Study on Factors Influencing Forest Distribution in Barcelona Metropolitan Region
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Field of Study
2.2. Methodology
- 2.
- Secondly, in order to intuitively and accurately reveal the long-term change characteristics of the forest NDVI, the change in each pixel is calculated to reflect the increase in or degradation trends of the NDVI over time.
- 3.
- Next, we will try to use the NDVI to evaluate the forest green environmental quality of the BMR. The average NDVI of each type of forest land is extracted to establish a normalized green quality assessment system. The average NDVI of each type of forest land is extracted, and for each year, we establish a normalized green quality assessment system through Formula (8). Set the minimum value to 0 and the maximum value to 1 as the assigned value (Ei) of the green environmental quality proportion of each type of forest species.
- 4.
- We need to study the relationship between forest area distribution and various possible influencing factors. We will establish a 1 km grid within the metropolitan area and extract the annual proportion of forest area within the grid and the average value of the winter and summer NDVI. In addition, we will collect various types of data listed in Table 1. MODIS can provide land surface temperature (LST) and the normalized building index (NDBI). The urban heat island (UHI) effect will be represented by the urban–rural temperature difference; that is, the difference in average surface temperature between built-up areas and rural areas is expressed based on land cover data. For each year’s daytime and nighttime LST, we subtract their average values in rural land to get the approximate intensity distribution of UHIs. The larger the value, the higher the UHI intensity. DEM terrain data come from SRTM with a resolution of 30 m. The impervious ground data come from GlobeLand 30, also with a resolution of 30 m. E-OBS can provide annual and monthly European precipitation raster data (https://surfobs.climate.copernicus.eu/dataaccess/access_eobs.php, accessed on 12 May 2024), but the resolution is 1° and the scale is very large. Therefore, we used the Kriging interpolation method to re-establish the BMR precipitation map with a resolution of 1 km based on the E-OBS precipitation data. After obtaining the above data, we used the proportion of forest area in each grid as the dependent variable to establish an OLS model to analyze their importance.
- 5.
- Once it is clear that there is an obvious interaction between NDVI and forests, we must analyze the climate factors that affect the NDVI to discover the potential threats that climate change may have for forests and predict possible trends in changes in the BMR forest layout caused by climate change. Based on the data obtained from the grid in step 4, we used an average NDVI as the dependent variable, and annual precipitation and daytime and nighttime LST as independent variables, to establish three OLS regression models to analyze the correlation between them and the average NDVI, and to analyze the average NDVI and the distribution pattern of what were found to be the most significant independent variables on the map.
- 6.
- It is also very important to study the impact of various factors on forest landscape indicators. Taking 2018 as an example, we calculated the landscape indicators in each grid and used them as independent variables, to establish models with the factors involved in the fourth step to analyze their relationships. In order to build the models, it is necessary to cut the BMR into 1 km grids, and the landscape index inside each grid is calculated separately. Because of that, the results calculated by PAFRAC, COHESION and some other indices seriously deviate from the actual situation, and such an analysis is meaningless. In addition, the landscape proportion (PLAND) index has been analyzed as a dependent variable in step 4. Therefore, in this section we only analyze patch density (PD), compactness and Shannon entropy (ENT). In addition, we will also consider the impact of temperature changes from 2006 to 2018 on forest pattern morphology.
- 7.
- Finally, ArcGIS 10.8 was used to analyze the transformation process within the forest areas of the Barcelona metropolitan area between 2006 and 2018, and find the types of forest land that were being lost and the types that were growing significantly over the years. In addition, land transfer in the entire metropolitan area also needs to be analyzed to find the main degradation directions of forest areas.
3. Results
3.1. Analysis of Forest-Related Landscape Indicators
3.1.1. The Overall Scale of the Forest Landscape Has Been Slightly Reduced
3.1.2. Increased Fragmentation of Forest Landscapes
3.1.3. Forests Are the Most Widespread Type of Land Use
3.1.4. The Structure of Forest Land Is Becoming More Complex and the Degree of Human Interference Is Deepening
3.1.5. Forest Land Is Increasingly Dispersed
3.2. NDVI Change Trend Analysis
3.2.1. The Development of NDVI in BMR and Forest Areas Is Relatively Optimistic
3.2.2. The Development Status of NDVI in 2012 Was Disappointing
3.2.3. The Forest’s NDVI Is the Most Outstanding
3.3. Forest Green Environmental Quality Assessment
3.3.1. Broadleaf Forest Has the Highest Assessment Weight
3.3.2. The Quality of Forest Green Environment Is Increasing Year by Year
3.4. Analysis of Factors Affecting Forest Distribution
3.5. Analysis of Climate Factors Affecting NDVI
3.6. Analysis of Influencing Factors of Forest Landscape Index
3.7. Land Use Transfer Matrix Analysis
3.7.1. Mixed Forests Are the Only Expanding Woodlands
3.7.2. Forests Are Mainly Transferred like Cultivated Land and Grassland
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Classification Results | CLC Land Use Description |
---|---|
Continuous built-up area | Continuous urban fabric |
Discontinuous built-up area | Discontinuous urban fabric |
Industrial land | Industrial or commercial units |
Transportation land | Road and rail networks and associated land |
Port areas | |
Airports | |
Mine, dump and construction sites | Mineral extraction sites |
Dump sites | |
Construction sites | |
Leisure land | Green urban areas |
Sport and leisure facilities | |
Cropland | Non-irrigated arable land |
Permanently irrigated land | |
Rice fields | |
Vineyards | |
Fruit trees and berry plantations | |
Olive groves | |
Pastures | |
Annual crops associated with permanent crops | |
Complex cultivation patterns | |
Land principally occupied by agriculture, with significant areas of natural vegetation | |
Agro-forestry areas | |
Woodland | Broad-leaved forest |
Coniferous forest | |
Mixed forest | |
Grassland | Natural grasslands |
