Sustainability of Alternatives to Animal Protein Sources, a Comprehensive Review
Abstract
:1. Introduction
2. Methodology
3. Sustainable Development in Food Production
4. Sustainable Diet and Consumption Patterns
5. Alternative Protein Sources
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Echegaray, N.; Hassoun, A.; Jagtap, S.; Tetteh-Caesar, M.; Kumar, M.; Tomasevic, I.; Goksen, G.; Lorenzo, J.M. Meat 4.0: Principles and Applications of Industry 4.0 Technologies in the Meat Industry. Appl. Sci. 2022, 12, 6986. [Google Scholar] [CrossRef]
- Handral, H.K.; Tay, S.H.; Chan, W.W.; Choudhury, D. 3D Printing of Cultured Meat Products. Crit. Rev. Food Sci. Nutr. 2022, 62, 272–281. [Google Scholar] [CrossRef] [PubMed]
- Barbut, S. Meat Industry 4.0: A Distant Future? Anim. Front. 2020, 10, 38–47. [Google Scholar] [CrossRef] [PubMed]
- Faber, I.; Castellanos-Feijoó, N.A.; de Sompel, L.V.; Davydova, A.; Perez-Cueto, F.J.A. Attitudes and Knowledge towards Plant-Based Diets of Young Adults across Four European Countries. Exploratory Survey. Appetite 2020, 145, 104498. [Google Scholar] [CrossRef] [PubMed]
- Kantono, K.; Hamid, N.; Malavalli, M.M.; Liu, Y.; Liu, T.; Seyfoddin, A. Consumer Acceptance and Production of In Vitro Meat: A Review. Sustainability 2022, 14, 4910. [Google Scholar] [CrossRef]
- Beaudoin, A.; Rabl, V.; Rupanagudi, R.; Sheikh, N. Reducing the Consumer Rejection of Cultivated Meat; London School of Economics and Political Science: London, UK, 2018. [Google Scholar]
- Searchinger, T.D.; Wirsenius, S.; Beringer, T.; Dumas, P. Assessing the Efficiency of Changes in Land Use for Mitigating Climate Change. Nature 2018, 564, 249–253. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organization of the United Nations. World Livestock: Transforming the Livestock Sector through the Sustainable Development Goals; Food and Agriculture Organization of the United Nations: Rome, Italy, 2018; ISBN 92-5-130883-7. [Google Scholar]
- Gerber, P.J.; Steinfeld, H.; Henderson, B.; Mottet, A.; Opio, C.; Dijkman, J.; Falcucci, A.; Tempio, G. Tackling Climate Change through Livestock: A Global Assessment of Emissions and Mitigation Opportunities; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2013; ISBN 92-5-107920-X. [Google Scholar]
- Chan, F.K.S.; Zhu, Y.-G.; Wang, J.; Chen, J.; Johnson, M.F.; Li, G.; Chen, W.-Q.; Wang, L.; Li, P.; Wang, J. Food Security in Climatic Extremes: Challenges and Opportunities for China. Cell Rep. Sustain. 2024, 1, 100013. [Google Scholar] [CrossRef]
- Berners-Lee, M.; Kennelly, C.; Watson, R.; Hewitt, C.N. Current Global Food Production Is Sufficient to Meet Human Nutritional Needs in 2050 Provided There Is Radical Societal Adaptation. Elem. Sci. Anthr. 2018, 6, 52. [Google Scholar] [CrossRef]
- United Nations. The Sustainable Development Goals Report 2023. Special Edition. Towards a Rescue Plan for People and Planet; UNSD: New York, NY, USA, 2023. [Google Scholar]
- Liu, L.; Plail, M. Toward Sustainable and Resilient Food Systems. Cell Rep. Sustain. 2024, 1, 100031. [Google Scholar] [CrossRef]
- Burlingame, B.; Charrondiere, U.R.; Dernini, S.; Stadlmayr, B.; Mondovì, S. Food Biodiversity and Sustainable Diets: Implications of Applications for Food Production and Processing. In Green Technologies in Food Production and Processing; Springer: Berlin/Heidelberg, Germany, 2012; pp. 643–657. [Google Scholar]
