The Prediction of Pectin Viscosity Using Machine Learning Based on Physical Characteristics—Case Study: Aglupectin HS-MR
Abstract
1. Introduction
2. Materials and Methods
2.1. Conductance, Concentration and pH
2.2. Color Measurement
2.3. Viscosity Measurement
2.4. Machine Learning
2.5. Statistical Analysis
3. Results and Discussion
3.1. Viscosity Results
3.2. L*a*b* Color Results
3.3. Results of Machine Learning
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Walkowiak, K.; Przybył, K.; Baranowska, H.M.; Koszela, K.; Masewicz, Ł.; Piątek, M. The Process of Pasting and Gelling Modified Potato Starch with LF-NMR. Polymers 2022, 14, 184. [Google Scholar] [CrossRef] [PubMed]
- Shi, R.; Dan, B.; Lü, L. Bioactive Effects Advances of Natural Polysaccharides. J. Future Foods 2023, 3, 234–239. [Google Scholar] [CrossRef]
- Li, N.; Zhou, S.; Yang, X.; Lin, D. Applications of Natural Polysaccharide-Based PH-Sensitive Films in Food Packaging: Current Research and Future Trends. Innov. Food Sci. Emerg. Technol. 2022, 82, 103200. [Google Scholar] [CrossRef]
- Gawkowska, D.; Cybulska, J.; Zdunek, A. Structure-Related Gelling of Pectins and Linking with Other Natural Compounds: A Review. Polymers 2018, 10, 762. [Google Scholar] [CrossRef] [PubMed]
- Voragen, A.G.J.; Coenen, G.-J.; Verhoef, R.P.; Schols, H.A. Pectin, a Versatile Polysaccharide Present in Plant Cell Walls. Struct. Chem. 2009, 20, 263–275. [Google Scholar] [CrossRef]
- Reichembach, L.H.; Lúcia de Oliveira Petkowicz, C. Pectins from Alternative Sources and Uses beyond Sweets and Jellies: An Overview. Food Hydrocoll. 2021, 118, 106824. [Google Scholar] [CrossRef]
- Wu, P.; Dhital, S.; Williams, B.A.; Chen, X.D.; Gidley, M.J. Rheological and Microstructural Properties of Porcine Gastric Digesta and Diets Containing Pectin or Mango Powder. Carbohydr. Polym. 2016, 148, 216–226. [Google Scholar] [CrossRef] [PubMed]
- Azzaz, H.H.; Kholif, A.E.; Murad, H.A.; El-Bordeny, N.E.; Ebeid, H.M.; Hassaan, N.A.; Anele, U.Y. A New Pectinase Produced from Aspergillus Terreus Compared with a Commercial Pectinase Enhanced Feed Digestion, Milk Production and Milk Fatty Acid Profile of Damascus Goats Fed Pectin-Rich Diet. Ann. Anim. Sci. 2021, 21, 639–656. [Google Scholar] [CrossRef]
- Elshahed, M.S.; Miron, A.; Aprotosoaie, A.C.; Farag, M.A. Pectin in Diet: Interactions with the Human Microbiome, Role in Gut Homeostasis, and Nutrient-Drug Interactions. Carbohydr. Polym. 2021, 255, 117388. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Fei, S.; Wang, Y.; Zan, L.; Zhu, J. Comparative Study on the Self-Assembly of Pectin and Alginate Molecules Regulated by Calcium Ions Investigated by Atomic Force Microscopy. Carbohydr. Polym. 2020, 231, 115673. [Google Scholar] [CrossRef]
- Wang, W.; Yang, Y.; Zhang, H.; Liu, B.; Xu, T. Study on Rheological Properties of Potato Pulp Pectin. Food Ferment. Ind. 2021, 47, 63–69. [Google Scholar] [CrossRef]
