The Carbon Footprint of Spanish University Websites
Abstract
:1. Introduction
2. Background
2.1. Digital Pollution and Environmental Impact
2.2. Internet Consumption
2.3. How to Measure a Website’s Carbon Footprint
3. Materials and Methods
3.1. Sample
3.2. Variables
3.3. Data Collection and Analysis
- The wired data transfer accounts for the energy required to load a website. This value is proportional to the data transferred and considers an adjustment for users who have visited the website. It is measured in gigabytes (GB).
- Energy intensity calculates the average value (Kwh/GB), as the criteria involved vary for each website and visitor.
- To determine the source of energy used in the data centers, it is checked whether the data center uses green energy, and if so, the carbon emissions are reduced in the calculation. If there is no information yet on the type of energy they use, it is assumed that they use a standard grid. In the case of information regarding the use of green or renewable energy, Wholegrain Digital Website Carbon Calculator V3 applies a reduction to the calculation, although only the adjustment for green hosting is considered in the formula, if the provider has registered the IP on the Green Web Foundation server.
- Carbon intensity of electricity (g CO2/Kwh) utilizes an international average and a lower value for renewable electricity.
- Website traffic is measured in thousands (K).
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- UN. General Assembly Resolution A/RES/70/1. Transforming Our World: The 2030 Agenda for Sustainable Development. 2015. Available online: https://www.unfpa.org/sites/default/files/resource-pdf/Resolution_A_RES_70_1_EN.pdf (accessed on 26 April 2024).
- Morato, J.; Sanchez-Cuadrado, S.; Iglesias, A.; Campillo, A.; Fernández-Panadero, C. Sustainable Technologies for Older Adults. Sustainability 2021, 13, 8465. [Google Scholar] [CrossRef]
- Fich, L.E.; Viola, S.; Bentsen, N.S. Jevons Paradox: Sustainable Development Goals and Energy Rebound in Complex Economic Systems. Energies 2022, 15, 5821. [Google Scholar] [CrossRef]
- European Commission EU Action Plan on Digitalising the Energy System. Available online: https://ec.europa.eu/commission/presscorner/detail/en/qanda_22_6229 (accessed on 1 July 2023).
- The Shift Project. Lean ICT: Towards Digital Sobriety—Report of the Working Group Directed by Hugues Ferreboeuf for the Think Tank. The Shift Project. March 2019. Available online: https://theshiftproject.org/wp-content/uploads/2019/03/Lean-ICT-Report_The-Shift-Project_2019.pdf (accessed on 6 February 2023).
- Wang, E.-Z.; Lee, C.-C. The Impact of Information Communication Technology on Energy Demand: Some International Evidence. Int. Rev. Econ. Financ. 2022, 81, 128–146. [Google Scholar] [CrossRef]
- Kettle, J. The Internet Consumes Extraordinary Amounts of Energy. Here’s How We Can Make It More Sustainable. 2021. Available online: http://theconversation.com/the-internet-consumes-extraordinary-amounts-of-energy-heres-how-we-can-make-it-more-sustainable-160639 (accessed on 28 April 2024).
- Cisco. The Zettabyte Era: Trends and Analysis, Whitepaper. Cisco Public. 2017. Available online: https://www.hit.bme.hu/~jakab/edu/HTI18/Litr/Cisco_The_Zettabyte_Era_2017June__vni-hyperconnectivity-wp.pdf (accessed on 22 May 2024).
- Cisco. Cisco Global Cloud Index, Forecast and Methodology 2016–2021, Whitepaper. 2018. Available online: https://virtualization.network/Resources/Whitepapers/0b75cf2e-0c53-4891-918e-b542a5d364c5_white-paper-c11-738085.pdf (accessed on 22 May 2024).
- Das, S.; Mao, E. The Global Energy Footprint of Information and Communication Technology Electronics in Connected Internet-of-Things Devices. Sustain. Energy Grids Netw. 2020, 24, 100408. [Google Scholar] [CrossRef]
- Wholegrain Digital Website Carbon Calculator v3|What’s Your Site’s Carbon Footprint? Available online: https://www.websitecarbon.com/ (accessed on 28 April 2024).