- Gialeli, M.; Troumbis, A.Y.; Giaginis, C.; Papadopoulou, S.K.; Antoniadis, I.; Vasios, G.K. The Global Growth of ‘Sustainable Diet’ during Recent Decades, a Bibliometric Analysis. Sustainability 2023, 15, 11957. [Google Scholar] [CrossRef]
- Çakmakçı, R.; Salık, M.A.; Çakmakçı, S. Assessment and Principles of Environmentally Sustainable Food and Agriculture Systems. Agriculture 2023, 13, 1073. [Google Scholar] [CrossRef]
- Fantini, A. Urban and Peri-Urban Agriculture as a Strategy for Creating More Sustainable and Resilient Urban Food Systems and Facing Socio-Environmental Emergencies. Agroecol. Sustain. Food Syst. 2023, 47, 47–71. [Google Scholar] [CrossRef]
- Lucertini, G.; Di Giustino, G. Urban and Peri-Urban Agriculture as a Tool for Food Security and Climate Change Mitigation and Adaptation: The Case of Mestre. Sustainability 2021, 13, 5999. [Google Scholar] [CrossRef]
- Lynch, J.; Cain, M.; Frame, D.; Pierrehumbert, R. Agriculture’s Contribution to Climate Change and Role in Mitigation Is Distinct from Predominantly Fossil CO2-Emitting Sectors. Front. Sustain. Food Syst. 2021, 4, 518039. [Google Scholar] [CrossRef] [PubMed]
- Zimmerer, K.S.; Bell, M.G.; Chirisa, I.; Duvall, C.S.; Egerer, M.; Hung, P.-Y.; Lerner, A.M.; Shackleton, C.; Ward, J.D.; Yacamán Ochoa, C. Grand Challenges in Urban Agriculture: Ecological and Social Approaches to Transformative Sustainability. Front. Sustain. Food Syst. 2021, 5, 668561. [Google Scholar] [CrossRef]
- Conway, G. The Doubly Green Revolution: Food for All in the Twenty-First Century; Cornell University Press: Ithaca, NY, USA, 1998; ISBN 0-8014-8610-6. [Google Scholar]
- Qu, B.; Xiao, Z.; Upadhyay, A.; Luo, Y. Perspectives on Sustainable Food Production System: Characteristics and Green Technologies. J. Agric. Food Res. 2024, 15, 100988. [Google Scholar] [CrossRef]
- Machovina, B.; Feeley, K.J.; Ripple, W.J. Biodiversity Conservation: The Key Is Reducing Meat Consumption. Sci. Total Environ. 2015, 536, 419–431. [Google Scholar] [CrossRef] [PubMed]
- Willet, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A. Food in the Anthropocene: The EAT–Lancet Commission on Healthy Diets from Sustainable Food Systems. EAT Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef]
- Shukla, P.R.; Skeg, J.; Calvo Buendia, E.; Masson-Delmotte, V.; Pörtner, H.-O.; Roberts, D.C.; Zhai, P.; Slade, R.; Connors, S.; van Diemen, S.; et al. Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems. 2019. Available online: https://www.ipcc.ch/srccl/ (accessed on 14 July 2024).
- FAO (Food and Agriculture Organization of the United Nations). AQUASTAT–FAO’s Global Information System on Water and Agriculture, Database. 2024. Available online: https://www.fao.org/aquastat/en/ (accessed on 17 June 2024).
- Alae-Carew, C.; Green, R.; Stewart, C.; Cook, B.; Dangour, A.D.; Scheelbeek, P.F.D. The Role of Plant-Based Alternative Foods in Sustainable and Healthy Food Systems: Consumption Trends in the UK. Sci. Total Environ. 2022, 807, 151041. [Google Scholar] [CrossRef]
- Vanham, D.; Leip, A.; Galli, A.; Kastner, T.; Bruckner, M.; Uwizeye, A.; Van Dijk, K.; Ercin, E.; Dalin, C.; Brandão, M. Environmental Footprint Family to Address Local to Planetary Sustainability and Deliver on the SDGs. Sci. Total Environ. 2019, 693, 133642. [Google Scholar] [CrossRef]
- Cordeiro, M.R.C.; Mengistu, G.F.; Pogue, S.J.; Legesse, G.; Gunte, K.E.; Taylor, A.M.; Ominski, K.H.; Beauchemin, K.A.; McGeough, E.J.; Faramarzi, M.; et al. Assessing Feed Security for Beef Production within Livestock-Intensive Regions. Agric. Syst. 2022, 196, 103348. [Google Scholar] [CrossRef]