- Vuppalapati, C.; Ilapakurti, A.; Kedari, S.; Vuppalapati, R.; Vuppalapati, J.; Kedari, S. Crossing the Artificial Intelligence (AI) Chasm, Albeit Using Constrained IoT Edges and Tiny ML, for Creating a Sustainable Food Future. In Advances in Intelligent Systems and Computing; Springer: Berlin/Heidelberg, Germany, 2021; Volume 1184, pp. 540–553. [Google Scholar]
- Przybył, K.; Koszela, K. Applications MLP and Other Methods in Artificial Intelligence of Fruit and Vegetable in Convective and Spray Drying. Appl. Sci. 2023, 13, 2965. [Google Scholar] [CrossRef]
- Przybył, K.; Walkowiak, K.; Kowalczewski, P.Ł. Efficiency of Identification of Blackcurrant Powders Using Classifier Ensembles. Foods 2024, 13, 697. [Google Scholar] [CrossRef] [PubMed]
- Przybył, K.; Gawrysiak-Witulska, M.; Bielska, P.; Rusinek, R.; Gancarz, M.; Dobrzański, B.; Siger, A. Application of Machine Learning to Assess the Quality of Food Products—Case Study: Coffee Bean. Appl. Sci. 2023, 13, 10786. [Google Scholar] [CrossRef]
- Ciocca, G.; Napoletano, P.; Schettini, R. CNN-Based Features for Retrieval and Classification of Food Images. Comput. Vis. Image Underst. 2018, 176–177, 70–77. [Google Scholar] [CrossRef]
- Tripathy, B.K.; Salaria, A.; Ambastha, A. CNN in Food Industry: Current Practices and Future Trends. In Studies in Computational Intelligence; Springer: Berlin/Heidelberg, Germany, 2023; Volume 1000, pp. 55–77. [Google Scholar]
- Probierz, B.; Kozak, J.; Hrabia, A. Clustering of Scientific Articles Using Natural Language Processing. Procedia Comput. Sci. 2022, 207, 3449–3458. [Google Scholar] [CrossRef]
- Przybył, K.; Duda, A.; Koszela, K.; Stangierski, J.; Polarczyk, M.; Gierz, Ł. Classification of Dried Strawberry by the Analysis of the Acoustic Sound with Artificial Neural Networks. Sensors 2020, 20, 499. [Google Scholar] [CrossRef] [PubMed]
- Al-Sammarraie, M.A.J.; Gierz, Ł.; Przybył, K.; Koszela, K.; Szychta, M.; Brzykcy, J.; Baranowska, H.M. Predicting Fruit’s Sweetness Using Artificial Intelligence—Case Study: Orange. Appl. Sci. 2022, 12, 8233. [Google Scholar] [CrossRef]
- Bronson, K.; Knezevic, I. Big Data in Food and Agriculture. Big Data Soc. 2016, 3, 205395171664817. [Google Scholar] [CrossRef]
- Tao, Q.; Ding, H.; Wang, H.; Cui, X. Application Research: Big Data in Food Industry. Foods 2021, 10, 2203. [Google Scholar] [CrossRef] [PubMed]
- Rezler, R. DMA Study of the Molecular Structure of Porcine Fat In-Water Emulsions Stabilised by Potato Starch. Int. J. Mol. Sci. 2021, 22, 7276. [Google Scholar] [CrossRef] [PubMed]
- Marcotte, M.; Taherian Hoshahili, A.R.; Ramaswamy, H.S. Rheological Properties of Selected Hydrocolloids as a Function of Concentration and Temperature. Food Res. Int. 2001, 34, 695–703. [Google Scholar] [CrossRef]
- Raschka, S.; Mirjalili, V. Python Machine Learning. Machine Learning and Deep Learning with Python, Scikit-Learn, and TensorFlow 2; Packt publishing Ltd.: Birmingham, UK, 2019. [Google Scholar]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-Learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- van der Walt, S.; Schönberger, J.L.; Nunez-Iglesias, J.; Boulogne, F.; Warner, J.D.; Yager, N.; Gouillart, E.; Yu, T. Scikit-Image: Image Processing in Python. PeerJ 2014, 2, e453. [Google Scholar] [CrossRef] [PubMed]