Moors and heathland | |
Sclerophyllous vegetation | |
Transitional woodland shrub | |
Inland marshes | |
Peat bogs | |
Salt marshes | |
Barren land | Beaches, dunes, sands |
Bare rocks | |
Sparsely vegetated areas | |
Burnt areas | |
Glaciers and perpetual snow | |
Salines | |
Intertidal flats | |
Water bodies | Water courses |
Water bodies | |
Coastal lagoons | |
Estuaries | |
Sea and ocean |
Appendix B
Var. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Pearson | 1 | 0.331 ** | 0.341 ** | 0.03 | 0.100 ** | 0.387 ** | 0.230 ** | 0.824 ** | 0.410 ** | −0.690 ** | −0.102 ** | −0.796 ** | −0.690 ** | −0.102 ** | −0.447 ** | −0.480 ** |
Sign. | 0 | 0 | 0.146 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
N. cases | 2283 | 2283 | 2283 | 2283 | 2283 | 2283 | 2283 | 2273 | 2283 | 1740 | 1740 | 2280 | 1740 | 1740 | 2283 | 2283 | |
2 | Pearson | 0.331 ** | 1 | 0.724 ** | −0.320 ** | 0.032 | −0.002 | 0.03 | 0.387 ** | 0.893 ** | −0.287 ** | 0.325 ** | −0.439 ** | −0.287 ** | 0.325 ** | 0.021 | 0.01 |
Sign. | 0 | 0 | 0 | 0.131 | 0.914 | 0.153 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.314 | 0.629 | ||
N. cases | 2283 | 2283 | 2283 | 2283 | 2283 | 2283 | 2283 | 2273 | 2283 | 1740 | 1740 | 2280 | 1740 | 1740 | 2283 | 2283 | |
3 | Pearson | 0.341 ** | 0.724 ** | 1 | 0.404 ** | 0.028 | 0.448 ** | 0.078 ** | 0.352 ** | 0.863 ** | −0.388 ** | −0.221 ** | −0.388 ** | −0.388 ** | −0.221 ** | −0.093 ** | −0.116 ** |
Sign. | 0 | 0 | 0 | 0.186 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
N. cases | 2283 | 2283 | 2283 | 2283 | 2283 | 2283 | 2283 | 2273 | 2283 | 1740 | 1740 | 2280 | 1740 | 1740 | 2283 | 2283 | |
4 | Pearson | 0.03 | −0.320 ** | 0.404 ** | 1 | −0.005 | 0.578 ** | 0.085 ** | −0.037 | −0.022 | −0.176 ** | −0.692 ** | 0.038 | −0.176 ** | −0.692 ** | −0.126 ** | −0.140 ** |
Sign. | 0.146 | 0 | 0 | 0.799 | 0 | 0 | 0.076 | 0.285 | 0 | 0 | 0.069 | 0 | 0 | 0 | 0 | ||
N. cases | 2283 | 2283 | 2283 | 2283 | 2283 | 2283 | 2283 | 2273 | 2283 | 1740 | 1740 | 2280 | 1740 | 1740 | 2283 | 2283 | |
5 | Pearson | 0.100 ** | 0.032 | 0.028 | −0.005 | 1 | 0.103 ** | 0.058 ** | 0.116 ** | 0.067 ** | −0.077 ** | −0.097 ** | −0.097 ** | −0.077 ** | −0.097 ** | −0.077 ** | −0.080 ** |
Sign. | 0 | 0.131 | 0.186 | 0.799 | 0 | 0.006 | 0 | 0.001 | 0.001 | 0 | 0 | 0.001 | 0 | 0 | 0 | ||
N. cases | 2283 | 2283 | 2283 | 2283 | 2283 | 2283 | 2283 | 2273 | 2283 | 1740 | 1740 | 2280 | 1740 | 1740 | 2283 | 2283 | |
6 | Pearson | 0.387 ** | −0.002 | 0.448 ** | 0.578 ** | 0.103 ** | 1 | 0.192 ** | 0.454 ** | 0.332 ** | −0.612 ** | −0.724 ** | −0.444 ** | −0.612 ** | −0.724 ** | −0.336 ** | −0.356 ** |
Sign. | 0 | 0.914 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
N. cases | 2283 | 2283 | 2283 | 2283 | 2283 | 2283 | 2283 | 2273 | 2283 | 1740 | 1740 | 2280 | 1740 | 1740 | 2283 | 2283 | |
7 | Pearson | 0.230 ** | 0.03 | 0.078 ** | 0.085 ** | 0.058 ** | 0.192 ** | 1 | 0.254 ** | 0.060 ** | −0.231 ** | −0.055 * | −0.203 ** | −0.231 ** | −0.055 * | −0.139 ** | −0.153 ** |
Sign. | 0 | 0.153 | 0 | 0 | 0.006 | 0 | 0 | 0.004 | 0 | 0.022 | 0 | 0 | 0.022 | 0 | 0 | ||
N. cases | 2283 | 2283 | 2283 | 2283 | 2283 | 2283 | 2283 | 2273 | 2283 | 1740 | 1740 | 2280 | 1740 | 1740 | 2283 | 2283 | |
8 | Pearson | 0.824 ** | 0.387 ** | 0.352 ** | −0.037 | 0.116 ** | 0.454 ** | 0.254 ** | 1 | 0.469 ** | −0.732 ** | −0.111 ** | −0.911 ** | −0.732 ** | −0.111 ** | −0.524 ** | −0.565 ** |
Sign. | 0 | 0 | 0 | 0.076 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
N. cases | 2273 | 2273 | 2273 | 2273 | 2273 | 2273 | 2273 | 2273 | 2273 | 1732 | 1732 | 2273 | 1732 | 1732 | 2273 | 2273 | |
9 | Pearson | 0.410 ** | 0.893 ** | 0.863 ** | −0.022 | 0.067 ** | 0.332 ** | 0.060 ** | 0.469 ** | 1 | −0.413 ** | −0.008 | −0.512 ** | −0.413 ** | −0.008 | −0.090 ** | −0.107 ** |
Sign. | 0 | 0 | 0 | 0.285 | 0.001 | 0 | 0.004 | 0 | 0 | 0.733 | 0 | 0 | 0.733 | 0 | 0 | ||
N. cases | 2283 | 2283 | 2283 | 2283 | 2283 | 2283 | 2283 | 2273 | 2283 | 1740 | 1740 | 2280 | 1740 | 1740 | 2283 | 2283 | |
10 | Pearson | −0.690 ** | −0.287 ** | −0.388 ** | −0.176 ** | −0.077 ** | −0.612 ** | −0.231 ** | −0.732 ** | −0.413 ** | 1 | 0.332 ** | 0.758 ** | 10.000 ** | 0.332 ** | 0.297 ** | 0.334 ** |
Sign. | 0 | 0 | 0 | 0 | 0.001 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
N. cases | 1740 | 1740 | 1740 | 1740 | 1740 | 1740 | 1740 | 1732 | 1740 | 1740 | 1740 | 1738 | 1740 | 1740 | 1740 | 1740 | |
11 | Pearson | −0.102 ** | 0.325 ** | −0.221 ** | −0.692 ** | −0.097 ** | −0.724 ** | −0.055 * | −0.111 ** | −0.008 | 0.332 ** | 1 | 0.082 ** | 0.332 ** | 10.000 ** | 0.320 ** | 0.345 ** |
Sign. | 0 | 0 | 0 | 0 | 0 | 0 | 0.022 | 0 | 0.733 | 0 | 0.001 | 0 | 0 | 0 | 0 | ||
N. cases | 1740 | 1740 | 1740 | 1740 | 1740 | 1740 | 1740 | 1732 | 1740 | 1740 | 1740 | 1738 | 1740 | 1740 | 1740 | 1740 | |
12 | Pearson | −0.796 ** | −0.439 ** | −0.388 ** | 0.038 | −0.097 ** | −0.444 ** | −0.203 ** | −0.911 ** | −0.512 ** | 0.758 ** | 0.082 ** | 1 | 0.758 ** | 0.082 ** | 0.388 ** | 0.425 ** |
Sign. | 0 | 0 | 0 | 0.069 | 0 | 0 | 0 | 0 | 0 | 0 | 0.001 | 0 | 0.001 | 0 | 0 | ||
N. cases | 2280 | 2280 | 2280 | 2280 | 2280 | 2280 | 2280 | 2273 | 2280 | 1738 | 1738 | 2280 | 1738 | 1738 | 2280 | 2280 | |
13 | Pearson | −0.690 ** | −0.287 ** | −0.388 ** | −0.176 ** | −0.077 ** | −0.612 ** | −0.231 ** | −0.732 ** | −0.413 ** | 10.000 ** | 0.332 ** | 0.758 ** | 1 | 0.332 ** | 0.297 ** | 0.334 ** |
Sign. | 0 | 0 | 0 | 0 | 0.001 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
N. cases | 1740 | 1740 | 1740 | 1740 | 1740 | 1740 | 1740 | 1732 | 1740 | 1740 | 1740 | 1738 | 1740 | 1740 | 1740 | 1740 | |
14 | Pearson | −0.102 ** | 0.325 ** | −0.221 ** | −0.692 ** | −0.097 ** | −0.724 ** | −0.055 * | −0.111 ** | −0.008 | 0.332 ** | 10.000 ** | 0.082 ** | 0.332 ** | 1 | 0.320 ** | 0.345 ** |
Sign. | 0 | 0 | 0 | 0 | 0 | 0 | 0.022 | 0 | 0.733 | 0 | 0 | 0.001 | 0 | 0 | 0 | ||
N. cases | 1740 | 1740 | 1740 | 1740 | 1740 | 1740 | 1740 | 1732 | 1740 | 1740 | 1740 | 1738 | 1740 | 1740 | 1740 | 1740 | |
15 | Pearson | −0.447 ** | 0.021 | −0.093 ** | −0.126 ** | −0.077 ** | −0.336 ** | −0.139 ** | −0.524 ** | −0.090 ** | 0.297 ** | 0.320 ** | 0.388 ** | 0.297 ** | 0.320 ** | 1 | 0.949 ** |
Sign. | 0 | 0.314 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
N. cases | 2283 | 2283 | 2283 | 2283 | 2283 | 2283 | 2283 | 2273 | 2283 | 1740 | 1740 | 2280 | 1740 | 1740 | 2283 | 2283 | |
16 | Pearson | −0.480 ** | 0.01 | −0.116 ** | −0.140 ** | −0.080 ** | −0.356 ** | −0.153 ** | −0.565 ** | −0.107 ** | 0.334 ** | 0.345 ** | 0.425 ** | 0.334 ** | 0.345 ** | 0.949 ** | 1 |
Sign. | 0 | 0.629 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
N. cases | 2283 | 2283 | 2283 | 2283 | 2283 | 2283 | 2283 | 2273 | 2283 | 1740 | 1740 | 2280 | 1740 | 1740 | 2283 | 2283 |
