Exergy and Energy Analysis of Bifacial PV Module Performance on a Cloudy Day in Saudi Arabia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Experimental Setup
2.2. Instrumentation and Technique
2.3. Measuring Exergy Efficiency of Solar Panel
2.4. Energy Efficiency of Solar Panel
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Symbols and Abbreviations
A | Surface area of the module, m2 |
E | Energy, Wh/m2 |
Ex | Exergy, Wh/m2 |
Exelect | Electrical exergy, Wh/m2 |
Exin | Input exergy, Wh/m2 |
Exloss | Exergy loss, Wh/m2 |
Exout | Output exergy, Wh/m2 |
Extherm | Thermal exergy, Wh/m2 |
FF | Fill factor, % |
G | Global irradiance, Wh/m2 |
hconv | Convective heat transfer coefficient |
hrad | Radiative heat transfer coefficient |
I | Current, A |
I1 | light generated current, A |
Imp | Current at the maximum power point, A |
Io | Saturation current density, A/m2 |
Isc | Short circuit current, A |
K | Boltzmann constant |
NOCT | Nominal operating cell temperature, °C |
Pel | Electrical power, W |
Pmax | Maximum power, W |
q | Charge of the electron, C |
Q | Heat emitted to the surrounding, Wh/m2 |
Rs | Series resistance, ohm |
T | Temperature, °C |
Ta | Ambient temperature, °C |
TPV | Module temperature (cell temperature), °C |
Ts | Surface temperature of the sun, °C |
Tsky | Sky temperature, °C |
U | Overall heat loss coefficient |
V | Voltage, V |
Vmp | The voltage at maximum power point, V |
Voc | Open circuit voltage, V |
Vw | Wind velocity, m/sec |
ε | Emissivity of the module |
ηenergy | Energy conversion efficiency, % |
ηexergy | exergy efficiency, % |
σ | Stefan Boltzmann’s constant |
References
- Perera, F.P. Multiple threats to child health from fossil fuel combustion: Impacts of air pollution and climate change. Environ. Health Perspect. 2017, 125, 141–148. [Google Scholar] [CrossRef]
- Ganesan, K.; Winston, D.P.; Sugumar, S.; Prasath, T.H. Performance Investigation of n-type PERT Bifacial Solar Photovoltaic Module Installed at Different Elevations. Renew. Energy 2024, 227, 120526. [Google Scholar] [CrossRef]
- Kareem, F.A.; Al-Dulaimi, M.J.; Lafta, N.S. Investigation the exergy performance of a forced draft wet cooling tower. Int. J. Eng. Technol. 2018, 7, 2575–2580. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Zubir, U.S.; Ilham, N.I.; Seng Che, H. Global electricity demand, generation, grid system, and renewable energy policies: A review. Rev. Energy Environ. 2017, 6, e222. [Google Scholar]
- Maka, A.O.; Alabid, J.M. Solar energy technology and its roles in sustainable development. Clean Energy 2022, 6, 476–483. [Google Scholar] [CrossRef]
- Chow, T.T. A review on photovoltaic/thermal hybrid solar technology. Renew. Energy 2018, 4, 88–119. [Google Scholar]
- Liang, T.S.; Pravettoni, M.; Singh, J.P.; Khoo, Y.S. Meeting the requirements of IEC TS 60904-1-2 for single light source bifacial photovoltaic characterization: Evaluation of different back panel materials. Eng. Res. Express 2020, 2, 015048. [Google Scholar] [CrossRef]
- Guerrero-Lemus, R.; Vega, R.; Kim, T.; Kimm, A.; Shephard, L.E. Bifacial solar photovoltaics—A technology review. Renew. Sustain. Energy Rev. 2016, 60, 1533–1549. [Google Scholar] [CrossRef]
- Sun, X.; Khan, M.R.; Deline, C.; Alam, M.A. Optimization and performance of bifacial solar modules: A global perspective. Appl. Energy 2018, 212, 1601–1610. [Google Scholar] [CrossRef]