- Marcotte, M.; Trigui, M.; Ramaswamy, H.S. Effect of Salt And Citric Acid On Electrical Conductivities And Ohmic Heating Of Viscous Liquids. J. Food Process. Preserv. 2000, 24, 389–406. [Google Scholar] [CrossRef]
- Marcotte, M.; Taherian, A.R.; Trigui, M.; Ramaswamy, H.S. Evaluation of Rheological Properties of Selected Salt Enriched Food Hydrocolloids. J. Food Eng. 2001, 48, 157–167. [Google Scholar] [CrossRef]
- Gamm, B.M.; Gerard, P. Testing the Differences between Two Color Measurement Probability Distributions Using Hotelling’s T 2 Test and the Permutation Test. Color. Res. Appl. 2020, 45, 196–207. [Google Scholar] [CrossRef]
- Badaró, A.T.; Garcia-Martin, J.F.; del López-Barrera, M.C.; Barbin, D.F.; Alvarez-Mateos, P. Determination of Pectin Content in Orange Peels by near Infrared Hyperspectral Imaging. Food Chem. 2020, 323, 126861. [Google Scholar] [CrossRef] [PubMed]
- Zhu, N.; Huang, W.; Wu, D.; Chen, K.; He, Y. Quantitative Visualization of Pectin Distribution Maps of Peach Fruits. Sci. Rep. 2017, 7, 9275. [Google Scholar] [CrossRef] [PubMed]
- Keramat-Jahromi, M.; Mohtasebi, S.S.; Mousazadeh, H.; Ghasemi-Varnamkhasti, M.; Rahimi-Movassagh, M. Real-Time Moisture Ratio Study of Drying Date Fruit Chips Based on on-Line Image Attributes Using KNN and Random Forest Regression Methods. Measurement 2021, 172, 108899. [Google Scholar] [CrossRef]
- Gomes Mantovani, R.; Horváth, T.; Rossi, A.L.D.; Cerri, R.; Barbon Junior, S.; Vanschoren, J.; Carvalho, A.C. de Better Trees: An Empirical Study on Hyperparameter Tuning of Classification Decision Tree Induction Algorithms. Data Min. Knowl. Discov. 2024, 38, 1364–1416. [Google Scholar] [CrossRef]
- Yasir, M.; Karim, A.M.; Malik, S.K.; Bajaffer, A.A.; Azhar, E.I. Application of Decision-Tree-Based Machine Learning Algorithms for Prediction of Antimicrobial Resistance. Antibiotics 2022, 11, 1593. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Fan, S. CURE-SMOTE Algorithm and Hybrid Algorithm for Feature Selection and Parameter Optimization Based on Random Forests. BMC Bioinform. 2017, 18, 169. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zhu, X.; Liu, D. Model of Gradient Boosting Random Forest Prediction. In Proceedings of the 2022 IEEE International Conference on Networking, Sensing and Control (ICNSC), Shanghai, China, 15 December 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1–6. [Google Scholar]
- Luo, J.; Liu, Y.; Zhang, S.; Liang, J. Extreme Random Forest Method for Machine Fault Classification. Meas. Sci. Technol. 2021, 32, 114006. [Google Scholar] [CrossRef]
- Roopa, H.; Asha, T. A Linear Model Based on Principal Component Analysis for Disease Prediction. IEEE Access 2019, 7, 105314–105318. [Google Scholar] [CrossRef]
- Yang, Y. Prediction and Analysis of Aero-Material Consumption Based on Multivariate Linear Regression Model. In Proceedings of the 2018 IEEE 3rd International Conference on Cloud Computing and Big Data Analysis (ICCCBDA), Chengdu, China, 20–22 April 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 628–632. [Google Scholar]