Var. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Pearson | 1 | 0.327 ** | 0.341 ** | 0.038 | 0.097 ** | 0.391 ** | 0.229 ** | 0.828 ** | −0.322 ** | −0.631 ** | −0.211 ** | −0.784 ** | −0.631 ** | −0.211 ** | −0.499 ** | −0.520 ** |
Sign. | 0 | 0 | 0.073 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
N. cases | 2268 | 2268 | 2268 | 2268 | 2268 | 2268 | 2268 | 2263 | 2268 | 1730 | 1730 | 2264 | 1730 | 1730 | 1178 | 1252 | |
2 | Pearson | 0.327 ** | 1 | 0.724 ** | −0.319 ** | 0.031 | −0.005 | 0.028 | 0.343 ** | −0.708 ** | −0.208 ** | 0.014 | −0.405 ** | −0.208 ** | 0.014 | −0.018 | −0.009 |
Sign. | 0 | 0 | 0 | 0.138 | 0.806 | 0.184 | 0 | 0 | 0 | 0.547 | 0 | 0 | 0.547 | 0.542 | 0.745 | ||
N. cases | 2268 | 2268 | 2268 | 2268 | 2268 | 2268 | 2268 | 2263 | 2268 | 1730 | 1730 | 2264 | 1730 | 1730 | 1178 | 1252 | |
3 | Pearson | 0.341 ** | 0.724 ** | 1 | 0.405 ** | 0.027 | 0.447 ** | 0.077 ** | 0.349 ** | −0.606 ** | −0.395 ** | −0.536 ** | −0.446 ** | −0.395 ** | −0.536 ** | −0.056 | −0.057 * |
Sign. | 0 | 0 | 0 | 0.192 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.053 | 0.045 | ||
N. cases | 2268 | 2268 | 2268 | 2268 | 2268 | 2268 | 2268 | 2263 | 2268 | 1730 | 1730 | 2264 | 1730 | 1730 | 1178 | 1252 | |
4 | Pearson | 0.038 | −0.319 ** | 0.405 ** | 1 | −0.005 | 0.582 ** | 0.086 ** | 0.027 | 0.156 ** | −0.278 ** | −0.729 ** | −0.097 ** | −0.278 ** | −0.729 ** | −0.031 | −0.04 |
Sign. | 0.073 | 0 | 0 | 0.826 | 0 | 0 | 0.195 | 0 | 0 | 0 | 0 | 0 | 0 | 0.287 | 0.16 | ||
N. cases | 2268 | 2268 | 2268 | 2268 | 2268 | 2268 | 2268 | 2263 | 2268 | 1730 | 1730 | 2264 | 1730 | 1730 | 1178 | 1252 | |
5 | Pearson | 0.097 ** | 0.031 | 0.027 | −0.005 | 1 | 0.101 ** | 0.058 ** | 0.111 ** | −0.002 | −0.069 ** | −0.127 ** | −0.105 ** | −0.069 ** | −0.127 ** | −0.048 | −0.061 * |
Sign. | 0 | 0.138 | 0.192 | 0.826 | 0 | 0.006 | 0 | 0.932 | 0.004 | 0 | 0 | 0.004 | 0 | 0.102 | 0.032 | ||
N. cases | 2268 | 2268 | 2268 | 2268 | 2268 | 2268 | 2268 | 2263 | 2268 | 1730 | 1730 | 2264 | 1730 | 1730 | 1178 | 1252 | |
6 | Pearson | 0.391 ** | −0.005 | 0.447 ** | 0.582 ** | 0.101 ** | 1 | 0.191 ** | 0.508 ** | −0.138 ** | −0.731 ** | −0.830 ** | −0.558 ** | −0.731 ** | −0.830 ** | −0.228 ** | −0.256 ** |
Sign. | 0 | 0.806 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
N. cases | 2268 | 2268 | 2268 | 2268 | 2268 | 2268 | 2268 | 2263 | 2268 | 1730 | 1730 | 2264 | 1730 | 1730 | 1178 | 1252 | |
7 | Pearson | 0.229 ** | 0.028 | 0.077 ** | 0.086 ** | 0.058 ** | 0.191 ** | 1 | 0.276 ** | −0.01 | −0.229 ** | −0.087 ** | −0.219 ** | −0.229 ** | −0.087 ** | −0.203 ** | −0.238 ** |
Sign. | 0 | 0.184 | 0 | 0 | 0.006 | 0 | 0 | 0.635 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
N. cases | 2268 | 2268 | 2268 | 2268 | 2268 | 2268 | 2268 | 2263 | 2268 | 1730 | 1730 | 2264 | 1730 | 1730 | 1178 | 1252 | |
8 | Pearson | 0.828 ** | 0.343 ** | 0.349 ** | 0.027 | 0.111 ** | 0.508 ** | 0.276 ** | 1 | −0.340 ** | −0.727 ** | −0.276 ** | −0.907 ** | −0.727 ** | −0.276 ** | −0.527 ** | −0.566 ** |
Sign. | 0 | 0 | 0 | 0.195 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
N. cases | 2263 | 2263 | 2263 | 2263 | 2263 | 2263 | 2263 | 2263 | 2263 | 1726 | 1726 | 2263 | 1726 | 1726 | 1173 | 1247 | |
9 | Pearson | −0.322 ** | −0.708 ** | −0.606 ** | 0.156 ** | −0.002 | −0.138 ** | −0.01 | −0.340 ** | 1 | 0.311 ** | 0.149 ** | 0.329 ** | 0.311 ** | 0.149 ** | 0.143 ** | 0.148 ** |
Sign. | 0 | 0 | 0 | 0 | 0.932 | 0 | 0.635 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
N. cases | 2268 | 2268 | 2268 | 2268 | 2268 | 2268 | 2268 | 2263 | 2268 | 1730 | 1730 | 2264 | 1730 | 1730 | 1178 | 1252 | |
10 | Pearson | −0.631 ** | −0.208 ** | −0.395 ** | −0.278 ** | −0.069 ** | −0.731 ** | −0.229 ** | −0.727 ** | 0.311 ** | 1 | 0.573 ** | 0.764 ** | 10.000 ** | 0.573 ** | 0.213 ** | 0.244 ** |
Sign. | 0 | 0 | 0 | 0 | 0.004 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
N. cases | 1730 | 1730 | 1730 | 1730 | 1730 | 1730 | 1730 | 1726 | 1730 | 1730 | 1730 | 1727 | 1730 | 1730 | 890 | 955 | |
11 | Pearson | −0.211 ** | 0.014 | −0.536 ** | −0.729 ** | −0.127 ** | −0.830 ** | −0.087 ** | −0.276 ** | 0.149 ** | 0.573 ** | 1 | 0.349 ** | 0.573 ** | 10.000 ** | 0.187 ** | 0.217 ** |
Sign. | 0 | 0.547 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
N. cases | 1730 | 1730 | 1730 | 1730 | 1730 | 1730 | 1730 | 1726 | 1730 | 1730 | 1730 | 1727 | 1730 | 1730 | 890 | 955 | |
12 | Pearson | −0.784 ** | −0.405 ** | −0.446 ** | −0.097 ** | −0.105 ** | −0.558 ** | −0.219 ** | −0.907 ** | 0.329 ** | 0.764 ** | 0.349 ** | 1 | 0.764 ** | 0.349 ** | 0.371 ** | 0.405 ** |
Sign. | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
N. cases | 2264 | 2264 | 2264 | 2264 | 2264 | 2264 | 2264 | 2263 | 2264 | 1727 | 1727 | 2264 | 1727 | 1727 | 1174 | 1248 | |
13 | Pearson | −0.631 ** | −0.208 ** | −0.395 ** | −0.278 ** | −0.069 ** | −0.731 ** | −0.229 ** | −0.727 ** | 0.311 ** | 10.000 ** | 0.573 ** | 0.764 ** | 1 | 0.573 ** | 0.213 ** | 0.244 ** |
Sign. | 0 | 0 | 0 | 0 | 0.004 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
N. cases | 1730 | 1730 | 1730 | 1730 | 1730 | 1730 | 1730 | 1726 | 1730 | 1730 | 1730 | 1727 | 1730 | 1730 | 890 | 955 | |
14 | Pearson | −0.211 ** | 0.014 | −0.536 ** | −0.729 ** | −0.127 ** | −0.830 ** | −0.087 ** | −0.276 ** | 0.149 ** | 0.573 ** | 10.000 ** | 0.349 ** | 0.573 ** | 1 | 0.187 ** | 0.217 ** |
Sign. | 0 | 0.547 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
N. cases | 1730 | 1730 | 1730 | 1730 | 1730 | 1730 | 1730 | 1726 | 1730 | 1730 | 1730 | 1727 | 1730 | 1730 | 890 | 955 | |
15 | Pearson | −0.499 ** | −0.018 | −0.056 | −0.031 | −0.048 | −0.228 ** | −0.203 ** | −0.527 ** | 0.143 ** | 0.213 ** | 0.187 ** | 0.371 ** | 0.213 ** | 0.187 ** | 1 | 0.953 ** |
Sign. | 0 | 0.542 | 0.053 | 0.287 | 0.102 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
N. cases | 1178 | 1178 | 1178 | 1178 | 1178 | 1178 | 1178 | 1173 | 1178 | 890 | 890 | 1174 | 890 | 890 | 1178 | 1178 | |
16 | Pearson | −0.520 ** | −0.009 | −0.057 * | −0.04 | −0.061 * | −0.256 ** | −0.238 ** | −0.566 ** | 0.148 ** | 0.244 ** | 0.217 ** | 0.405 ** | 0.244 ** | 0.217 ** | 0.953 ** | 1 |
Sign. | 0 | 0.745 | 0.045 | 0.16 | 0.032 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
N. cases | 1252 | 1252 | 1252 | 1252 | 1252 | 1252 | 1252 | 1247 | 1252 | 955 | 955 | 1248 | 955 | 955 | 1178 | 1252 |
Var. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Pearson | 1 | 0.330 ** | 0.343 ** | 0.038 | 0.097 ** | 0.384 ** | 0.227 ** | 0.811 ** | 0.205 ** | −0.602 ** | −0.229 ** | −0.801 ** | −0.602 ** | −0.229 ** | −0.459 ** | −0.490 ** |
Sign. | 0 | 0 | 0.072 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