- Liang, T.S.; Poh, D.; Pravettoni, M. Challenges in the pre-normative characterization of bifacial photovoltaic modules. Energy Procedia. 2018, 150, 66–73. [Google Scholar] [CrossRef]
- Sidibba, A.; Ndiaye, D.; Kobor, D. Energy and exergy analysis of a solar photovoltaic module performance under the Sahelian Environment. Int. J. Phys. Sci. 2018, 13, 196–205. [Google Scholar]
- Aoun, N.; Nahman, B.; Chennai, R. Study of experimental energy and exergy of mono-crystalline PV panel in Adrar Region, Algeria. Int. J. Sci. Eng. Res. 2014, 5, 2229–5518. [Google Scholar]
- Taheri, K.; Gadow, R.; Killinger, A. Exergy analysis as a developed concept of energy efficiency optimized processes: The case of thermal spray processes. Procedia CIRP 2014, 17, 511–516. [Google Scholar] [CrossRef]
- Hui, S.C.; Wong, H. Exergy analysis of cooling towers for optimization of HVAC systems. In Proceedings of the Hunan-Hong Kong Joint Symposium, Changsha, China, 1–2 July 2011. [Google Scholar]
- Raina, G.; Sinha, S. A simulation study to evaluate and compare monofacial Vs bifacial PERC PV cells and the effect of albedo on bifacial performance. Mater. Today Proc. 2021, 46, 5242–5247. [Google Scholar] [CrossRef]
- Gu, W.; Li, S.; Liu, X.; Chen, Z.; Zhang, X.; Ma, T. Experimental investigation of the bifacial photovoltaic module under real conditions. Renew. Energy 2021, 173, 1111–1122. [Google Scholar] [CrossRef]
- Abdallah, A.A.; Kivambe, M.; Aïssa, B.; Figgis, B.W. Performance of Monofacial and Bifacial Silicon Heterojunction Modules under Desert Conditions and the Impact of PV Soiling. Sustainability 2023, 15, 8436. [Google Scholar] [CrossRef]
- Durán, E.; Galán, J.; Andújar, J.M.; Sidrach-de-Cardona, M. A new method to obtain IV characteristics curves of photovoltaic modules based on SEPIC and cuk converters. EPE J. 2008, 18, 5–15. [Google Scholar] [CrossRef]
- Utlu, Z.; Hepbasli, A. Energetic and energetic assessment of the industrial sector at varying dead (reference) state temperatures: A review with an illustrative example. Renew. Sustain. Energy Rev. 2008, 12, 1277–1301. [Google Scholar] [CrossRef]
- Rawat, P. Exergy performance analysis of 300 W solar photovoltaic module. Int. J. Res. Appl. Sci. Eng. Technol. 2017, 6, 381–390. [Google Scholar]
- Sukumaran, S.; Sudhakar, K. Performance analysis of solar-powered airport based on energy and exergy analysis. Energy 2018, 149, 1000–1009. [Google Scholar] [CrossRef]
- Rawat, R.; Lamba, R.; Kaushik, S.C. Thermodynamic study of solar photovoltaic energy conversion: An overview. Renew. Sustain. Energy Rev. 2017, 71, 630–638. [Google Scholar] [CrossRef]
- Sarhaddi, F.; Farahat, S.; Ajam, H.; Behzadmehr, A. Exergetic optimization of a solar photovoltaic array. J. Thermodyn. 2009, 1, 313561. [Google Scholar] [CrossRef]
- Bejan, A. Entropy generation minimization, exergy analysis, and the constructal law. Arab. J. Sci. Eng. 2013, 38, 329–340. [Google Scholar] [CrossRef]
- Cápek, V.; Sheehan, D.P. Challenges to the Second Law of Thermodynamics; Springer: Dordrecht, The Netherlands, 2005. [Google Scholar]
- Kuczynski, W.; Chliszcz, K. Energy and exergy analysis of photovoltaic panels in northern Poland. Renew. Sustain. Energy Rev. 2023, 174, 113138. [Google Scholar] [CrossRef]
- Meneses-Rodríguez, D.; Horley, P.P.; Gonzalez-Hernandez, J.; Vorobiev, Y.V.; Gorley, P.N. Photovoltaic solar cells perform at elevated temperatures. Sol. Energy 2005, 78, 243–250. [Google Scholar] [CrossRef]
