon emissions of office building: A case study of China’s 78 office buildings. Build. Environ. 2016, 95, 365–371. [Google Scholar] [CrossRef]
- Yogev, U.; Vogler, M.; Nir, O.; Londong, G.; Gross, A. Phosphorous recovery from a novel recirculating aquaculture system followed by its sustainable reuse as a fertilizer. Sci. Total Environ. 2020, 722, 137949. [Google Scholar] [CrossRef] [PubMed]
- Su, X.; Luo, Z.; Li, Y.H.; Huang, C.H. Life cycle inventory comparison of different building insulation materials and uncertainty analysis. J. Clean. Prod. 2016, 112, 275–281. [Google Scholar] [CrossRef]
- Qin, Y.; Luo, Y.Y.; Lu, J.R.; Lu, Y.; Yu, X.R. Simulation analysis of resource-based city development based on system dynamics: A case study of Panzhihua. Appl. Math. Nonlinear Sci. 2018, 3, 115–126. [Google Scholar] [CrossRef]
- Drukker, M.D.; Prucha, R.I.; Raciborski, R. Maximum Likelihood and Generalized Spatial Two-Stage Least-Squares Estimators for a Spatial-Autoregressive Model with Spatial-Autoregressive Disturbances. Stata J. 2013, 13, 221–241. [Google Scholar] [CrossRef]
- Apergis, N.; Payne, E.J. Energy consumption and economic growth: Evidence from the Commonwealth of Independent States. Energy Econ. 2009, 31, 641–647. [Google Scholar] [CrossRef]
- Yi, Q.; Feng, J.; Wu, Y.L. 3E (energy, environmental, and economy) evaluation and assessment to an innovative dual-gas polygeneration system. Energy 2014, 66, 285–294. [Google Scholar] [CrossRef]
- Li, Y.F.; Li, Y.; Zhu, X.D. Investigation of a coupling model of coordination between urbanization and the environment. J. Environ. Manag. 2012, 98, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Gong, X. Study on the coupling problem of coordinated development of economy–energy–environment–technology system in Northeast China. Energy Rep. 2022, 8, 305–312. [Google Scholar] [CrossRef]
- Fu, Z.H.; Xie, Y.L.; Li, W.; Lu, W.T.; Guo, H.C. An inexact multi-objective programming model for an economy-energy-environment system under uncertainty: A case study of Urumqi, China. Energy 2017, 126, 165–178. [Google Scholar] [CrossRef]
- Haslam, E.J.; Jupesta, J.; Parayil, G. Assessing fuel cell vehicle innovation and the role of policy in Japan, Korea, and China. Int. J. Hydrogen Energy 2012, 37, 14612–14623. [Google Scholar] [CrossRef]
- Kruitwagen, L.; Story, T.K.; Friedrich, J.; Byers, L.; Skillman, W.S.; Hepburn, C. A global inventory of photovoltaic solar energy generating units. Nature 2021, 598, 604–610. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Gibbs, D. Encircling cities from rural areas? Barriers to the diffusion of solar water heaters in China’s urban market. Energy Policy 2018, 115, 366–373. [Google Scholar] [CrossRef]
- Liu, Y.; Lu, Y. The Economic impact of different carbon tax revenue recycling schemes in China: A model-based scenario analysis. Appl. Energy 2015, 141, 96–105. [Google Scholar] [CrossRef]
- Shinichiro, O.; Makoto, T. What causes the change in energy demand in the economy? Energy Econ. 2009, 32, S41–S46. [Google Scholar] [CrossRef]
- Dimopoulos, G.G.; Stefanatos, C.I.; Kakalis, M.N. Exergy analysis and optimisation of a marine molten carbonate fuel cell system in simple and combined cycle configuration. Energy Convers. Manag. 2016, 107, 10–21. [Google Scholar] [CrossRef]
- Rad, A.E.; Fallahi, E. Optimizing the insulation thickness of external wall by a novel 3E (energy, environmental, economic) method. Constr. Build. Mater. 2019, 205, 196–212. [Google Scholar] [CrossRef]
- Tso, C.; Shinchih, C. The Efficiency Evaluation of Promoting Fuel Cell Scooter in Taiwan. ECS Trans. 2019, 30, 239. [Google Scholar] [CrossRef]
- Liang, S.; Lin, X.Y.; Liu, X.X.; Pan, H.R. The Pathway to China’s Carbon Neutrality Based on an Endogenous Technology CGE Model. Int. J. Environ. Res. Public Health 2022, 19, 6251. [Google Scholar] [CrossRef] [PubMed]