- Ritchie, H.; Rosado, P.; Roser, M. Energy Production and Consumption. Available online: https://ourworldindata.org/energy-production-consumption (accessed on 28 April 2024).
- CIA World Factbook: Energy: Electricity—Consumption, Indexmundi.com. 2020. Available online: https://www.indexmundi.com/g/r.aspx?v=81 (accessed on 25 April 2024).
- Baliga, J.; Hinton, K.; Ayre, R.; Tucker, R.S. Carbon Footprint of the Internet. Telecommun. J. Aust. 2009, 59, 5.1–5.14. [Google Scholar] [CrossRef]
- Raghavan, B.; Ma, J. The Energy and Emergy of the Internet. In Proceedings of the 10th ACM Workshop on Hot Topics in Networks, Cambridge, MA, USA, 14 November 2011; ACM: Cambridge, MA, USA, 2011; pp. 1–6. [Google Scholar]
- Johnson, J. Worldwide Digital Population as of January 2022. Available online: https://www.statista.com/statistics/617136/digital-population-worldwide/ (accessed on 28 April 2024).
- Kuehr, R.; Velasquez, G.T.; Williams, E. Computers and the Environment—An Introduction to Understanding and Managing Their Impacts. In Computers and the Environment: Understanding and Managing Their Impacts; Kuehr, R., Williams, E., Eds.; Springer: Dordrecht, The Netherlands, 2003; pp. 1–15. ISBN 978-94-010-0033-8. [Google Scholar]
- Canalys Global PC Shipments Pass 340 Million in 2021 and 2022 Is Set to Be Even Stronger. Available online: https://canalys-prod-public.s3.eu-west-1.amazonaws.com/static/press_release/2022/1722929869Canalys_PR-_Global-PC_Shipments-Q4-2021.pdf (accessed on 28 April 2024).
- United Nations Institute for Training and Research. Electronic Waste Generated Worldwide from 2010 to 2022 (in Million Metric tons) [Graph]. In Statista. 22 May 2024. Available online: https://www.statista.com/statistics/499891/projection-ewaste-generation-worldwide/ (accessed on 26 April 2024).
- Forti, V.; Baldé, C.P.; Kuehr, R.; Bel, G. The Global E-Waste Monitor 2020: Quantities, Flows and the Circular Economy Potential; UNU/UNITAR: Bonn, Germany; ITU: Geneva, Switzerland; ISWA: Rotterdam, The Netherlands, 2020; p. 120. ISBN 978-92-808-9114-0. [Google Scholar]
- United Nations Institute for Training and Research. Leading Countries Based on Electronic Waste Generation Worldwide in 2022 (in 1000 Metric Tons) [Graph] In Statista. 19 March 2024. Available online: https://www.statista.com/statistics/499952/ewaste-generation-worldwide-by-major-country/ (accessed on 26 April 2024).
- Belkhir, L.; Elmeligi, A. Assessing ICT Global Emissions Footprint: Trends to 2040 & Recommendations. J. Clean. Prod. 2018, 177, 448–463. [Google Scholar] [CrossRef]
- Andrae, A.S.G. Hypotheses for Primary Energy Use, Electricity Use and CO2 Emissions of Global Computing and Its Shares of the Total Between 2020 and 2030. WSEAS Trans. Power Syst. 2020, 15, 50–59. [Google Scholar] [CrossRef]
- Bruna, A. Global E-Waste-Statistics & Facts; Statista: Hamburg, Germany, 2023; Available online: https://www.statista.com/topics/3409/electronic-waste-worldwide/ (accessed on 3 July 2023).
- United Nations Institute for Training and Research. Electronic Waste Generation Worldwide in 2022, with a Projection for 2030 (in Million Metric Tons) [Graph] In Statista lnc. 19 March 2024, p. 26. Available online: https://www.statista.com/statistics/1067081/generation-electronic-waste-globally-forecast/ (accessed on 26 April 2024).