- Thongkaew, C.; Hinrichs, J.; Gibis, M.; Weiss, J. Sequential Modulation of PH and Ionic Strength in Phase Separated Whey Protein Isolate–Pectin Dispersions: Effect on Structural Organization. Food Hydrocoll. 2015, 47, 21–31. [Google Scholar] [CrossRef]
- Cheng, K.; Lim, L. Insulin-Loaded Calcium Pectinate Nanoparticles: Effects of Pectin Molecular Weight and Formulation PH. Drug Dev. Ind. Pharm. 2004, 30, 359–367. [Google Scholar] [CrossRef] [PubMed]
- Agoda-Tandjawa, G.; Durand, S.; Gaillard, C.; Garnier, C.; Doublier, J.-L. Rheological Behaviour and Microstructure of Microfibrillated Cellulose Suspensions/Low-Methoxyl Pectin Mixed Systems. Effect of Calcium Ions. Carbohydr. Polym. 2012, 87, 1045–1057. [Google Scholar] [CrossRef]
- Valladares-Diestra, K.K.; Porto de Souza Vandenberghe, L.; Zevallos Torres, L.A.; Zandoná Filho, A.; Lorenci Woiciechowski, A.; Ricardo Soccol, C. Citric Acid Assisted Hydrothermal Pretreatment for the Extraction of Pectin and Xylooligosaccharides Production from Cocoa Pod Husks. Bioresour. Technol. 2022, 343, 126074. [Google Scholar] [CrossRef] [PubMed]
- RUNGRAENG, N.; KRAITHONG, S. Effect of Acid Type and Concentration on Properties of Pectin Extracted from Unripe Cavendish Banana Peel and Its Application in Raspberry Jam. Eng. Agric. Environ. Food 2020, 13, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Wan-Mohtar, W.A.; Abdul Halim-Lim, S.; Pillai Balamurugan, J.; Mohd Saad, M.Z.; Azizan, N.A.Z.; Jamaludin, A.A.; Ilham, Z. Effect of Sugar-Pectin-Citric Acid Pre-Commercialization Formulation on the Physicochemical, Sensory, and Shelf-Life Properties of Musa cavendish Banana Jam. Sains Malays. 2021, 50, 1329–1342. [Google Scholar] [CrossRef]
- Eliana, N.F.; Basanta, F.; Calvache, J.E.N.; Ana, M.R.; Gerschenson, L.N. Chemical Composition and Rheological Behaviour of Pectins from Unconventional Sources. In Pectin: Chemical Properties, Uses and Health Benefits; IEEE: Piscataway, NJ, USA, 2014. [Google Scholar]
- Neckebroeck, B.; Verkempinck, S.H.E.; Bernaerts, T.; Verheyen, D.; Hendrickx, M.E.; Van Loey, A.M. Investigating the Role of the Different Molar Mass Fractions of a Pectin Rich Extract from Onion towards Its Emulsifying and Emulsion Stabilizing Potential. Food Hydrocoll. 2021, 117, 106735. [Google Scholar] [CrossRef]
- Colodel, C.; Vriesmann, L.C.; Lucia de Oliveira Petkowicz, C. Rheological Characterization of a Pectin Extracted from Ponkan (Citrus reticulata Blanco Cv. Ponkan) Peel. Food Hydrocoll. 2019, 94, 326–332. [Google Scholar] [CrossRef]
- Cha, G.-W.; Moon, H.J.; Kim, Y.-C. A Hybrid Machine-Learning Model for Predicting the Waste Generation Rate of Building Demolition Projects. J. Clean. Prod. 2022, 375, 134096. [Google Scholar] [CrossRef]
- Kamal, M.d.M.; Akhtaruzzaman, M.; Sharmin, T.; Rahman, M.; Mondal, S.C. Optimization of Extraction Parameters for Pectin from Guava Pomace Using Response Surface Methodology. J. Agric. Food Res. 2023, 11, 100530. [Google Scholar] [CrossRef]