N. cases | 2264 | 2264 | 2264 | 2264 | 2264 | 2264 | 2264 | 2255 | 2264 | 1726 | 1726 | 2256 | 1726 | 1726 | 2264 | 2264 | |
2 | Pearson | 0.330 ** | 1 | 0.723 ** | −0.322 ** | 0.031 | −0.006 | 0.028 | 0.409 ** | 0.029 | −0.153 ** | −0.082 ** | −0.419 ** | −0.153 ** | −0.082 ** | 0.027 | 0.011 |
Sign. | 0 | 0 | 0 | 0.144 | 0.778 | 0.178 | 0 | 0.167 | 0 | 0.001 | 0 | 0 | 0.001 | 0.207 | 0.597 | ||
N. cases | 2264 | 2264 | 2264 | 2264 | 2264 | 2264 | 2264 | 2255 | 2264 | 1726 | 1726 | 2256 | 1726 | 1726 | 2264 | 2264 | |
3 | Pearson | 0.343 ** | 0.723 ** | 1 | 0.404 ** | 0.027 | 0.446 ** | 0.078 ** | 0.397 ** | −0.147 ** | −0.439 ** | −0.534 ** | −0.427 ** | −0.439 ** | −0.534 ** | −0.095 ** | −0.119 ** |
Sign. | 0 | 0 | 0 | 0.196 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
N. cases | 2264 | 2264 | 2264 | 2264 | 2264 | 2264 | 2264 | 2255 | 2264 | 1726 | 1726 | 2256 | 1726 | 1726 | 2264 | 2264 | |
4 | Pearson | 0.038 | −0.322 ** | 0.404 ** | 1 | −0.004 | 0.581 ** | 0.087 ** | 0.005 | −0.142 ** | −0.400 ** | −0.572 ** | −0.044 * | −0.400 ** | −0.572 ** | −0.136 ** | −0.144 ** |
Sign. | 0.072 | 0 | 0 | 0.836 | 0 | 0 | 0.8 | 0 | 0 | 0 | 0.036 | 0 | 0 | 0 | 0 | ||
N. cases | 2264 | 2264 | 2264 | 2264 | 2264 | 2264 | 2264 | 2255 | 2264 | 1726 | 1726 | 2256 | 1726 | 1726 | 2264 | 2264 | |
5 | Pearson | 0.097 ** | 0.031 | 0.027 | −0.004 | 1 | 0.102 ** | 0.058 ** | 0.118 ** | 0.069 ** | −0.04 | −0.143 ** | −0.118 ** | −0.04 | −0.143 ** | −0.073 ** | −0.072 ** |
Sign. | 0 | 0.144 | 0.196 | 0.836 | 0 | 0.006 | 0 | 0.001 | 0.095 | 0 | 0 | 0.095 | 0 | 0.001 | 0.001 | ||
N. cases | 2264 | 2264 | 2264 | 2264 | 2264 | 2264 | 2264 | 2255 | 2264 | 1726 | 1726 | 2256 | 1726 | 1726 | 2264 | 2264 | |
6 | Pearson | 0.384 ** | −0.006 | 0.446 ** | 0.581 ** | 0.102 ** | 1 | 0.191 ** | 0.450 ** | 0.162 ** | −0.790 ** | −0.737 ** | −0.515 ** | −0.790 ** | −0.737 ** | −0.346 ** | −0.364 ** |
Sign. | 0 | 0.778 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
N. cases | 2264 | 2264 | 2264 | 2264 | 2264 | 2264 | 2264 | 2255 | 2264 | 1726 | 1726 | 2256 | 1726 | 1726 | 2264 | 2264 | |
7 | Pearson | 0.227 ** | 0.028 | 0.078 ** | 0.087 ** | 0.058 ** | 0.191 ** | 1 | 0.261 ** | 0.081 ** | −0.213 ** | −0.056 * | −0.233 ** | −0.213 ** | −0.056 * | −0.140 ** | −0.157 ** |
Sign. | 0 | 0.178 | 0 | 0 | 0.006 | 0 | 0 | 0 | 0 | 0.02 | 0 | 0 | 0.02 | 0 | 0 | ||
N. cases | 2264 | 2264 | 2264 | 2264 | 2264 | 2264 | 2264 | 2255 | 2264 | 1726 | 1726 | 2256 | 1726 | 1726 | 2264 | 2264 | |
8 | Pearson | 0.811 ** | 0.409 ** | 0.397 ** | 0.005 | 0.118 ** | 0.450 ** | 0.261 ** | 1 | 0.234 ** | −0.671 ** | −0.285 ** | −0.934 ** | −0.671 ** | −0.285 ** | −0.545 ** | −0.578 ** |
Sign. | 0 | 0 | 0 | 0.8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
N. cases | 2255 | 2255 | 2255 | 2255 | 2255 | 2255 | 2255 | 2255 | 2255 | 1718 | 1718 | 2255 | 1718 | 1718 | 2255 | 2255 | |
9 | Pearson | 0.205 ** | 0.029 | −0.147 ** | −0.142 ** | 0.069 ** | 0.162 ** | 0.081 ** | 0.234 ** | 1 | −0.261 ** | −0.076 ** | −0.294 ** | −0.261 ** | −0.076 ** | −0.100 ** | −0.093 ** |
Sign. | 0 | 0.167 | 0 | 0 | 0.001 | 0 | 0 | 0 | 0 | 0.002 | 0 | 0 | 0.002 | 0 | 0 | ||
N. cases | 2264 | 2264 | 2264 | 2264 | 2264 | 2264 | 2264 | 2255 | 2264 | 1726 | 1726 | 2256 | 1726 | 1726 | 2264 | 2264 | |
10 | Pearson | −0.602 ** | −0.153 ** | −0.439 ** | −0.400 ** | −0.04 | −0.790 ** | −0.213 ** | −0.671 ** | −0.261 ** | 1 | 0.620 ** | 0.706 ** | 10.000 ** | 0.620 ** | 0.380 ** | 0.412 ** |
Sign. | 0 | 0 | 0 | 0 | 0.095 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
N. cases | 1726 | 1726 | 1726 | 1726 | 1726 | 1726 | 1726 | 1718 | 1726 | 1726 | 1726 | 1718 | 1726 | 1726 | 1726 | 1726 | |
11 | Pearson | −0.229 ** | −0.082 ** | −0.534 ** | −0.572 ** | −0.143 ** | −0.737 ** | −0.056 * | −0.285 ** | −0.076 ** | 0.620 ** | 1 | 0.298 ** | 0.620 ** | 10.000 ** | 0.340 ** | 0.365 ** |
Sign. | 0 | 0.001 | 0 | 0 | 0 | 0 | 0.02 | 0 | 0.002 | 0 | 0 | 0 | 0 | 0 | 0 | ||
N. cases | 1726 | 1726 | 1726 | 1726 | 1726 | 1726 | 1726 | 1718 | 1726 | 1726 | 1726 | 1718 | 1726 | 1726 | 1726 | 1726 | |
12 | Pearson | −0.801 ** | −0.419 ** | −0.427 ** | −0.044 * | −0.118 ** | −0.515 ** | −0.233 ** | −0.934 ** | −0.294 ** | 0.706 ** | 0.298 ** | 1 | 0.706 ** | 0.298 ** | 0.467 ** | 0.495 ** |
Sign. | 0 | 0 | 0 | 0.036 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
N. cases | 2256 | 2256 | 2256 | 2256 | 2256 | 2256 | 2256 | 2255 | 2256 | 1718 | 1718 | 2256 | 1718 | 1718 | 2256 | 2256 | |
13 | Pearson | −0.602 ** | −0.153 ** | −0.439 ** | −0.400 ** | −0.04 | −0.790 ** | −0.213 ** | −0.671 ** | −0.261 ** | 10.000 ** | 0.620 ** | 0.706 ** | 1 | 0.620 ** | 0.380 ** | 0.412 ** |
Sign. | 0 | 0 | 0 | 0 | 0.095 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
N. cases | 1726 | 1726 | 1726 | 1726 | 1726 | 1726 | 1726 | 1718 | 1726 | 1726 | 1726 | 1718 | 1726 | 1726 | 1726 | 1726 | |
14 | Pearson | −0.229 ** | −0.082 ** | −0.534 ** | −0.572 ** | −0.143 ** | −0.737 ** | −0.056 * | −0.285 ** | −0.076 ** | 0.620 ** | 10.000 ** | 0.298 ** | 0.620 ** | 1 | 0.340 ** | 0.365 ** |
Sign. | 0 | 0.001 | 0 | 0 | 0 | 0 | 0.02 | 0 | 0.002 | 0 | 0 | 0 | 0 | 0 | 0 | ||
N. cases | 1726 | 1726 | 1726 | 1726 | 1726 | 1726 | 1726 | 1718 | 1726 | 1726 | 1726 | 1718 | 1726 | 1726 | 1726 | 1726 | |
15 | Pearson | −0.459 ** | 0.027 | −0.095 ** | −0.136 ** | −0.073 ** | −0.346 ** | −0.140 ** | −0.545 ** | −0.100 ** | 0.380 ** | 0.340 ** | 0.467 ** | 0.380 ** | 0.340 ** | 1 | 0.949 ** |
Sign. | 0 | 0.207 | 0 | 0 | 0.001 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
N. cases | 2264 | 2264 | 2264 | 2264 | 2264 | 2264 | 2264 | 2255 | 2264 | 1726 | 1726 | 2256 | 1726 | 1726 | 2264 | 2264 | |
16 | Pearson | −0.490 ** | 0.011 | −0.119 ** | −0.144 ** | −0.072 ** | −0.364 ** | −0.157 ** | −0.578 ** | −0.093 ** | 0.412 ** | 0.365 ** | 0.495 ** | 0.412 ** | 0.365 ** | 0.949 ** | 1 |
Sign. | 0 | 0.597 | 0 | 0 | 0.001 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
N. cases | 2264 | 2264 | 2264 | 2264 | 2264 | 2264 | 2264 | 2255 | 2264 | 1726 | 1726 | 2256 | 1726 | 1726 | 2264 | 2264 |
Appendix C
Variables | Forest% | NDVI_MEAN | Precipitation | LST_DAY | LST_NIGHT | |
---|---|---|---|---|---|---|
Forest% | Pearson | 1 | 0.846 ** | 0.436 ** | −0.765 ** | −0.229 ** |
Sig. | 0 | 0 | 0 | 0 | ||
N. cases | 2215 | 2215 | 2215 | 2215 | 2215 | |
NDVI_MEAN | Pearson | 0.846 ** | 1 | 0.438 ** | −0.797 ** | −0.314 ** |
Sig. | 0 | 0 | 0 | 0 | ||
N. cases | 2215 | 2215 | 2215 | 2215 | 2215 | |
Precipitation | Pearson | 0.436 ** | 0.438 ** | 1 | −0.417 ** | −0.001 |
Sig. | 0 | 0 | 0 | 0.963 | ||
N. cases | 2215 | 2215 | 2215 | 2215 | 2215 | |
LST_DAY | Pearson | −0.765 ** | −0.797 ** | −0.417 ** | 1 | 0.402 ** |
Sig. | 0 | 0 | 0 | 0 | ||
N. cases | 2215 | 2215 | 2215 | 2215 | 2215 | |