- Davis, R.; Watts, P. 4. Water Requirements. In Feedlot Design and Construction Feedlot Design and Construction; Meat & Livestock Australia Ltd.: Sydney, NSW, Australia, 2016. [Google Scholar]
- Ferrari, L.; Panaite, S.-A.; Bertazzo, A.; Visioli, F. Animal- and Plant-Based Protein Sources: A Scoping Review of Human Health Outcomes and Environmental Impact. Nutrients 2022, 14, 5115. [Google Scholar] [CrossRef] [PubMed]
- Springmann, M.; Wiebe, K.; Mason-D’Croz, D.; Sulser, T.B.; Rayner, M.; Scarborough, P. Health and Nutritional Aspects of Sustainable Diet Strategies and Their Association with Environmental Impacts: A Global Modelling Analysis with Country-Level Detail. Lancet Planet. Health 2018, 2, e451–e461. [Google Scholar] [CrossRef]
- Deprá, M.C.; Dias, R.R.; Sartori, R.B.; de Menezes, C.R.; Zepka, L.Q.; Jacob-Lopes, E. Nexus on Animal Proteins and the Climate Change: The Plant-Based Proteins Are Part of the Solution? Food Bioprod. Process. 2022, 133, 119–131. [Google Scholar] [CrossRef]
- Fresán, U.; Sabaté, J. Vegetarian Diets: Planetary Health and Its Alignment with Human Health. Adv. Nutr. 2019, 10, S380–S388. [Google Scholar] [CrossRef] [PubMed]
- Bouvard, V.; Loomis, D.; Guyton, K.Z.; Grosse, Y.; Ghissassi, F.E.; Benbrahim-Tallaa, L.; Guha, N.; Mattock, H.; Straif, K. Carcinogenicity of Consumption of Red and Processed Meat. Lancet Oncol. 2015, 16, 1599–1600. [Google Scholar] [CrossRef]
- Micha, R.; Wallace, S.K.; Mozaffarian, D. Red and Processed Meat Consumption and Risk of Incident Coronary Heart Disease, Stroke, and Diabetes Mellitus. Circulation 2010, 121, 2271–2283. [Google Scholar] [CrossRef]
- Lima, M.; Costa, R.; Rodrigues, I.; Lameiras, J.; Botelho, G. A Narrative Review of Alternative Protein Sources: Highlights on Meat, Fish, Egg and Dairy Analogues. Foods 2022, 11, 2053. [Google Scholar] [CrossRef]
- European Commission. Sustainable Development: EU Sets Out Its Priorities; European Commission: Maastricht, The Netherlands, 2016. [Google Scholar]
- Schulze, M.; Janssen, M. Self-Determined or Non-Self-Determined? Exploring Consumer Motivation for Sustainable Food Choices. Sustain. Prod. Consum. 2024, 45, 57–66. [Google Scholar] [CrossRef]
- Onyeaka, H.; Ghosh, S.; Obileke, K.; Miri, T.; Odeyemi, O.A.; Nwaiwu, O.; Tamasiga, P. Preventing Chemical Contaminants in Food: Challenges and Prospects for Safe and Sustainable Food Production. Food Control 2024, 155, 110040. [Google Scholar] [CrossRef]
- Jónsdóttir, S.; Gísladóttir, G. Land Use Planning, Sustainable Food Production and Rural Development: A Literature Analysis. Geogr. Sustain. 2023, 4, 391–403. [Google Scholar] [CrossRef]
- Dönmez, D.; Isak, M.A.; İzgü, T.; Şimşek, Ö. Green Horizons: Navigating the Future of Agriculture through Sustainable Practices. Sustainability 2024, 16, 3505. [Google Scholar] [CrossRef]
- Yu, T.; Mahe, L.; Li, Y.; Wei, X.; Deng, X.; Zhang, D. Benefits of Crop Rotation on Climate Resilience and Its Prospects in China. Agronomy 2022, 12, 436. [Google Scholar] [CrossRef]
- Khor, L.Y.; Tran, N.; Shikuku, K.M.; Campos, N.; Zeller, M. Economic and Productivity Performance of Tilapia and Rohu Carp Polyculture Systems in Bangladesh, Egypt, and Myanmar. 2022. Available online: https://www.researchgate.net/publication/358086171_Economic_and_productivity_performance_of_tilapia_and_rohu_carp_polyculture_systems_in_Bangladesh_Egypt_and_Myanmar (accessed on 14 July 2024).