- Gailhofer, P.; Herold, A.; Schemmel, J.P.; Sherf, C.-S.; Urrutia, C.; Kóhler, A.; Braungardt, S. The Role of Artificial Intelligence in the European Green Deal; Policy Department for Economic, Scientific and Quality of Life Policies Directorate-General for Internal Policies; European Union: Brussels, Belgium, 2021; Available online: https://www.europarl.europa.eu/RegData/etudes/STUD/2021/662906/IPOL_STU(2021)662906_EN.pdf (accessed on 25 April 2024).
- Masanet, E.; Shehabi, A.; Lei, N.; Smith, S.; Koomey, J. Recalibrating Global Data Center Energy-Use Estimates. Science 2020, 367, 984–986. [Google Scholar] [CrossRef]
- Gelenbe, E. Electricity Consumption by ICT: Facts, Trends, and Measurements. Ubiquity 2023, 2023, 1–15. [Google Scholar] [CrossRef]
- Kouton, J. Information Communication Technology Development and Energy Demand in African Countries. Energy 2019, 189, 116192. [Google Scholar] [CrossRef]
- Arshad, Z.; Robaina, M.; Botelho, A. The Role of ICT in Energy Consumption and Environment: An Empirical Investigation of Asian Economies with Cluster Analysis. Environ. Sci. Pollut. Res. 2020, 27, 32913–32932. [Google Scholar] [CrossRef]
- Lange, S.; Pohl, J.; Santarius, T. Digitalization and Energy Consumption. Does ICT Reduce Energy Demand? Ecol. Econ. 2020, 176, 106760. [Google Scholar] [CrossRef]
- Usman, A.; Ozturk, I.; Hassan, A.; Maria Zafar, S.; Ullah, S. The Effect of ICT on Energy Consumption and Economic Growth in South Asian Economies: An Empirical Analysis. Telemat. Inform. 2021, 58, 101537. [Google Scholar] [CrossRef]
- Zhao, S.; Hafeez, M.; Faisal, C.M.N. Does ICT Diffusion Lead to Energy Efficiency and Environmental Sustainability in Emerging Asian Economies? Environ. Sci. Pollut. Res. 2022, 29, 12198–12207. [Google Scholar] [CrossRef]
- Shehabi, A.; Smith, J.S.; Sartor, D.A.; Brown, R.E.; Herrlin, M.; Koomey, J.G.; Masanet, E.R.; Horner, N.; Azevedo, I.L.; Lintner, W. United States Data Center Energy Usage Report|Energy Technologies Area; Lawrence Berkeley National Laboratory: Berkeley, CA, USA, 2016.
- Malmodin, J.; Lundén, D. The Energy and Carbon Footprint of the Global ICT and E&M Sectors 2010–2015. Sustainability 2018, 10, 3027. [Google Scholar] [CrossRef]
- Armbrust, M.; Fox, A.; Griffith, R.; Joseph, J.D.; Katz, R.H.; Konwinski, A.; Lee, G.; Patterson, D.A.; Rabkin, A.; Stoica, I.; et al. Above the Clouds: A Berkeley View of Cloud Computing; Technical Report No. UCB/EECS-2009 28; EECS Department, University of California: Berkeley, CA, USA, 2009. [Google Scholar]
- Ong, D.; Moors, T.; Sivaraman, V. Comparison of the Energy, Carbon and Time Costs of Videoconferencing and in-Person Meetings. Comput. Commun. 2014, 50, 86–94. [Google Scholar] [CrossRef]
- Aslan, J.; Mayers, K.; Koomey, J.G.; France, C. Electricity Intensity of Internet Data Transmission: Untangling the Estimates. J. Ind. Ecol. 2018, 22, 785–798. [Google Scholar] [CrossRef]
- Berners-Lee, M. How Bad Are Bananas? The Carbon Footprint of Everything, Revised 2020th ed.; New Edition-Updated and Expanded; Profile Books: London, UK, 2020; ISBN 9781788163811. [Google Scholar]