LST_NIGHT | Pearson | −0.229 ** | −0.314 ** | −0.001 | 0.402 ** | 1 |
Sig. | 0 | 0 | 0.963 | 0 | ||
N. cases | 2215 | 2215 | 2215 | 2215 | 2215 |
Variables | Analysis | Forest% | NDVI_MEAN | Precipitation | LST_DAY | LST_NIGHT |
---|---|---|---|---|---|---|
Forest% | Pearson | 1 | 0.819 ** | −0.361 ** | −0.721 ** | −0.334 ** |
Sig. | 0 | 0 | 0 | 0 | ||
N. cases | 2220 | 2220 | 2220 | 2220 | 2220 | |
NDVI_MEAN | Pearson | 0.819 ** | 1 | −0.349 ** | −0.759 ** | −0.408 ** |
Sig. | 0 | 0 | 0 | 0 | ||
N. cases | 2220 | 2220 | 2220 | 2220 | 2220 | |
Precipitation | Pearson | −0.361 ** | −0.349 ** | 1 | 0.364 ** | 0.178 ** |
Sig. | 0 | 0 | 0 | 0 | ||
N. cases | 2220 | 2220 | 2220 | 2220 | 2220 | |
LST_DAY | Pearson | −0.721 ** | −0.759 ** | 0.364 ** | 1 | 0.566 ** |
Sig. | 0 | 0 | 0 | 0 | ||
N. cases | 2220 | 2220 | 2220 | 2220 | 2220 | |
LST_NIGHT | Pearson | −0.334 ** | −0.408 ** | 0.178 ** | 0.566 ** | 1 |
Sig. | 0 | 0 | 0 | 0 | ||
N. cases | 2220 | 2220 | 2220 | 2220 | 2220 |
Variables | Analysis | Forest% | NDVI_MEAN | Precipitation | LST_DAY | LST_NIGHT |
---|---|---|---|---|---|---|
Forest% | Pearson | 1 | 0.831 ** | 0.218 ** | −0.693 ** | −0.340 ** |
Sig. | 0 | 0 | 0 | 0 | ||
N. cases | 2217 | 2217 | 2217 | 2217 | 2217 | |
NDVI_MEAN | Pearson | 0.831 ** | 1 | 0.235 ** | −0.755 ** | −0.439 ** |
Sig. | 0 | 0 | 0 | 0 | ||
N. cases | 2217 | 2217 | 2217 | 2217 | 2217 | |
Precipitation | Pearson | 0.218 ** | 0.235 ** | 1 | −0.285 ** | −0.088 ** |
Sig. | 0 | 0 | 0 | 0 | ||
N. cases | 2217 | 2217 | 2217 | 2217 | 2217 | |
LST_DAY | Pearson | −0.693 ** | −0.755 ** | −0.285 ** | 1 | 0.644 ** |
Sig. | 0 | 0 | 0 | 0 | ||
N. cases | 2217 | 2217 | 2217 | 2217 | 2217 | |
LST_NIGHT | Pearson | −0.340 ** | −0.439 ** | −0.088 ** | 0.644 ** | 1 |
Sig. | 0 | 0 | 0 | 0 | ||
N. cases | 2217 | 2217 | 2217 | 2217 | 2217 |
Appendix D
Var | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Pearson | 1 | 0.999 ** | 0.999 ** | −0.111 ** | 0.328 ** | 0.342 ** | 0.038 | 0.097 ** | 0.385 ** | 0.227 ** | 0.811 ** | 0.204 ** | −0.602 ** | −0.228 ** | −0.801 ** | −0.602 ** | −0.228 ** | −0.460 ** | −0.490 ** | 0.043 | −0.197 ** |
Sig. | 0 | 0 | 0 | 0 | 0 | 0 | 0.068 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.076 | 0 | |
N. cases | 2267 | 2267 | 2267 | 2267 | 2267 | 2267 | 2267 | 2267 | 2267 | 2267 | 2258 | 2267 | 1728 | 1728 | 2259 | 1728 | 1728 | 2267 | 2267 | 1728 | 1728 | |
2 | Pearson | 0.999 ** | 1 | 0.998 ** | −0.110 ** | 0.327 ** | 0.342 ** | 0.039 | 0.097 ** | 0.384 ** | 0.227 ** | 0.810 ** | 0.203 ** | −0.601 ** | −0.229 ** | −0.799 ** | −0.601 ** | −0.229 ** | −0.460 ** | −0.490 ** | 0.043 | −0.196 ** |
Sig. | 0 | 0 | 0 | 0 | 0 | 0.061 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.076 | 0 | ||
N. cases | 2267 | 2267 | 2267 | 2267 | 2267 | 2267 | 2267 | 2267 | 2267 | 2267 | 2258 | 2267 | 1728 | 1728 | 2259 | 1728 | 1728 | 2267 | 2267 | 1728 | 1728 | |
3 | Pearson | 0.999 ** | 0.998 ** | 1 | −0.117 ** | 0.323 ** | 0.336 ** | 0.036 | 0.097 ** | 0.382 ** | 0.230 ** | 0.809 ** | 0.205 ** | −0.599 ** | −0.226 ** | −0.796 ** | −0.599 ** | −0.226 ** | −0.458 ** | −0.490 ** | 0.042 | −0.192 ** |
Sig. | 0 | 0 | 0 | 0 | 0 | 0.086 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.078 | 0 | ||
N. cases | 2267 | 2267 | 2267 | 2267 | 2267 | 2267 | 2267 | 2267 | 2267 | 2267 | 2258 | 2267 | 1728 | 1728 | 2259 | 1728 | 1728 | 2267 | 2267 | 1728 | 1728 | |
4 | Pearson | −0.111 ** | −0.110 ** | −0.117 ** | 1 | −0.029 | −0.04 | −0.006 | −0.016 | −0.051 * | −0.029 | −0.087 ** | 0.017 | 0.227 ** | 0.076 ** | 0.073 ** | 0.227 ** | 0.076 ** | 0.070 ** | 0.079 ** | −0.026 | 0.069 ** |
Sig. | 0 | 0 | 0 | 0.174 | 0.06 | 0.771 | 0.438 | 0.015 | 0.171 | 0 | 0.428 | 0 | 0.002 | 0 | 0 | 0.002 | 0.001 | 0 | 0.284 | 0.004 | ||
N. cases | 2267 | 2267 | 2267 | 2267 | 2267 | 2267 | 2267 | 2267 | 2267 | 2267 | 2258 | 2267 | 1728 | 1728 | 2259 | 1728 | 1728 | 2267 | 2267 | 1728 | 1728 | |
5 | Pearson | 0.328 ** | 0.327 ** | 0.323 ** | −0.029 | 1 | 0.723 ** | −0.322 ** | 0.031 | −0.006 | 0.028 | 0.408 ** | 0.028 | −0.152 ** | −0.082 ** | −0.418 ** | −0.152 ** | −0.082 ** | 0.027 | 0.011 | 0.244 ** | −0.708 ** |
Sig. | 0 | 0 | 0 | 0.174 | 0 | 0 | 0.145 | 0.772 | 0.183 | 0 | 0.177 | 0 | 0.001 | 0 | 0 | 0.001 | 0.202 | 0.592 | 0 | 0 | ||
N. cases | 2267 | 2267 | 2267 | 2267 | 2267 | 2267 | 2267 | 2267 | 2267 | 2267 | 2258 | 2267 | 1728 | 1728 | 2259 | 1728 | 1728 | 2267 | 2267 | 1728 | 1728 | |
6 | Pearson | 0.342 ** | 0.342 ** | 0.336 ** | −0.04 | 0.723 ** | 1 | 0.403 ** | 0.027 | 0.446 ** | 0.077 ** | 0.397 ** | −0.148 ** | −0.438 ** | −0.534 ** | −0.427 ** | −0.438 ** | −0.534 ** | −0.095 ** | −0.119 ** | −0.200 ** | −0.487 ** |
Sig. | 0 | 0 | 0 | 0.06 | 0 | 0 | 0.195 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
N. cases | 2267 | 2267 | 2267 | 2267 | 2267 | 2267 | 2267 | 2267 | 2267 | 2267 | 2258 | 2267 | 1728 | 1728 | 2259 | 1728 | 1728 | 2267 | 2267 | 1728 | 1728 | |
7 | Pearson | 0.038 | 0.039 | 0.036 | −0.006 | −0.322 ** | 0.403 ** | 1 | −0.004 | 0.581 ** | 0.087 ** | 0.006 | −0.142 ** | −0.400 ** | −0.572 ** | −0.044 * | −0.400 ** | −0.572 ** | −0.136 ** | −0.145 ** | −0.552 ** | 0.280 ** |
Sig. | 0.068 | 0.061 | 0.086 | 0.771 | 0 | 0 | 0.84 | 0 | 0 | 0.787 | 0 | 0 | 0 | 0.035 | 0 | 0 | 0 | 0 | 0 | 0 | ||
N. cases | 2267 | 2267 | 2267 | 2267 | 2267 | 2267 | 2267 | 2267 | 2267 | 2267 | 2258 | 2267 | 1728 | 1728 | 2259 | 1728 | 1728 | 2267 | 2267 | 1728 | 1728 | |
8 | Pearson | 0.097 ** | 0.097 ** | 0.097 ** | −0.016 | 0.031 | 0.027 | −0.004 | 1 | 0.102 ** | 0.058 ** | 0.118 ** | 0.068 ** | −0.04 | −0.143 ** | −0.118 ** | −0.04 | −0.143 ** | −0.073 ** | −0.072 ** | 0.069 ** | −0.069 ** |
Sig. | 0 | 0 | 0 | 0.438 | 0.145 | 0.195 | 0.84 | 0 | 0.006 | 0 | 0.001 | 0.097 | 0 | 0 | 0.097 | 0 | 0 | 0.001 | 0.004 | 0.004 | ||
N. cases | 2267 | 2267 | 2267 | 2267 | 2267 | 2267 | 2267 | 2267 | 2267 | 2267 | 2258 | 2267 | 1728 | 1728 | 2259 | 1728 | 1728 | 2267 | 2267 | 1728 | 1728 | |
9 | Pearson | 0.385 ** | 0.384 ** | 0.382 ** | −0.051 * | −0.006 | 0.446 ** | 0.581 ** | 0.102 ** | 1 | 0.191 ** | 0.451 ** | 0.161 ** | −0.790 ** | −0.737 ** | −0.516 ** | −0.790 ** | −0.737 ** | −0.346 ** | −0.365 ** | −0.541 ** | 0.064 ** |
Sig. | 0 | 0 | 0 | 0.015 | 0.772 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.008 | ||
N. cases | 2267 | 2267 | 2267 | 2267 | 2267 | 2267 | 2267 | 2267 | 2267 | 2267 | 2258 | 2267 | 1728 | 1728 | 2259 | 1728 | 1728 | 2267 | 2267 | 1728 | 1728 | |
10 | Pearson | 0.227 ** | 0.227 ** | 0.230 ** | −0.029 | 0.028 | 0.077 ** | 0.087 ** | 0.058 ** | 0.191 ** | 1 | 0.261 ** | 0.081 ** | −0.213 ** | −0.056 * | −0.234 ** | −0.213 ** | −0.056 * | −0.140 ** | −0.158 ** | −0.011 | 0.007 |
Sig. | 0 | 0 | 0 | 0.171 | 0.183 | 0 | 0 | 0.006 | 0 | 0 | 0 | 0 | 0.02 | 0 | 0 | 0.02 | 0 | 0 | 0.65 | 0.773 | ||