- Schellhorn, N.A.; Sork, V.L. The Impact of Weed Diversity on Insect Population Dynamics and Crop Yield in Collards, Brassica Oleraceae (Brassicaceae). Oecologia 1997, 111, 233–240. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, A.; Santos, S.; Gonçalves, P. Precision Agriculture for Crop and Livestock Farming—Brief Review. Animals 2021, 11, 2345. [Google Scholar] [CrossRef] [PubMed]
- Cheruku, J.K.; Katekar, V. Harnessing Digital Agriculture Technologies for Sustainable Agriculture in India: Opportunities and Challenges. Adm. Dev. J. HIPA Shiml 2021, VIII, 215–230. [Google Scholar] [CrossRef]
- D’Silva, J.L.; Ismail, I.A.; Dahalan, D.; Zaremohzzabieh, Z.; Krauss, S.E. Insights into Developing 3D Visualization Technology to Enhance Gen Y Engagement in Agriculture. Int. J. Acad. Res. Bus. Soc. Sci. 2021, 11, 185–196. [Google Scholar] [CrossRef]
- Degani, O.; Movshowitz, D.; Dor, S.; Meerson, A.; Goldblat, Y.; Rabinovitz, O. Evaluating Azoxystrobin Seed Coating against Maize Late Wilt Disease Using a Sensitive qPCR-Based Method. Plant Dis. 2019, 103, 238–248. [Google Scholar] [CrossRef]
- Perakis, K.; Lampathaki, F.; Nikas, K.; Georgiou, Y.; Marko, O.; Maselyne, J. CYBELE–Fostering Precision Agriculture & Livestock Farming through Secure Access to Large-Scale HPC Enabled Virtual Industrial Experimentation Environments Fostering Scalable Big Data Analytics. Comput. Netw. 2020, 168, 107035. [Google Scholar]
- Ranjha, M.M.A.N.; Shafique, B.; Khalid, W.; Nadeem, H.R.; Mueen-ud-Din, G.; Khalid, M.Z. Applications of Biotechnology in Food and Agriculture: A Mini-Review. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2022, 92, 11–15. [Google Scholar] [CrossRef]
- Tomulescu, C. Microbes in Saline Environments and Their Potential Applications in Sustainable Agriculture. Chem. Proc. 2022, 7, 7004. [Google Scholar] [CrossRef]
- Aroeira, C.N.; Feddern, V.; Gressler, V.; Contreras-Castillo, C.J.; Hopkins, D.L. A Review on Growth Promoters Still Allowed in Cattle and Pig Production. Livest. Sci. 2021, 247, 104464. [Google Scholar] [CrossRef]
- Kuzmina, N.N.; Petrov, O.Y. Meat Qualities of Cross Cobb-500 Broilers Grown with the Use of the Antioxidant Dihydroquercetin. IOP Conf. Ser. Earth Environ. Sci. 2021, 677, 032074. [Google Scholar] [CrossRef]
- Purvis, B.; Mao, Y.; Robinson, D. Three Pillars of Sustainability: In Search of Conceptual Origins. Sustain. Sci. 2019, 14, 681–695. [Google Scholar] [CrossRef]
- United Nations. The Sustainable Development Goals Report; UNSD: New York, NY, USA, 2022. [Google Scholar]
- European Commission. The European Green Deal: Striving to Be the First Climate-Neutral Continent; European Union: Maastricht, The Netherlands, 2024. [Google Scholar]
- Kuc-Czarnecka, M.; Markowicz, I.; Sompolska-Rzechuła, A. SDGs Implementation, Their Synergies, and Trade-Offs in EU Countries–Sensitivity Analysis-Based Approach. Ecol. Indic. 2023, 146, 109888. [Google Scholar] [CrossRef]
- Haines, A.; Scheelbeek, P. European Green Deal: A Major Opportunity for Health Improvement. Lancet 2020, 395, 1327–1329. [Google Scholar] [CrossRef]
- Schön, A.-M.; Böhringer, M. Land Consumption for Current Diets Compared with That for the Planetary Health Diet—How Many People Can Our Land Feed? Sustainability 2023, 15, 8675. [Google Scholar] [CrossRef]
- Muscio, A.; Sisto, R. Are Agri-Food Systems Really Switching to a Circular Economy Model? Implications for European Research and Innovation Policy. Sustainability 2020, 12, 5554. [Google Scholar] [CrossRef]
- Veldkamp, T.; Meijer, N.; Alleweldt, F.; Deruytter, D.; Van Campenhout, L.; Gasco, L.; Roos, N.; Smetana, S.; Fernandes, A.; van der Fels-Klerx, H.J. Overcoming Technical and Market Barriers to Enable Sustainable Large-Scale Production and Consumption of Insect Proteins in Europe: A SUSINCHAIN Perspective. Insects 2022, 13, 281. [Google Scholar] [CrossRef]