- Chowdhury, G. An Agenda for Green Information Retrieval Research. Inf. Process. Manag. 2012, 48, 1067–1077. [Google Scholar] [CrossRef]
- Dubovoi, V.; Moskvin, O. Impact of the Internet Resources Structure on Energy Consumption While Searching for Information. In Green IT Engineering: Concepts, Models, Complex Systems Architectures; Kharchenko, V., Kondratenko, Y., Kacprzyk, J., Eds.; Springer International Publishing: Cham, Switzerland, 2017; Volume 74, pp. 125–146. ISBN 9783319441610. [Google Scholar]
- Bai, X.; Arapakis, I.; Cambazoglu, B.B.; Freire, A. Understanding and Leveraging the Impact of Response Latency on User Behaviour in Web Search. ACM Trans. Inf. Syst. 2018, 36, 1–42. [Google Scholar] [CrossRef]
- The Word Bank and ITU. Measuring the Emissions & Energy Footprint of the ICT Sector: Implications for Climate Action; A Joint ITU/WB Report; The World Bank and International Telecommunication Union: Washington, DC, USA; Geneva, Switzerland, 2024; ISBN 978-92-61-38541-5. [Google Scholar]
- International Telecommunication Union. Greenhouse Gas Emissions Trajectories for the Information and Communication Technology Sector Compatible with the UNFCCC Paris Agreement; Series l: Environment and ICTS, Climate Change, e-Waste, Energy Efficiency; Construction, Installation and Protection of Cables and Other Elements of Outside Plant; International Telecommunication Union: Geneva, Switzerland, 2020; L.1470 ITU-T; Available online: http://handle.itu.int/11.1002/1000/14084 (accessed on 12 September 2023).
- ADEME Evaluation de l’impact environnemental du numérique en France et analyse prospective. Les Actes L’arcep 2022, 17. Available online: https://librairie.ademe.fr/consommer-autrement/5226-evaluation-de-l-impact-environnemental-du-numerique-en-france-et-analyse-prospective.html (accessed on 16 April 2024).
- United Nations. Report of the World Commission on Environment and Development: Our Common Future; United Nations: New York, NY, USA, 1987. Available online: https://www.are.admin.ch/dam/are/en/dokumente/nachhaltige_entwicklung/dokumente/bericht/our_common_futurebrundtlandreport1987.pdf.download.pdf/our_common_futurebrundtlandreport1987.pdf (accessed on 12 April 2024).
- Elgaaied-Gambier, L.; Bertrandias, L.; Bernard, Y. Cutting the Internet’s Environmental Footprint: An Analysis of Consumers’ Self-Attribution of Responsibility. J. Interact. Mark. 2020, 50, 120–135. [Google Scholar] [CrossRef]
- BOE-A-2021-8447 Ley 7/2021, de 20 de Mayo, de Cambio Climático y Transición Energética. Available online: https://www.boe.es/buscar/act.php?id=BOE-A-2021-8447 (accessed on 16 April 2024).
- BOE-A-2018-17989 Ley 11/2018, de 28 de Diciembre, por la que se Modifica el Código de Comercio, el Texto Refundido de la Ley de Sociedades de Capital Aprobado por el Real Decreto Legislativo 1/2010, de 2 de Julio, y la Ley 22/2015, de 20 de Julio, de Auditoría de Cuentas, en Materia de Información no Financiera y Diversidad. Available online: https://www.boe.es/buscar/doc.php?id=BOE-A-2018-17989 (accessed on 16 April 2024).
- Estimating Digital Emissions. Available online: https://sustainablewebdesign.org/estimating-digital-emissions/ (accessed on 20 June 2024).