Machine Learning Algorithm Type | Name | Hyperparameters |
---|---|---|
LinearRegression | LR | default |
DecisionTreeRegressor | DT | max_depth = 9 |
RandomForestRegressor | RF | n_estimators = 120 |
SVR | SVR | kernel = ’rbf’ |
BayesianRidge | BayesianRidge | n_iter = 300 |
Elastic Net | Elastic Net | max_iter = 1000 |
HuberRegressor | HR | max_iter = 50 |
pH | A ± ΔA | B ± ΔB | R2 |
---|---|---|---|
3 | 0.155 ± 0.016 | 0.648 ± 0.013 | 0.999 |
4 | 0.194 ± 0.031 | 0.578 ± 0.020 | 0.999 |
5 | 0.303 ± 0.070 | 0.444 ± 0.033 | 0.968 |
6 | 0.231 ± 0.062 | 0.461 ± 0.038 | 0.972 |
7 | 0.117 ± 0.020 | 0.554 ± 0.024 | 0.989 |
8 | 0.116 ± 0.026 | 0.542 ± 0.033 | 0.977 |
C | pH | |||||
---|---|---|---|---|---|---|
[%] | 3 | 4 | 5 | 6 | 7 | 8 |
1 | 0.596 ± 0.159 Ga | 0.699 ± 0.147 Fa | 0.831 ± 0.090 Ea | 0.887 ± 0.194 Ea | 0.812 ± 0.132 Ea | 0.665 ± 0.104 Ea |
2 | 0.763 ± 0.840 Ga | 0.858 ± 0.183 Fa | 0.915 ± 0.049 Ea | 1.025 ± 0.498 Ea | 0.626 ± 0.188 Ea | 0.585 ± 0.109 Ea |
3 | 1.512 ± 0.436 Fa | 1.220 ± 0.197 Fab | 1.153 ± 0.080 Eab | 1.004 ± 0.191 Eab | 0.635 ± 0.129 Eb | 0.641 ± 0.037 Eb |
4 | 2.694 ± 0.399 Ea | 2.095 ± 0.284 Ea | 2.682 ± 0.296 Da | 1.442 ± 0.201 Db | 0.733 ± 0.208 Ec | 0.746 ± 0.138 Ec |
5 | 4.044 ± 0.127 Da | 3.401 ± 0.189 Db | 2.292 ± 0.218 Dc | 1.961 ± 0.106 EDcd | 1.862 ± 0.075 Dcd | 1.498 ± 0.071 Dd |
6 | 7.676 ± 0.149 Ca | 5.301 ± 0.530 Cb | 3.656 ± 0.125 Cc | 3.337 ± 0.079 Ccd | 3.250 ± 0.092 Ccd | 2.934 ± 0.207 Cd |
7 | 13.928 ± 0.159 Ba | 9.866 ± 0.766 Bb | 6.047 ± 0.252 Bc | 6.164 ± 0.063 Bc | 5.537 ± 0.161 Bcd | 5.351 ± 0.104 Bd |
8 | 27.758 ± 0.132 Aa | 19.894 ± 0.105 Ab | 11.291 ± 0.191 Ac | 8.681 ± 0.127 Ae | 9.945 ± 0.177 Ad | 8.409 ± 0.317 Ae |
Parameter | pH\Concentration | 1% | 2% | 3% | 4% | 5% | 6% | 7% | 8% |
---|---|---|---|---|---|---|---|---|---|
3 | 31.63 ± 0.05 c | 26.68 ± 0.01 b | 28.12 ± 0.01 b | 28.70 ± 0.02 d | 32.04 ± 0.14 b | 27.76 ± 0.03 a | 27.45 ± 0.06 a | 26.17 ± 0.01 b | |
4 | 33.11 ± 0.03 d | 26.58 ± 0.01 a | 27.83 ± 0.18 ab | 26.11 ± 0.01 a | 27.93 ± 0.68 a | 27.18 ± 0.25 a | 31.56 ± 0.01 d | 28.21 ± 0.13 a | |
L* | 5 | 33.41 ± 0.02 e | 35.67 ± 0.03 f | 34.70 ± 0.02 d | 33.51 ± 0.02 e | 32.48 ± 0.02 b | 33.44 ± 0.45 b | 36.17 ± 0.01 f | 30.15 ± 0.01 d |
6 | 34.13 ± 0.01 f | 34.09 ± 0.02 e | 34.14 ± 0.02 c | 34.54 ± 0.02 f | 34.65 ± 0.03 c | 36.42 ± 0.01 c | 34.68 ± 0.03 e | 34.17 ± 0.07 e | |
7 | 28.53 ± 0.01 b | 28.27 ± 0.01 d | 27.62 ± 0.01 a | 28.02 ± 0.01 c | 27.71 ± 0.01 a | 27.72 ± 0.06 a | 27.95 ± 0.01 c | 27.63 ± 0.08 c | |
8 | 27.67 ± 0.01 a | 26.88 ± 0.01 c | 27.61 ± 0.01 a | 27.62 ± 0.01 b | 27.57 ± 0.01 a | 27.94 ± 0.01 a | 27.83 ± 0.01 b | 28.18 ± 0.01 a | |
3 | 3.15 ± 0.02 a | 1.88 ± 0.01 e | 2.54 ± 0.01 a | 2.06 ± 0.02 e | 1.48 ± 0.06 d | 1.97 ± 0.01 e | 1.82 ± 0.02 b | 1.03 ± 0.01 d | |
4 | 3.22 ± 0.02 a | 0.75 ± 0.02 d | 2.49 ± 0.02 a | 0.90 ± 0.02 d | 1.74 ± 0.08 e | 0.38 ± 0.19 d | 1.37 ± 0.04 b | 1.63 ± 0.02 b | |