- Mahmood, K.; Hussain, A.; Arslan, M.; Tariq, B. Experimental Investigation of Impact of Cool Roof Coating on Bifacial and Monofacial Photovoltaic Modules. Eng. Proc. 2023, 45, 38. [Google Scholar] [CrossRef]
- Yakubu, R.O.; Ankoh, M.T.; Mensah, L.D.; Quansah, D.A.; Adaramola, M.S. Predicting the Potential Energy Yield of Bifacial Solar PV Systems in Low-Latitude Region. Energies 2022, 15, 8510. [Google Scholar] [CrossRef]
PV Module Characteristics | Module 1 (Monofacial) LONGI (LR672-PE-360M) | Module 2 (Bifacial) LONGI (LR4-72HBD-435M) | ||
---|---|---|---|---|
Technology | Mono PERC | Bifacial PERC Half—cut | ||
Dimensions (mm) | 1956 × 991 × 40 mm | 2094 × 1038 × 35 mm | ||
Number of cells | 72 | 144 | ||
Test Condition | STC | NOCT | STC | NOCT |
Maximum Power (W) | 300 | 266.7 | 435 | 324.9 |
Maximum Current (A) | 9.18 | 7.36 | 10.66 | 8.54 |
Maximum Voltage (V) | 39.2 | 36.2 | 40.8 | 38.0 |
Short Circuit Current (A) | 9.70 | 7.82 | 11.36 | 9.18 |
Open Circuit Voltage (V) | 47.9 | 44.7 | 49.1 | 45.9 |
Module Efficiency (%) | 18.6 | 20.0 |
PV200 Specifications | |
---|---|
Weight | 1.04 kg/2.3 lb |
Dimensions | 26.4 × 10.7 × 5.8 cm/10.4 × 4.2 × 2.3″ |
Open Circuit Voltage Measurement (PV Terminals) | |
Display Range | 0.0 VDC–1000 VDC |
Measuring Range | 5.0 VDC–1000 VDC |
Resolution | 0.1 VDC maximum |
Accuracy | ±(0.5% + 2 digits) |
Short Circuit Current Measurement (PV Terminals) | |
Display Range | 0.00 ADC–15.00 ADC |
Measuring Range | 0.50 ADC–15.00 ADC |
Maximum Power | 10 kW |
Resolution | 0.01 ADC maximum |
Accuracy | ±(1% + 2 digits) |
Exergy Components (%) | Bifacial (Min–Max) | Monofacial (Min–Max) | |
---|---|---|---|
Period-1 | Reflected Exergy | 7 | 7 |
Input Exergy | 93 | 93 | |
Output Exergy | 19–35 | 16–26 | |
Lost Exergy | 58–74 | 67–77 | |
Period-2 | Reflected Exergy | 7 | 7 |
Input Exergy | 93 | 93 | |
Output Exergy | 22–24 | 17–19 | |
Lost Exergy | 69–71 | 74–76 |
Bifacial | Monofacial | ||||
---|---|---|---|---|---|
Output | Ex (Min–Max) | Elect (Min–Max) | Ex (Min–Max) | Elect (Min–Max) | |
Period #1 | Wh/m2 | 101–230 | 91–220 | 86.3–141 | 82.4–136.7 |
Eff, % | 20–37.2 | 16.8–32.5 | 17.1–27.7 | 15.3–25.3 | |
Period #2 | Wh/m2 | 35.5–62.9 | 34.6–61.6 | 24.9–68.3 | 24.4–67.8 |
Eff, % | 23.4–25.3 | 21.3–22.9 | 17.5–20.8 | 16.3–19.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almarshoud, A.F.; Abdel-halim, M.A.; Almasri, R.A.; Alshwairekh, A.M. Exergy and Energy Analysis of Bifacial PV Module Performance on a Cloudy Day in Saudi Arabia. Sustainability 2024, 16, 7428. https://doi.org/10.3390/su16177428
Almarshoud AF, Abdel-halim MA, Almasri RA, Alshwairekh AM. Exergy and Energy Analysis of Bifacial PV Module Performance on a Cloudy Day in Saudi Arabia. Sustainability. 2024; 16(17):7428. https://doi.org/10.3390/su16177428
Chicago/Turabian StyleAlmarshoud, A. F., M. A. Abdel-halim, Radwan A. Almasri, and Ahmed M. Alshwairekh. 2024. "Exergy and Energy Analysis of Bifacial PV Module Performance on a Cloudy Day in Saudi Arabia" Sustainability 16, no. 17: 7428. https://doi.org/10.3390/su16177428
APA StyleAlmarshoud, A. F., Abdel-halim, M. A., Almasri, R. A., & Alshwairekh, A. M. (2024). Exergy and Energy Analysis of Bifacial PV Module Performance on a Cloudy Day in Saudi Arabia. Sustainability, 16(17), 7428. https://doi.org/10.3390/su16177428