- Arayess, S.; de Boer, A. How to Navigate the Tricky Landscape of Sustainability Claims in the Food Sector. Eur. J. Risk Regul. 2022, 13, 643–664. [Google Scholar] [CrossRef]
- Granato, D.; Zabetakis, I.; Koidis, A. Sustainability, Nutrition, and Scientific Advances of Functional Foods under the New EU and Global Legislation Initiatives. J. Funct. Foods 2023, 109, 105793. [Google Scholar] [CrossRef]
- Eakin, H.; Connors, J.P.; Wharton, C.; Bertmann, F.; Xiong, A.; Stoltzfus, J. Identifying Attributes of Food System Sustainability: Emerging Themes and Consensus. Agric. Hum. Values 2017, 34, 757–773. [Google Scholar] [CrossRef]
- Hakio, K.; Mattelmäki, T. Future Skills of Design for Sustainability: An Awareness-Based Co-Creation Approach. Sustainability 2019, 11, 5247. [Google Scholar] [CrossRef]
- Anzani, C.; Boukid, F.; Drummond, L.; Mullen, A.M.; Álvarez, C. Optimising the Use of Proteins from Rich Meat Co-Products and Non-Meat Alternatives: Nutritional, Technological and Allergenicity Challenges. Food Res. Int. 2020, 137, 109575. [Google Scholar] [CrossRef] [PubMed]
- Kyriakopoulou, K.; Dekkers, B.; Goot, A.J. van der Chapter 6—Plant-Based Meat Analogues. In Sustainable Meat Production and Processing; Galanakis, C.M., Ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 103–126. ISBN 978-0-12-814874-7. [Google Scholar]
- Hocquette, J.-F. Is It Possible to Save the Environment and Satisify Consumers with Artificial Meat? J. Integr. Agric. 2015, 14, 206–207. [Google Scholar] [CrossRef]
- Liu, W.; Hao, Z.; Florkowski, W.J.; Wu, L.; Yang, Z. A Review of the Challenges Facing Global Commercialization of the Artificial Meat Industry. Foods 2022, 11, 3609. [Google Scholar] [CrossRef] [PubMed]
- El Bilali, H.; Callenius, C.; Strassner, C.; Probst, L. Food and Nutrition Security and Sustainability Transitions in Food Systems. Food Energy Secur. 2019, 8, e00154. [Google Scholar] [CrossRef]
- Theurl, M.C.; Lauk, C.; Kalt, G.; Mayer, A.; Kaltenegger, K.; Morais, T.G.; Teixeira, R.F.M.; Domingos, T.; Winiwarter, W.; Erb, K.-H.; et al. Food Systems in a Zero-Deforestation World: Dietary Change Is More Important than Intensification for Climate Targets in 2050. Sci. Total Environ. 2020, 735, 139353. [Google Scholar] [CrossRef]
- Jarmul, S.; Dangour, A.D.; Green, R.; Liew, Z.; Haines, A.; Scheelbeek, P.F. Climate Change Mitigation through Dietary Change: A Systematic Review of Empirical and Modelling Studies on the Environmental Footprints and Health Effects of ‘Sustainable Diets’. Environ. Res. Lett. 2020, 15, 123014. [Google Scholar] [CrossRef]
- Springmann, M.; Spajic, L.; Clark, M.A.; Poore, J.; Herforth, A.; Webb, P.; Rayner, M.; Scarborough, P. The Healthiness and Sustainability of National and Global Food Based Dietary Guidelines: Modelling Study. BMJ 2020, 370, m2322. [Google Scholar] [CrossRef]
- Anastasiou, K.; Baker, P.; Hadjikakou, M.; Hendrie, G.A.; Lawrence, M. A Conceptual Framework for Understanding the Environmental Impacts of Ultra-Processed Foods and Implications for Sustainable Food Systems. J. Clean. Prod. 2022, 368, 133155. [Google Scholar] [CrossRef]
- Anastasiou, K.; Baker, P.; Hendrie, G.A.; Hadjikakou, M.; Boylan, S.; Chaudhary, A.; Clark, M.; DeClerck, F.A.J.; Fanzo, J.; Fardet, A.; et al. Conceptualising the Drivers of Ultra-Processed Food Production and Consumption and Their Environmental Impacts: A Group Model-Building Exercise. Glob. Food Secur. 2023, 37, 100688. [Google Scholar] [CrossRef]
- Garzillo, J.M.F.; Poli, V.F.S.; Leite, F.H.M.; Steele, E.M.; Machado, P.P.; da Costa Louzada, M.L.; Levy, R.B.; Monteiro, C.A. Ultra-Processed Food Intake and Diet Carbon and Water Footprints: A National Study in Brazil. Rev. Saude Publica 2022, 56, 6. [Google Scholar] [CrossRef] [PubMed]
- Kesse-Guyot, E.; Allès, B.; Brunin, J.; Fouillet, H.; Dussiot, A.; Berthy, F.; Perraud, E.; Hercberg, S.; Julia, C.; Mariotti, F. Environmental Impacts along the Value Chain from the Consumption of Ultra-Processed Foods. Nat. Sustain. 2023, 6, 192–202. [Google Scholar] [CrossRef]