- Arroyo, F.M.R.; Miguel, L. The Role of Renewable Energies for the Sustainable Energy Governance and Environmental Policies for the Mitigation of Climate Change in Ecuador. Energies 2020, 13, 3883. [Google Scholar] [CrossRef]
- Ferreira, J.G.; Bernard-Jannin, L.; Cubillo, A.; Lencart, E.S.J.; Diedericks, G.P.; Moore, H.; Service, M.; Nunes, J.P. From soil to sea: An ecological modelling framework for sustainable aquaculture. Aquaculture 2023, 577, 739920. [Google Scholar] [CrossRef]
- Vahid, A.; Roquzbeh, A.; Nagi, A.; Fatemeh, S.; Vikram, G.; Mohsen, A.; Al-Amin, B.; Irene, P.; Hassan, K.; Scott, D.; et al. Reliability of multi-purpose offshore-facilities: Present status and future direction in Australia. Process Saf. Environ. Prot. 2021, 148, 437–461. [Google Scholar] [CrossRef] [PubMed]
- Piyali, C.; Goud, K.N.L.; Susana, L.; Kumar, J.S.; Ranjan, M.B. Climate change and coastal morphodynamics: Interactions on regional scales. Sci. Total Environ. 2023, 899, 166432. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.P.; Lian, L.K.; Bi, C.W.; Xu, Z.J. Digital twin for rapid damage detection of a fixed net panel in the sea. Comput. Electron. Agric. 2022, 200, 107247. [Google Scholar] [CrossRef]
- Solé, J.; Samsó, R.; García-Ladona, E.; García-Olivares, A.; Ballabrera-Poy, J.; Madurell, T.; Turiel, A.; Osychenko, O.; Alvarez, B.D.; Bardi, U.; et al. Modelling the renewable transition: Scenarios and pathways for a decarbonized future using pymedeas, a new open-source energy systems model. Renew. Sustain. Energy Rev. 2020, 132, 110105. [Google Scholar] [CrossRef]
- Hou, H.C.; Zhang, Y.; Ma, Z.; Wang, X.L.; Su, P.; Wang, H.H.; Liu, Y. Life cycle assessment of tiger puffer (Takifugu rubripes) farming: A case study in Dalian, China. Sci. Total Environ. 2022, 823, 153522. [Google Scholar] [CrossRef]
- Xu, A.X.; Yang, L.X.; Song, T.T.; Xu, M.J.; Chen, H.; Xiang, L.; Liu, Z.Q.; Yang, S. A cascade lithium bromide absorption refrigeration/dehumidification system for efficient energy recovery: Development, 3E optimization and life cycle assessment. J. Clean. Prod. 2023, 383, 135286. [Google Scholar] [CrossRef]
- Hou, H.C.; Wang, H.H.; Ren, A.Q.; Zhang, Y.; Liu, Y. Comparative Life Cycle Assessment of the Manufacturing of Conventional and Innovative Aerators: A Case Study in China. Sustainability 2022, 14, 15115. [Google Scholar] [CrossRef]
- Hou, H.C.; Shao, S.; Zhang, Y.; Sun, D.L.; Yang, Q.Y.; Qin, C.L.; Sun, X.Y. Cleaner Production assessment for sea cucumber aquaculture: Methodology and case studies in Dalian, China. Clean Technol. Environ. Policy 2019, 21, 1751–1763. [Google Scholar] [CrossRef]
- Hou, H.C.; Ren, A.Q.; Yu, L.X.B.; Ma, Z.; Zhang, Y.; Liu, Y. An Environmental Impact Assessment of Largemouth Bass (Micropterus salmoides) Aquaculture in Hangzhou, China. Sustainability 2023, 15, 12368. [Google Scholar] [CrossRef]
- Ahmed, R.O.; Al-Mohannadi, D.M.; Patrick, L. Multi-objective resource integration for sustainable industrial clusters. J. Clean. Prod. 2021, 316, 128237. [Google Scholar] [CrossRef]
- Wang, Z.X.; Jv, Y.Q. A non-linear systematic grey model for forecasting the industrial economy-energy-environment system. Technol. Forecast. Soc. Chang. 2021, 167, 120707. [Google Scholar] [CrossRef]
- Irene, B.; Carlos, P. The impacts of the European chemical industry on the planetary boundaries. Sustain. Prod. Consum. 2024, 44, 188–207. [Google Scholar] [CrossRef]
- Saidur, R.; Hasanuzzaman, M.; Rahim, A.N. Energy, economic, and environmental analysis of the Malaysian industrial compressed-air systems. Clean Technol. Environ. Policy 2012, 14, 195–210. [Google Scholar] [CrossRef]