a* | 5 | 2.82 ± 0.04 d | 2.38 ± 0.03 a | 0.77 ± 0.03 d | 0.75 ± 0.06 c | 0.73 ± 0.04 c | −0.85 ± 0.07 c | −2.33 ± 0.07 c | 1.73 ± 0.07 b |
6 | 2.95 ± 0.03 e | 2.36 ± 0.05 a | 1.11 ± 0.09 e | 0.54 ± 0.04 b | −1.29 ± 0.08 b | −4.91 ± 0.06 b | −0.98 ± 0.32 d | −0.71 ± 0.23 c | |
7 | 0.05 ± 0.02 b | 0.12 ± 0.02 b | 0.23 ± 0.01 c | −0.04 ± 0.01 a | −0.07 ± 0.02 a | −0.18 ± 0.02 a | −0.19 ± 0.02 a | −0.25 ± 0.02 a | |
8 | 0.05 ± 0.01 c | 0.12 ± 0.01 c | 0.23 ± 0.01 b | −0.04 ± 0.02 a | −0.07 ± 0.01 a | −0.18 ± 0.02 a | −0.19 ± 0.01 a | −0.25 ± 0.01 a | |
3 | 1.41 ± 0.01 c | 0.91 ± 0.01 a | 0.77 ± 0.01 c | 0.50 ± 0.02 d | 0.94 ± 0.03 b | 0.40 ± 0.01 d | 0.26 ± 0.02 c | 0.54 ± 0.02 d | |
4 | 1.49 ± 0.01 e | 1.72 ± 0.01 b | 1.19 ± 0.01 c | 0.92 ± 0.02 c | 0.76 ± 0.04 c | 0.86 ± 0.01 b | 1.15 ± 0.01 b | 0.63 ± 0.02 c | |
5 | 1.63 ± 0.02 d | 1.44 ± 0.02 c | 1.15 ± 0.02 d | 1.18 ± 0.02 e | 0.87 ± 0.02 d | 0.98 ± 0.01 e | 0.87 ± 0.01 d | 0.86 ± 0.01 e | |
b* | 6 | 1.63 ± 0.01 f | 1.44 ± 0.02 d | 1.15 ± 0.01 d | 1.18 ± 0.01 f | 0.87 ± 0.02 b | 0.98 ± 0.01 f | 0.87 ± 0.01 b | 0.86 ± 0.01 f |
7 | 1.07 ± 0.01 a | 0.88 ± 0.02 a | 0.48 ± 0.01 b | 0.28 ± 0.02 b | 0.08 ± 0.01 a | 0.15 ± 0.01 c | 0.02 ± 0.01 a | 0.18 ± 0.01 b | |
8 | 1.18 ± 0.01 b | 0.93 ± 0.01 a | 0.37 ± 0.01 a | 0.10 ± 0.01 a | 0.10 ± 0.02 a | −0.02 ± 0.01 a | 0.04 ± 0.01 a | 0.02 ± 0.01 a |
Machine Learning Algorithm Type | MSE | RMSE | MAE | Coefficient of Determination (R2) | Pearson Correlation (r) |
---|---|---|---|---|---|
LinearRegression | 8.069 | 2.841 | 1.656 | 0.771 | 0.893 |
DecisionTreeRegressor | 0.012 | 0.108 | 0.013 | 0.999 | 0.999 |
RandomForestRegressor | 0.087 | 0.294 | 0.091 | 0.998 | 0.999 |
SVR | 10.522 | 3.244 | 1.035 | 0.702 | 0.914 |
BayesianRidge | 8.122 | 2.850 | 1.648 | 0.770 | 0.892 |
Elastic Net | 20.432 | 4.520 | 2.319 | 0.420 | 0.782 |
HuberRegressor | 11.885 | 3.447 | 1.536 | 0.663 | 0.875 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siejak, P.; Przybył, K.; Masewicz, Ł.; Walkowiak, K.; Rezler, R.; Baranowska, H.M. The Prediction of Pectin Viscosity Using Machine Learning Based on Physical Characteristics—Case Study: Aglupectin HS-MR. Sustainability 2024, 16, 5877. https://doi.org/10.3390/su16145877
Siejak P, Przybył K, Masewicz Ł, Walkowiak K, Rezler R, Baranowska HM. The Prediction of Pectin Viscosity Using Machine Learning Based on Physical Characteristics—Case Study: Aglupectin HS-MR. Sustainability. 2024; 16(14):5877. https://doi.org/10.3390/su16145877
Chicago/Turabian StyleSiejak, Przemysław, Krzysztof Przybył, Łukasz Masewicz, Katarzyna Walkowiak, Ryszard Rezler, and Hanna Maria Baranowska. 2024. "The Prediction of Pectin Viscosity Using Machine Learning Based on Physical Characteristics—Case Study: Aglupectin HS-MR" Sustainability 16, no. 14: 5877. https://doi.org/10.3390/su16145877
APA StyleSiejak, P., Przybył, K., Masewicz, Ł., Walkowiak, K., Rezler, R., & Baranowska, H. M. (2024). The Prediction of Pectin Viscosity Using Machine Learning Based on Physical Characteristics—Case Study: Aglupectin HS-MR. Sustainability, 16(14), 5877. https://doi.org/10.3390/su16145877