N. cases | 2267 | 2267 | 2267 | 2267 | 2267 | 2267 | 2267 | 2267 | 2267 | 2267 | 2258 | 2267 | 1728 | 1728 | 2259 | 1728 | 1728 | 2267 | 2267 | 1728 | 1728 | |
11 | Pearson | 0.811 ** | 0.810 ** | 0.809 ** | −0.087 ** | 0.408 ** | 0.397 ** | 0.006 | 0.118 ** | 0.451 ** | 0.261 ** | 1 | 0.233 ** | −0.671 ** | −0.285 ** | −0.934 ** | −0.671 ** | −0.285 ** | −0.546 ** | −0.578 ** | 0.002 | −0.245 ** |
Sig. | 0 | 0 | 0 | 0 | 0 | 0 | 0.787 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.925 | 0 | ||
N. cases | 2258 | 2258 | 2258 | 2258 | 2258 | 2258 | 2258 | 2258 | 2258 | 2258 | 2258 | 2258 | 1720 | 1720 | 2258 | 1720 | 1720 | 2258 | 2258 | 1720 | 1720 | |
12 | Pearson | 0.204 ** | 0.203 ** | 0.205 ** | 0.017 | 0.028 | −0.148 ** | −0.142 ** | 0.068 ** | 0.161 ** | 0.081 ** | 0.233 ** | 1 | −0.261 ** | −0.076 ** | −0.294 ** | −0.261 ** | −0.076 ** | −0.098 ** | −0.091 ** | 0.021 | −0.024 |
Sig. | 0 | 0 | 0 | 0.428 | 0.177 | 0 | 0 | 0.001 | 0 | 0 | 0 | 0 | 0.002 | 0 | 0 | 0.002 | 0 | 0 | 0.376 | 0.319 | ||
N. cases | 2267 | 2267 | 2267 | 2267 | 2267 | 2267 | 2267 | 2267 | 2267 | 2267 | 2258 | 2267 | 1728 | 1728 | 2259 | 1728 | 1728 | 2267 | 2267 | 1728 | 1728 | |
13 | Pearson | −0.602 ** | −0.601 ** | −0.599 ** | 0.227 ** | −0.152 ** | −0.438 ** | −0.400 ** | −0.04 | −0.790 ** | −0.213 ** | −0.671 ** | −0.261 ** | 1 | 0.620 ** | 0.706 ** | 10.000 ** | 0.620 ** | 0.380 ** | 0.411 ** | 0.416 ** | 0.026 |
Sig. | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.097 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.285 | ||
N. cases | 1728 | 1728 | 1728 | 1728 | 1728 | 1728 | 1728 | 1728 | 1728 | 1728 | 1720 | 1728 | 1728 | 1728 | 1720 | 1728 | 1728 | 1728 | 1728 | 1728 | 1728 | |
14 | Pearson | −0.228 ** | −0.229 ** | −0.226 ** | 0.076 ** | −0.082 ** | −0.534 ** | −0.572 ** | −0.143 ** | −0.737 ** | −0.056 * | −0.285 ** | −0.076 ** | 0.620 ** | 1 | 0.298 ** | 0.620 ** | 10.000 ** | 0.339 ** | 0.364 ** | 0.548 ** | 0.186 ** |
Sig. | 0 | 0 | 0 | 0.002 | 0.001 | 0 | 0 | 0 | 0 | 0.02 | 0 | 0.002 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
N. cases | 1728 | 1728 | 1728 | 1728 | 1728 | 1728 | 1728 | 1728 | 1728 | 1728 | 1720 | 1728 | 1728 | 1728 | 1720 | 1728 | 1728 | 1728 | 1728 | 1728 | 1728 | |
15 | Pearson | −0.801 ** | −0.799 ** | −0.796 ** | 0.073 ** | −0.418 ** | −0.427 ** | −0.044 * | −0.118 ** | −0.516 ** | −0.234 ** | −0.934 ** | −0.294 ** | 0.706 ** | 0.298 ** | 1 | 0.706 ** | 0.298 ** | 0.468 ** | 0.495 ** | 0.003 | 0.240 ** |
Sig. | 0 | 0 | 0 | 0 | 0 | 0 | 0.035 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.895 | 0 | ||
N. cases | 2259 | 2259 | 2259 | 2259 | 2259 | 2259 | 2259 | 2259 | 2259 | 2259 | 2258 | 2259 | 1720 | 1720 | 2259 | 1720 | 1720 | 2259 | 2259 | 1720 | 1720 | |
16 | Pearson | −0.602 ** | −0.601 ** | −0.599 ** | 0.227 ** | −0.152 ** | −0.438 ** | −0.400 ** | −0.04 | −0.790 ** | −0.213 ** | −0.671 ** | −0.261 ** | 10.000 ** | 0.620 ** | 0.706 ** | 1 | 0.620 ** | 0.380 ** | 0.411 ** | 0.416 ** | 0.026 |
Sig. | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.097 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.285 | ||
N. cases | 1728 | 1728 | 1728 | 1728 | 1728 | 1728 | 1728 | 1728 | 1728 | 1728 | 1720 | 1728 | 1728 | 1728 | 1720 | 1728 | 1728 | 1728 | 1728 | 1728 | 1728 | |
17 | Pearson | −0.228 ** | −0.229 ** | −0.226 ** | 0.076 ** | −0.082 ** | −0.534 ** | −0.572 ** | −0.143 ** | −0.737 ** | −0.056 * | −0.285 ** | −0.076 ** | 0.620 ** | 10.000 ** | 0.298 ** | 0.620 ** | 1 | 0.339 ** | 0.364 ** | 0.548 ** | 0.186 ** |
Sig. | 0 | 0 | 0 | 0.002 | 0.001 | 0 | 0 | 0 | 0 | 0.02 | 0 | 0.002 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
N. cases | 1728 | 1728 | 1728 | 1728 | 1728 | 1728 | 1728 | 1728 | 1728 | 1728 | 1720 | 1728 | 1728 | 1728 | 1720 | 1728 | 1728 | 1728 | 1728 | 1728 | 1728 | |
18 | Pearson | −0.460 ** | −0.460 ** | −0.458 ** | 0.070 ** | 0.027 | −0.095 ** | −0.136 ** | −0.073 ** | −0.346 ** | −0.140 ** | −0.546 ** | −0.098 ** | 0.380 ** | 0.339 ** | 0.468 ** | 0.380 ** | 0.339 ** | 1 | 0.949 ** | 0.244 ** | −0.007 |
Sig. | 0 | 0 | 0 | 0.001 | 0.202 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.784 | ||
N. cases | 2267 | 2267 | 2267 | 2267 | 2267 | 2267 | 2267 | 2267 | 2267 | 2267 | 2258 | 2267 | 1728 | 1728 | 2259 | 1728 | 1728 | 2267 | 2267 | 1728 | 1728 | |
19 | Pearson | −0.490 ** | −0.490 ** | −0.490 ** | 0.079 ** | 0.011 | −0.119 ** | −0.145 ** | −0.072 ** | −0.365 ** | −0.158 ** | −0.578 ** | −0.091 ** | 0.411 ** | 0.364 ** | 0.495 ** | 0.411 ** | 0.364 ** | 0.949 ** | 1 | 0.247 ** | −0.006 |
Sig. | 0 | 0 | 0 | 0 | 0.592 | 0 | 0 | 0.001 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.808 | ||
N. cases | 2267 | 2267 | 2267 | 2267 | 2267 | 2267 | 2267 | 2267 | 2267 | 2267 | 2258 | 2267 | 1728 | 1728 | 2259 | 1728 | 1728 | 2267 | 2267 | 1728 | 1728 | |
20 | Pearson | 0.043 | 0.043 | 0.042 | −0.026 | 0.244 ** | −0.200 ** | −0.552 ** | 0.069 ** | −0.541 ** | −0.011 | 0.002 | 0.021 | 0.416 ** | 0.548 ** | 0.003 | 0.416 ** | 0.548 ** | 0.244 ** | 0.247 ** | 1 | −0.172 ** |
Sig. | 0.076 | 0.076 | 0.078 | 0.284 | 0 | 0 | 0 | 0.004 | 0 | 0.65 | 0.925 | 0.376 | 0 | 0 | 0.895 | 0 | 0 | 0 | 0 | 0 | ||
N. cases | 1728 | 1728 | 1728 | 1728 | 1728 | 1728 | 1728 | 1728 | 1728 | 1728 | 1720 | 1728 | 1728 | 1728 | 1720 | 1728 | 1728 | 1728 | 1728 | 1728 | 1728 | |
21 | Pearson | −0.197 ** | −0.196 ** | −0.192 ** | 0.069 ** | −0.708 ** | −0.487 ** | 0.280 ** | −0.069 ** | 0.064 ** | 0.007 | −0.245 ** | −0.024 | 0.026 | 0.186 ** | 0.240 ** | 0.026 | 0.186 ** | −0.007 | −0.006 | −0.172 ** | 1 |
Sig. | 0 | 0 | 0 | 0.004 | 0 | 0 | 0 | 0.004 | 0.008 | 0.773 | 0 | 0.319 | 0.285 | 0 | 0 | 0.285 | 0 | 0.784 | 0.808 | 0 | ||
N. cases | 1728 | 1728 | 1728 | 1728 | 1728 | 1728 | 1728 | 1728 | 1728 | 1728 | 1720 | 1728 | 1728 | 1728 | 1720 | 1728 | 1728 | 1728 | 1728 | 1728 | 1728 |
References
- Liu, M. Analysis of Forest Resource Changes and Influencing Factors in the Yellow River Basin (Gansu Section) Integrating Multi-Source Remote Sensing Data. Master’s Thesis, Lanzhou University of Technology, Lanzhou, China, 2023. [Google Scholar]
- Feng, D.R.; Fu, M.C.; Sun, Y.Y. How Large-Scale Anthropogenic Activities Influence Vegetation Cover Change in China? A Review. Forests 2021, 12, 320. [Google Scholar] [CrossRef]
- Aubinet, M.; Grelle, A.; Ibrom, A. Estimates of the annual net carbon and water exchange of forests: The EUROFLUX methodology. In Advances in Ecological Research; Academic Press: Cambridge, MA, USA, 1999; Volume 30, pp. 113–175. [Google Scholar]
- Yang, R. Research on Remote Sensing Forest Classification Based on ALOS Data. Master’s Thesis, Capital Normal University, Beijing, China, 2013. [Google Scholar]