- Liu, J.G. Leveraging the metacoupling framework for sustainability science and global sustainable development. Natl. Sci. Rev. 2023, 10, 90. [Google Scholar] [CrossRef]
- Dennis, A.; Wang, Z.; Hu, S.G.; Minua, K.G.A.; Akwasi, D.A. Exploring the dynamic nexus between urbanization and industrialization with carbon emissions in sub-Saharan Africa: Evidence from panel PMG-ARDL estimation. Environ. Sci. Pollut. Res. Int. 2023, 30, 6373–6389. [Google Scholar] [CrossRef]
- Zhou, Y.Y.; Lin, Z.H.; Zhang, Y.J.; Sun, W.X.; Lei, F.Y.; Gao, W.Z. Impact of changes in energy structure and industrial structure on green total factor productivity in the context of environmental protection-evidence from China. Environ. Sci. Pollut. Res. Int. 2024, 31, 17097–17114. [Google Scholar] [CrossRef] [PubMed]
Reference | Attribute | Index |
---|---|---|
Energy | Energy production | Total energy production [26], Production of primary energy [27], Total electricity production [28], Total output of raw coal [29], Growth rate of energy production [30], Proportion of crude oil production [31], Proportion of electricity production [32], Proportion of natural gas production [33], Per capita energy production [34], Per capita electricity production [35] |
Energy consumption | Total energy consumption [36], Total electricity consumption [37], Growth rate of electricity consumption [38], Energy consumption per unit of gross product [39], Electricity consumption per unit of GDP [40], Energy consumption per unit of industrial value added [41], Proportion of coal consumption [42], Share of crude oil consumption [43], Natural gas consumption [44] | |
Integration energy | Elasticity coefficient of energy consumption [45], Elasticity coefficient of electricity consumption [46] | |
Economic | Economic level | GDP [47], GDP growth rate [48], GDP per capita [49], Gross value of industrial output [50], Total retail sales of consumer goods [51] |
Economic structure | Percentage of primary sector of the economy [52], Percentage of secondary sector of the economy [53], Percentage of tertiary sector of the economy [54], R&D activities as a percentage of expenditure [55] | |
Develop quality | Labor productivity [56], Per capita disposable income [57], Registration of the unemployment rate [58] | |
Environmental | Environmental pollution | Discharge of industrial waste water [59], Industrial smoke and dust emissions [60], CO2 emissions [61], Per capita CO2 emissions [62] |
Environmental protection | Industrial wastewater discharge rate [63] | |
Environmental quality | Forest coverage [64], Per capita water resources [65], Per capita area of arable land [66], Excellent rate of air quality [67] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, F.; Ren, A.; Liu, J.; Yu, L.; Jia, F.; Hou, H.; Liu, Y. Towards Sustainable Industry: A Comprehensive Review of Energy–Economy–Environment System Analysis and Future Trends. Sustainability 2024, 16, 5085. https://doi.org/10.3390/su16125085
Han F, Ren A, Liu J, Yu L, Jia F, Hou H, Liu Y. Towards Sustainable Industry: A Comprehensive Review of Energy–Economy–Environment System Analysis and Future Trends. Sustainability. 2024; 16(12):5085. https://doi.org/10.3390/su16125085
Chicago/Turabian StyleHan, Fengfan, Anqi Ren, Jinxin Liu, Lixingbo Yu, Fei Jia, Haochen Hou, and Ying Liu. 2024. "Towards Sustainable Industry: A Comprehensive Review of Energy–Economy–Environment System Analysis and Future Trends" Sustainability 16, no. 12: 5085. https://doi.org/10.3390/su16125085
APA StyleHan, F., Ren, A., Liu, J., Yu, L., Jia, F., Hou, H., & Liu, Y. (2024). Towards Sustainable Industry: A Comprehensive Review of Energy–Economy–Environment System Analysis and Future Trends. Sustainability, 16(12), 5085. https://doi.org/10.3390/su16125085