Universities | Universities (%) | Mean ± SD | Max kWh of Energy | Min kWh of Energy | |
---|---|---|---|---|---|
Green | 16 | 17 | 100.4 ± 25.11 | 139 | 46 |
Private | 10 | 11 | 103.80 ± 17.24 | 138 | 82 |
Public | 6 | 7 | 94.83 ± 36.00 | 139 | 46 |
No Green | 76 | 83 | 586.64 ± 631.66 | 3.309 | 131 |
Private | 33 | 36 | 524.36 ± 598.90 | 3.309 | 135 |
Public | 43 | 47 | 634.44 ± 658.65 | 3.309 | 131 |
n/a | 0 | ||||
Public | 1 | 0 | |||
Total | 93 | 100 | 502.09 ± 602.73 | 3.309 | 46 |
Universities | Mean ± SD | Max. CO2 | Min CO2 | Total CO2 | |
---|---|---|---|---|---|
Green | 16 | 0.35 ± 0.09 | 0.47 | 0.17 | 5.56 |
Private | 10 | 0.36 ± 0.07 | 0.45 | 0.28 | 3.56 |
Public | 6 | 0.33 ±0.12 | 0.47 | 0.17 | 2.00 |
No Green | 76 | 2.04 ± 2.13 | 10.57 | 0.48 | 155.08 |
Private | 33 | 1.73 ± 1.90 | 10.57 | 0.51 | 56.95 |
Public | 43 | 2.28 ± 2.28 | 10.57 | 0.48 | 98.13 |
Total | 92 | 1.75 ± 2.04 | 10.57 | 0.17 | 160.64 |
Σ Organic Traffic (in K) | Σ Enrolled in 2023 | Σ 10,000 Visits per Month (kg) | Σ Trees to Compensate | Σ km in Electric Car | |
---|---|---|---|---|---|
Green | 3050.80 | 282,334 | 667.76 | 39 | 10,281 |
No Green | 9406.50 | 1,312,407 | 18,543.61 | 882 | 280,532 |
n/a | 398.30 | 53,620 | |||
Total | 12,855.60 | 1,648,361 | 19,211.37 | 921 | 290,813 |
Region | Universities | Mean kWh Energy | Σ kWh | Mean CO2 (g) | Σ CO2 (g) |
---|---|---|---|---|---|
Aragon | 2 | 1748 | 3496 | 5.9 | 11.17 |
Canary Island | 5 | 1046 | 5231 | 3.38 | 16.91 |
Valencian Community | 9 | 617 | 5549 | 2.24 | 20.13 |
Andalusia | 13 | 613 | 7966 | 2.22 | 28.84 |
Navarre | 2 | 601 | 1201 | 2.04 | 4.08 |
Castilla y Leon | 9 | 509 | 4581 | 1.86 | 16.77 |
State | 1 | 492 | 492 | 1.81 | 1.81 |
Catalonia | 12 | 436 | 4800 | 1.51 | 16.66 |
Region of Murcia | 3 | 361 | 1084 | 1.33 | 3.99 |
Balearic Islands | 1 | 362 | 362 | 1.33 | 1.33 |
Community of Madrid | 21 | 369 | 7742 | 1.25 | 26.35 |
Basque Country | 4 | 326 | 1303 | 1.08 | 4.32 |
Castilla-La Mancha | 1 | 324 | 324 | 1.04 | 1.04 |
Galicia | 4 | 279 | 1116 | 0.96 | 3.84 |
Asturias | 1 | 202 | 202 | 0.74 | 0.74 |
Cantabria | 2 | 201 | 402 | 0.70 | 1.40 |
Extremadura | 1 | 186 | 186 | 0.69 | 0.69 |
La Rioja | 2 | 78 | 155 | 0.29 | 0.57 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanchez-Cuadrado, S.; Morato, J. The Carbon Footprint of Spanish University Websites. Sustainability 2024, 16, 5670. https://doi.org/10.3390/su16135670
Sanchez-Cuadrado S, Morato J. The Carbon Footprint of Spanish University Websites. Sustainability. 2024; 16(13):5670. https://doi.org/10.3390/su16135670
Chicago/Turabian StyleSanchez-Cuadrado, Sonia, and Jorge Morato. 2024. "The Carbon Footprint of Spanish University Websites" Sustainability 16, no. 13: 5670. https://doi.org/10.3390/su16135670
APA StyleSanchez-Cuadrado, S., & Morato, J. (2024). The Carbon Footprint of Spanish University Websites. Sustainability, 16(13), 5670. https://doi.org/10.3390/su16135670