- Li, C.; Zhu, T.; Zhou, M. Study on spatiotemporal changes in vegetation net primary productivity and its influencing factors in the Hexi Corridor. Acta Ecol. Sin. 2021, 41, 1931–1943. [Google Scholar]
- IPCC. Climate Change 2021. The Physical Science Basis. In Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2021; pp. 1–3949. [Google Scholar]
- Jiang, T.; Zhai, J.; Luo, Y. Progress in climate change impact adaptation and vulnerability assessment reports: New understanding of IPCC AR5 to AR6. J. Atmos. Sci. 2022, 45, 502–511. [Google Scholar]
- Chen, X.; Wang, Z. Research and practice on dynamic monitoring of forest resources in Wangqing County based on remote sensing technology. Surv. Mapp. Spat. Geogr. Inf. 2016, 39, 125–129. [Google Scholar]
- Shi, J.; Lei, Y.; Zhao, T. Research progress on forest resources sampling survey techniques. For. Sci. Res. 2009, 22, 101–108. [Google Scholar]
- Jin, K.; Wang, F.; Han, C. Impact of climate change and human activities on vegetation NDVI changes in China from 1982 to 2015. Acta Geogr. Sin. 2020, 75, 961–974. [Google Scholar]
- Achard, F.; Estreguil, C. Forest classification of Southeast Asia using NOAA AVHRR data. Remote Sens. Environ. 1995, 54, 198–208. [Google Scholar] [CrossRef]
- Liu, A.; Liu, Z.; Wang, J. Research on forest mapping in China based on PCA transformation and neuron network classification method. Yangtze River Basin Resour. Environ. 2006, 15, 19–24. [Google Scholar]
- Jing, X.; Wang, J.; Huang, W.; Liu, L.; Wang, J. Study on Forest Vegetation Classification Based on Multi-Temporal Remote Sensing Images. Comput. Comput. Technol. Agric. II 2009, 293, 115. [Google Scholar]
- Chen, J.; Chen, J.; Liao, A. Global land cover mapping at 30 m resolution: A POK-based operational approach. ISPRS J. Photogramm. Remote Sens. 2015, 103, 7–27. [Google Scholar] [CrossRef]
- Yang, C.; He, R.; Luo, S. Analysis of the tropical forest vegetation change in Xishuangbanna of PR China by using LANDSAT TM[C]//MIPPR 2007: Automatic Target Recognition and Image Analysis; and Multispectral Image Acquisition. SPIE 2007, 6786, 956–959. [Google Scholar]
- Pekkarinen, A.; Reithmaier, L.; Strobl, P. Pan-European forest/non-forest mapping with Landsat ETM+ and CORINE Land Cover 2000 data. ISPRS J. Photogramm. Remote Sens. 2009, 64, 171–183. [Google Scholar] [CrossRef]
- Xiang, J.; Xing, Y.; Wei, W. Dynamic Detection of Forest Change in Hunan Province Based on Sentinel-2 Images and Deep Learning. Remote Sens. 2023, 15, 628. [Google Scholar] [CrossRef]
- CORINE Land Cover. Available online: https://land.copernicus.eu/en/products/corine-land-cover (accessed on 15 March 2024).
- Xiao, Z.; Liu, L.; Chen, X.; Gao, Y.; Xie, S.; Mi, J. GLC_FCS30: Global land-cover product with fine classification system at 30 m using time-series Landsat imagery. Earth Syst. Sci. Data 2021, 13, 2753–2776. [Google Scholar]
- Wang, J.; Zhao, J.; Li, C. Spatiotemporal pattern of anthropogenic impacts on vegetation cover in China from 2001 to 2015. Acta Geogr. Sin. 2019, 74, 504–519. [Google Scholar]
- He, H.; Zhang, B.; Hou, Q. Change characteristics of normalized vegetation index (NDVI) and response to climate change in northern China from 1982 to 2015. J. Ecol. Rural Environ. 2020, 36, 70–80. [Google Scholar]
- Jin, K. Spatiotemporal Changes in Vegetation Coverage in China and Its Relationship with Climate and Human Activities. Master’s Thesis, Northwest A&F University, Shanxi, China, 2019. [Google Scholar]
- Jiang, L.L.; Guli, J.; Bao, A. Vegetation dynamics and responses to climate change and human activities in Central Asia. Sci. Total Environ. 2017, 599–600, 967–980. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Liu, Z.; Jiao, K. Spatiotemporal dynamics of NDVI and its driving factors in Northeastern forests from 2000 to 2017. J. Ecol. 2020, 39, 2878–2886. [Google Scholar]
- Zhang, X.; Roca, J.; Arellano, B. Evolution of ecological patterns of land use changes in European metropolitan areas. In Proceedings of the Remote Sensing Technologies and Applications in Urban Environments VII, Proceedings of SPIE, Berlin, Germany, 26 October 2022. [Google Scholar]
- Tian, R. A Comprehensive Study on the Impact of Climate Change on NDVI in the Forests of ParlungZangbo and Zayu River Basins. Master’s Thesis, Tibet Agricultural and Animal Husbandry University, Linzhi, China, 2023. [Google Scholar]
- Smith, T.M.; Shugart, H.H.; Halpin, P.N. Computer models of forest dynamics and global changes in the environment. In Responses of Forest Ecosystems to Environmental Changes; Springer: Dordrecht, The Netherlands, 1992; pp. 91–102. [Google Scholar]
- Neilson, R.P. Vegetation redistribution: A possible biosphere source of CO2 during climatic change. Water Air Soil Pollut. 1993, 70, 659–673. [Google Scholar] [CrossRef]
- Cao, H.; Hua, Y.; Liang, X.; Long, Z.; Qi, J.; Wen, D.; Nathan, J.R.; Su, H.; Jiang, G. Wavelet analysis reveals mismatch between temperate forest plant leaf phenology and Siberian roe deer molt under climate warming. In Proceedings of the Collection of Abstracts of Papers from the 16th National Academic Symposium on Wildlife Ecology and Resource Protection, Yichang, China, 26 August 2023. [Google Scholar]
- Hu, D.J.; Li, B.S.; Sa, L.L. Vegetation dynamics and its responses to drought in Ordos Plateau. Sci. Surv. Mapp. 2019, 43, 49–58. [Google Scholar]
- Roca, J.; Arellano, B. Urban structure, polycentrism and sprawl: The examples of Madrid and Barcelona. City Territory Territ. Stud. 2011, 168, 299–321. [Google Scholar]
- Roca, J.; Arellano, B. Effects of urban greenery on health. A study from remote sensing. In Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Nice, France, 11 June 2022. [Google Scholar]
- Bai, J. Study on the Spatial Pattern and Dynamics of Vegetation Landscape in Wenlue River Basin of Guandi Mountain Forest Area. Master’s Thesis, Shanxi Agricultural University, Taiyuan, China, 2004. [Google Scholar]
- Hu, W. Study on Landscape Pattern and Stability of Hani Terraces in Yuanyang. Ph.D. Thesis, Kunming University of Science and Technology, Kunming, China, 2009. [Google Scholar]
- Wang, Y. Analysis of rural land use landscape pattern supported by geography technology—A case study of Macheng City, Hubei Province. Urban Surv. 2014, 6, 4–8. [Google Scholar]
- E erdun. Impact of Land Use and Landscape Pattern Changes on Watershed Erosion and Sediment Production. Master’s Thesis, North China Electric Power University, Beijing, China, 2015. [Google Scholar]
- Arellano, B.; Roca, J.; Serra, C.; Martínez, M.; Biere, R.; Lana, F. Heat Waves in the city of Barcelona: 1971–2020. ACE Archit. City Environ. 2022, 17, 11684. [Google Scholar]
Type | Factors |
---|---|
Natural factors | Longitude |
Latitude | |
Distance from coastline | |
Orientation | |
Altitude | |