- da Silva, J.T.; Garzillo, J.M.F.; Rauber, F.; Kluczkovski, A.; Rivera, X.S.; da Cruz, G.L.; Frankowska, A.; Martins, C.A.; Louzada, M.L.d.C.; Monteiro, C.A.; et al. Greenhouse Gas Emissions, Water Footprint, and Ecological Footprint of Food Purchases According to Their Degree of Processing in Brazilian Metropolitan Areas: A Time-Series Study from 1987 to 2018. Lancet Planet. Health 2021, 5, e775–e785. [Google Scholar] [CrossRef]
- García, S.; Pastor, R.; Monserrat-Mesquida, M.; Álvarez-Álvarez, L.; Rubín-García, M.; Martínez-González, M.Á.; Salas-Salvadó, J.; Corella, D.; Fitó, M.; Martínez, J.A.; et al. Ultra-Processed Foods Consumption as a Promoting Factor of Greenhouse Gas Emissions, Water, Energy, and Land Use: A Longitudinal Assessment. Sci. Total Environ. 2023, 891, 164417. [Google Scholar] [CrossRef]
- Nordström, J.; Denver, S. The Impact of Voluntary Sustainability Adjustments on Greenhouse Gas Emissions from Food Consumption—The Case of Denmark. Clean. Responsible Consum. 2024, 12, 100164. [Google Scholar] [CrossRef]
- Prag, A.A.; Henriksen, C.B. Transition from Animal-Based to Plant-Based Food Production to Reduce Greenhouse Gas Emissions from Agriculture—The Case of Denmark. Sustainability 2020, 12, 8228. [Google Scholar] [CrossRef]
- Burlingame, B.; Lawrence, M.; Macdiarmid, J.; Dernini, S.; Oenema, S. IUNS Task Force on Sustainable Diets—LINKING NUTRITION AND FOOD SYSTEMS. Trends Food Sci. Technol. 2022, 130, 42–50. [Google Scholar] [CrossRef]
- Śmiglak-Krajewska, M.; Wojciechowska-Solis, J.; Viti, D. Consumers’ Purchasing Intentions on the Legume Market as Evidence of Sustainable Behaviour. Agriculture 2020, 10, 424. [Google Scholar] [CrossRef]
- Dubois, G.; Sovacool, B.; Aall, C.; Nilsson, M.; Barbier, C.; Herrmann, A.; Bruyère, S.; Andersson, C.; Skold, B.; Nadaud, F. It Starts at Home? Climate Policies Targeting Household Consumption and Behavioral Decisions Are Key to Low-Carbon Futures. Energy Res. Soc. Sci. 2019, 52, 144–158. [Google Scholar] [CrossRef]
- Vesterbæk, P.; Preus, N.; Logo-Koefoed, C. Analyse Af Danskernes Syn På Klima Og Bæredygtighed. 2020. Available online: https://www.ernaeringsfokus.dk/media/j0kcebqd/markedsanalyse-baeredygtighed-2020-final.pdf (accessed on 14 July 2024).
- Annunziata, A.; Agovino, M.; Mariani, A. Measuring Sustainable Food Consumption: A Case Study on Organic Food. Sustain. Prod. Consum. 2019, 17, 95–107. [Google Scholar]
- Baudry, J.; Pointereau, P.; Seconda, L.; Vidal, R.; Taupier-Letage, B.; Langevin, B.; Allès, B.; Galan, P.; Hercberg, S.; Amiot, M.-J. Improvement of Diet Sustainability with Increased Level of Organic Food in the Diet: Findings from the BioNutriNet Cohort. Am. J. Clin. Nutr. 2019, 109, 1173–1188. [Google Scholar] [CrossRef]
- De Bauw, M.; Franssens, S.; Vranken, L. Trading off Environmental Attributes in Food Consumption Choices. Food Policy 2022, 112, 102338. [Google Scholar] [CrossRef]
- Kause, A.; Bruine de Bruin, W.; Millward-Hopkins, J.; Olsson, H. Public Perceptions of How to Reduce Carbon Footprints of Consumer Food Choices. Environ. Res. Lett. 2019, 14, 114005. [Google Scholar] [CrossRef]
- Guiné, R.P.F.; Florença, S.G.; Anjos, O.; Correia, P.M.R.; Ferreira, B.M.; Costa, C.A. An Insight into the Level of Information about Sustainability of Edible Insects in a Traditionally Non-Insect-Eating Country: Exploratory Study. Sustainability 2021, 13, 12014. [Google Scholar] [CrossRef]
- Elhoushy, S.; Lanzini, P. Factors Affecting Sustainable Consumer Behavior in the MENA Region: A Systematic Review. J. Int. Consum. Mark. 2021, 33, 256–279. [Google Scholar] [CrossRef]
- Brock, A.; Williams, I.; Kemp, S. “I’ll Take the Easiest Option Please”. Carbon Reduction Preferences of the Public. J. Clean. Prod. 2023, 429, 139398. [Google Scholar] [CrossRef]