NDVI | |
Precipitation | |
LST | |
Human activity | NDBI |
Urban heat island effect | |
Impermeable area | |
Artificial area |
Forest Species | 2006 | 2012 | 2018 |
---|---|---|---|
Broad-leaved | 1 | 1 | 1 |
Coniferous | 0.43 | 0.44 | 0.44 |
Mixed | 0 | 0 | 0 |
Independent Variable b | Model_2006 a | Model_2012 a | Model_2018 a | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
B | Beta | t | Sig. | B | Beta | t | Sig. | B | Beta | t | Sig. | |
Constant | −1672.13 | - | −1.73 | 0.08 | −1148.61 | - | −0.93 | 0.35 | −3620.67 | - | −2.92 | 0.00 |
Longitude | 0.00 | −0.22 | −2.41 | 0.02 | 0.00 | −0.11 | −0.84 | 0.40 | 0.00 | −0.30 | −2.55 | 0.01 |
Latitude | 0.00 | 0.16 | 1.60 | 0.11 | 0.00 | 0.11 | 0.82 | 0.41 | 0.00 | 0.36 | 2.80 | 0.01 |
Distance from coastline | 0.00 | 0.01 | 0.17 | 0.87 | 0.00 | 0.01 | 0.06 | 0.95 | 0.00 | −0.17 | −2.08 | 0.04 |
Orientation | 0.00 | 0.00 | 0.25 | 0.81 | 0.02 | 0.02 | 1.19 | 0.24 | 0.01 | 0.01 | 0.36 | 0.72 |
Altitude | −0.02 | −0.13 | −4.83 | 0.00 | −0.01 | −0.03 | −0.77 | 0.44 | −0.02 | −0.14 | −4.52 | 0.00 |
Slope | 1.55 | 0.02 | 1.13 | 0.26 | 1.93 | 0.01 | 0.56 | 0.58 | 1.63 | 0.02 | 1.12 | 0.26 |
NDVI_MEAN | 106.83 | 0.41 | 9.91 | 0.00 | 128.94 | 0.47 | 8.43 | 0.00 | 95.67 | 0.36 | 8.52 | 0.00 |
Precipitation | 3.41 | 0.07 | 1.33 | 0.18 | −2.20 | −0.05 | −1.72 | 0.09 | 1.30 | 0.04 | 1.91 | 0.06 |
LST_NIGHT | 2.68 | 0.10 | 3.79 | 0.00 | −1.99 | −0.12 | −3.32 | 0.00 | 3.09 | 0.10 | 3.97 | 0.00 |
NDBI | −60.94 | −0.29 | −7.23 | 0.00 | 4.18 | 0.14 | 3.69 | 0.00 | −79.35 | −0.38 | −8.93 | 0.00 |
UHIE_DAY | −3.90 | −0.22 | −9.19 | 0.00 | −61.75 | −0.24 | −4.63 | 0.00 | −2.79 | −0.17 | −5.82 | 0.00 |
Impermeable area | −3.05 | −0.02 | −0.46 | 0.64 | 1.01 | 0.01 | 0.13 | 0.90 | 6.44 | 0.04 | 0.89 | 0.37 |
Artificial area | −12.96 | −0.08 | −1.99 | 0.05 | −19.13 | −0.15 | −2.46 | 0.01 | −18.49 | −0.12 | −2.64 | 0.01 |
Independent Variable | Model_2006 a | Model_2012 a | Model_2018 a | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
B | Beta | t | Sig. | B | Beta | t | Sig. | B | Beta | t | Sig. | |
Constant | 1.44 | - | 28.35 | 0.00 | 1.73 | - | 48.38 | 0.00 | 1.58 | - | 38.94 | 0 |
Precipitation | 0.03 | 0.13 | 9.30 | 0.00 | −0.02 | −0.08 | −5.59 | 0.00 | 0.00 | 0.01 | 0.90 | 0.367 |
LST_DAY | −0.06 | −0.74 | −47.60 | 0.00 | −0.05 | −0.74 | −42.25 | 0.00 | −0.06 | −0.80 | −42.15 | 0 |
LST_NIGHT | 0.00 | 0.02 | −1.27 | 0.21 | 0.00 | 0.03 | 1.69 | 0.09 | 0.01 | 0.08 | 4.27 | 0 |
Independent Variable d | Model_PD a | Model_ENT b | Model_Compactness c | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
B | Beta | t | Sig. | B | Beta | t | Sig. | B | Beta | t | Sig. | |
Constant | −4549.12 | - | −3.66 | 0.00 | −0.08 | - | −3.34 | 0.00 | −372.52 | - | −0.12 | 0.905 |
Longitude | 0.00 | −0.44 | −3.71 | 0.00 | 0.00 | −0.41 | −3.38 | 0.00 | 0.00 | 0.02 | 0.07 | 0.943 |
Latitude | 0.00 | 0.47 | 3.66 | 0.00 | 0.00 | 0.43 | 3.31 | 0.00 | 0.00 | 0.07 | 0.30 | 0.768 |
Distance from coastline | 0.00 | −0.20 | −2.54 | 0.01 | 0.00 | −0.18 | −2.28 | 0.02 | 0.00 | −0.09 | −0.68 | 0.498 |
Orientation | 0.00 | 0.00 | −0.28 | 0.78 | 0.00 | −0.01 | −0.36 | 0.72 | −0.01 | 0.00 | −0.17 | 0.862 |
Altitude | −0.02 | −0.10 | −3.42 | 0.00 | 0.00 | −0.10 | −3.29 | 0.00 | 0.01 | 0.03 | 0.53 | 0.599 |
Slope | 1.18 | 0.01 | 0.82 | 0.41 | 0.00 | 0.02 | 1.05 | 0.29 | −6.09 | −0.04 | −1.68 | 0.093 |
NDVI_MEAN | 91.58 | 0.34 | 8.20 | 0.00 | 0.00 | 0.36 | 8.47 | 0.00 | −83.81 | −0.22 | −2.98 | 0.003 |
Precipitation | 1.62 | 0.05 | 2.38 | 0.02 | 0.00 | 0.05 | 2.31 | 0.02 | −0.87 | −0.02 | −0.51 | 0.611 |
LST_DAY | −3.63 | −0.22 | −7.38 | 0.00 | 0.00 | −0.22 | −7.23 | 0.00 | 2.85 | 0.12 | 2.31 | 0.021 |
LST_NIGHT | 3.38 | 0.11 | 4.06 | 0.00 | 0.00 | 0.11 | 3.85 | 0.00 | −2.59 | −0.06 | −1.24 | 0.216 |
NDBI | −70.13 | −0.33 | −7.87 | 0.00 | 0.00 | −0.32 | −7.44 | 0.00 | 3.73 | 0.01 | 0.17 | 0.868 |
Impermeable area | 4.19 | 0.03 | 0.58 | 0.56 | 0.00 | 0.04 | 0.86 | 0.39 | 14.88 | 0.06 | 0.82 | 0.411 |
Artificial area | −20.75 | −0.13 | −2.98 | 0.00 | 0.00 | −0.14 | −3.12 | 0.00 | −0.86 | 0.00 | −0.05 | 0.961 |
Difference_LST_ DAY_2018-2006 | 4.78 | 0.13 | 6.70 | 0.00 | 0.00 | 0.13 | 6.47 | 0.00 | −3.82 | −0.07 | −2.12 | 0.034 |
Difference_LST_ NIGHT_2018-2006 | −2.23 | −0.05 | −2.15 | 0.03 | 0.00 | −0.04 | -2.00 | 0.05 | 5.47 | 0.08 | 2.10 | 0.036 |
2018 Land Type | Broad-Leaved Forest | Coniferous Forest | Mixed Forest | Total |
---|---|---|---|---|
2006 Land Type | ||||
Broad-leaved forest | 483.31 | 0.75 | 0.00 | 484.07 |
Coniferous forest | 0.87 | 843.60 | 0.35 | 844.82 |
Mixed forest | 0.00 | 0.09 | 21.59 | 21.67 |
Total | 484.19 | 844.44 | 21.94 | 1350.56 |
2018 Land Type * | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | Total |
---|---|---|---|---|---|---|---|---|---|---|---|---|
2006 Land Type * | ||||||||||||
1 | 131.25 | 0.09 | 0.00 | 0.00 | 0.03 | 0.14 | 0.07 | 0.00 | 0.20 | 0.00 | 0.00 | 131.78 |
2 | 0.00 | 327.81 | 1.57 | 0.05 | 0.00 | 0.10 | 0.10 | 0.04 | 0.00 | 0.00 | 0.00 | 329.67 |
3 | 0.09 | 0.61 | 154.60 | 2.20 | 0.10 | 0.72 | 0.16 | 0.15 | 0.14 | 0.00 | 0.35 | 159.12 |
4 | 0.00 | 1.14 | 0.90 | 30.23 | 0.00 | 0.01 | 0.28 | 0.00 | 0.00 | 0.00 | 0.00 | 32.56 |
5 | 0.15 | 1.37 | 4.57 | 2.49 | 16.38 | 0.33 | 1.60 | 0.00 | 0.71 | - | 0.00 | 27.60 |
6 | 0.00 | 0.15 | 0.80 | 0.22 | 0.00 | 40.39 | 1.48 | 0.00 | 1.19 | 0.00 | 0.00 | 44.24 |
7 | 1.21 | 5.64 | 8.97 | 5.79 | 3.34 | 3.04 | 713.19 | 1.64 | 4.59 | 0.01 | 0.00 | 747.42 |
8 | 0.01 | 4.52 | 1.34 | 0.15 | 0.30 | 0.00 | 13.40 | 1350.56 | 10.03 | 3.16 | 0.00 | 1383.47 |
9 | 0.00 | 1.01 | 0.71 | 0.01 | 0.67 | 0.03 | 4.72 | 2.39 | 358.31 | 3.52 | 0.00 | 371.36 |
10 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.08 | 0.42 | 3.55 | 9.01 | 0.00 | 13.05 |
11 | 0.00 | 0.00 | 0.96 | 0.00 | - | 0.53 | 0.00 | 0.00 | 0.00 | 0.00 | 5.04 | 6.53 |
Total | 132.71 | 342.34 | 174.42 | 41.14 | 20.83 | 45.27 | 735.07 | 1355.21 | 378.73 | 15.69 | 5.39 | 3246.80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Arellano, B.; Roca, J. Study on Factors Influencing Forest Distribution in Barcelona Metropolitan Region. Sustainability 2024, 16, 5449. https://doi.org/10.3390/su16135449
Zhang X, Arellano B, Roca J. Study on Factors Influencing Forest Distribution in Barcelona Metropolitan Region. Sustainability. 2024; 16(13):5449. https://doi.org/10.3390/su16135449
Chicago/Turabian StyleZhang, Xu, Blanca Arellano, and Josep Roca. 2024. "Study on Factors Influencing Forest Distribution in Barcelona Metropolitan Region" Sustainability 16, no. 13: 5449. https://doi.org/10.3390/su16135449
APA StyleZhang, X., Arellano, B., & Roca, J. (2024). Study on Factors Influencing Forest Distribution in Barcelona Metropolitan Region. Sustainability, 16(13), 5449. https://doi.org/10.3390/su16135449