- Ford, H.; Zhang, Y.; Gould, J.; Danner, L.; Bastian, S.E.P.; Ford, R.; Yang, Q. Applying Regression Tree Analysis to Explore Willingness to Reduce Meat and Adopt Protein Alternatives among Australia, China and the UK. Food Qual. Prefer. 2023, 112, 105034. [Google Scholar] [CrossRef]
- Boereboom, A.; Mongondry, P.; de Aguiar, L.K.; Urbano, B.; Jiang, Z.; de Koning, W.; Vriesekoop, F. Identifying Consumer Groups and Their Characteristics Based on Their Willingness to Engage with Cultured Meat: A Comparison of Four European Countries. Foods 2022, 11, 197. [Google Scholar] [CrossRef]
- Palomo-Vélez, G.; Tybur, J.M.; Vugt, M. van Unsustainable, Unhealthy, or Disgusting? Comparing Different Persuasive Messages against Meat Consumption. J. Environ. Psychol. 2018, 58, 63–71. [Google Scholar] [CrossRef]
- Einhorn, L. Meat Consumption, Classed? Osterr. Z. Soziologie 2021, 46, 125–146. [Google Scholar] [CrossRef]
- Moreira, M.N.B.; da Veiga, C.P.; da Veiga, C.R.P.; Reis, G.G.; Pascuci, L.M. Reducing Meat Consumption: Insights from a Bibliometric Analysis and Future Scopes. Future Foods 2022, 5, 100120. [Google Scholar] [CrossRef]
- Koch, F.; Heuer, T.; Krems, C.; Claupein, E. Meat Consumers and Non-Meat Consumers in Germany: A Characterisation Based on Results of the German National Nutrition Survey II. J. Nutr. Sci. 2019, 8, e21. [Google Scholar] [CrossRef] [PubMed]
- da Veiga, C.P.; Moreira, M.N.B.; da Veiga, C.R.P.; Souza, A.; Su, Z. Consumer Behavior Concerning Meat Consumption: Evidence from Brazil. Foods 2023, 12, 188. [Google Scholar] [CrossRef] [PubMed]
- Kirbiš, A.; Lamot, M.; Javornik, M. The Role of Education in Sustainable Dietary Patterns in Slovenia. Sustainability 2021, 13, 3036. [Google Scholar] [CrossRef]
- Dagevos, H. Finding Flexitarians: Current Studies on Meat Eaters and Meat Reducers. Trends Food Sci. Technol. 2021, 114, 530–539. [Google Scholar] [CrossRef]
- de Gavelle, E.; Davidenko, O.; Fouillet, H.; Delarue, J.; Darcel, N.; Huneau, J.-F.; Mariotti, F. Self-Declared Attitudes and Beliefs Regarding Protein Sources Are a Good Prediction of the Degree of Transition to a Low-Meat Diet in France. Appetite 2019, 142, 104345. [Google Scholar] [CrossRef]
- Minotti, B.; Antonelli, M.; Dembska, K.; Marino, D.; Riccardi, G.; Vitale, M.; Calabrese, I.; Recanati, F.; Giosuè, A. True Cost Accounting of a Healthy and Sustainable Diet in Italy. Front. Nutr. 2022, 9, 974768. [Google Scholar] [CrossRef]
- Verbeke, W.; Sans, P.; Loo, E.J.V. Challenges and Prospects for Consumer Acceptance of Cultured Meat. J. Integr. Agric. 2015, 14, 285–294. [Google Scholar] [CrossRef]
- Verbeke, W.; Marcu, A.; Rutsaert, P.; Gaspar, R.; Seibt, B.; Fletcher, D.; Barnett, J. ‘Would You Eat Cultured Meat?’: Consumers’ Reactions and Attitude Formation in Belgium, Portugal and the United Kingdom. Meat Sci. 2015, 102, 49–58. [Google Scholar] [CrossRef] [PubMed]
- Lizcano-Prada, J.; Maestre-Matos, M.; Mesias, F.J.; Lami, O.; Giray, H.; Özçiçek Dölekoğlu, C.; Abdoulaye Bamoi, A.G.; Martínez-Carrasco, F. Does Consumers’ Cultural Background Affect How They Perceive and Engage in Food Sustainability? A Cross-Cultural Study. Foods 2024, 13, 311. [Google Scholar] [CrossRef]
- Caporgno, M.P.; Mathys, A. Trends in Microalgae Incorporation Into Innovative Food Products With Potential Health Benefits. Front. Nutr. 2018, 5, 58. [Google Scholar] [CrossRef]
- Smetana, S.; Mathys, A.; Knoch, A.; Heinz, V. Meat Alternatives: Life Cycle Assessment of Most Known Meat Substitutes. Int. J. Life Cycle Assess. 2015, 20, 1254–1267. [Google Scholar] [CrossRef]
- HLPE. Nutrition and Food Systems. A Report by the High Level Panel of Experts on Food Security and Nutrition of the Committee on World Food Security; FAO: Rome, Italy, 2018. [Google Scholar]
- Aleksandrowicz, L.; Green, R.; Joy, E.J.M.; Smith, P.; Haines, A. The Impacts of Dietary Change on Greenhouse Gas Emissions, Land Use, Water Use, and Health: A Systematic Review. PLoS ONE 2016, 11, e0165797. [Google Scholar] [CrossRef] [PubMed]
- Clune, S.; Crossin, E.; Verghese, K. Systematic Review of Greenhouse Gas Emissions for Different Fresh Food Categories. J. Clean. Prod. 2017, 140, 766–783. [Google Scholar] [CrossRef]
- Tziva, M.; Negro, S.O.; Kalfagianni, A.; Hekkert, M.P. Understanding the Protein Transition: The Rise of Plant-Based Meat Substitutes. Environ. Innov. Soc. Transit. 2020, 35, 217–231. [Google Scholar] [CrossRef]
- Springmann, M.; Godfray, H.C.J.; Rayner, M.; Scarborough, P. Analysis and Valuation of the Health and Climate Change Cobenefits of Dietary Change. Proc. Natl. Acad. Sci. USA 2016, 113, 4146–4151. [Google Scholar] [CrossRef]
- Tilman, D.; Clark, M. Global Diets Link Environmental Sustainability and Human Health. Nature 2014, 515, 518–522. [Google Scholar] [CrossRef]
- Bager, S.L.; Persson, U.M.; Reis, T.N.P. dos Eighty-Six EU Policy Options for Reducing Imported Deforestation. One Earth 2021, 4, 289–306. [Google Scholar] [CrossRef]
- Mariotti, F. Vegetarian and Plant-Based Diets in Health and Disease Prevention; Academic Press: Cambridge, MA, USA, 2017; ISBN 0-12-803969-8. [Google Scholar]
- Jeswani, H.K.; Figueroa-Torres, G.; Azapagic, A. The Extent of Food Waste Generation in the UK and Its Environmental Impacts. Sustain. Prod. Consum. 2021, 26, 532–547. [Google Scholar] [CrossRef]
- Chauhan, C.; Dhir, A.; Akram, M.U.; Salo, J. Food Loss and Waste in Food Supply Chains. A Systematic Literature Review and Framework Development Approach. J. Clean. Prod. 2021, 295, 126438. [Google Scholar] [CrossRef]
- Mokrane, S.; Buonocore, E.; Capone, R.; Franzese, P.P. Exploring the Global Scientific Literature on Food Waste and Loss. Sustainability 2023, 15, 4757. [Google Scholar] [CrossRef]
- Skaf, L.; Franzese, P.; Capone, R.; Buonocore, E. Unfolding Hidden Environmental Impacts of Food Waste: An Assessment for Fifteen Countries of the World. J. Clean. Prod. 2021, 310, 127523. [Google Scholar] [CrossRef]
- Diamantis, D.V.; Shalit, A.; Katsas, K.; Zioga, E.; Zota, D.; Kastorini, C.M.; Veloudaki, A.; Kouvari, M.; Linos, A. Improving Children’s Lifestyle and Quality of Life through Synchronous Online Education: The Nutritional Adventures School-Based Program. Nutrients 2023, 15, 5124. [Google Scholar] [CrossRef] [PubMed]
- Asakura, K.; Mori, S.; Sasaki, S.; Nishiwaki, Y. A School-Based Nutrition Education Program Involving Children and Their Guardians in Japan: Facilitation of Guardian-Child Communication and Reduction of Nutrition Knowledge Disparity. Nutr. J. 2021, 20, 92. [Google Scholar] [CrossRef] [PubMed]
- Andueza, N.; Martin-Calvo, N.; Navas-Carretero, S.; Cuervo, M. The ALINFA Intervention Improves Diet Quality and Nutritional Status in Children 6 to 12 Years Old. Nutrients 2023, 15, 2375. [Google Scholar] [CrossRef]
- Teo, C.H.; Chin, Y.S.; Lim, P.Y.; Masrom, S.A.H.; Shariff, Z.M. School-Based Intervention That Integrates Nutrition Education and Supportive Healthy School Food Environment among Malaysian Primary School Children: A Study Protocol. BMC Public Health 2019, 19, 1427. [Google Scholar] [CrossRef] [PubMed]
- Roccaldo, R.; Censi, L.; D’Addezio, L.; Berni Canani, S.; Gennaro, L. A Teachers’ Training Program Accompanying the “School Fruit Scheme” Fruit Distribution Improves Children’s Adherence to the Mediterranean Diet: An Italian Trial. Int. J. Food Sci. Nutr. 2017, 68, 887–900. [Google Scholar] [CrossRef]
- Kastorini, C.-M.; Critselis, E.; Zota, D.; Coritsidis, A.L.; Nagarajan, M.K.; Papadimitriou, E.; Belogianni, K.; Benetou, V.; Linos, A.; Greek National Dietary Guidelines Scientific Team. National Dietary Guidelines of Greece for Children and Adolescents: A Tool for Promoting Healthy Eating Habits. Public Health Nutr. 2019, 22, 2688–2699. [Google Scholar] [CrossRef]
- Ivanova, D.; Barrett, J.; Wiedenhofer, D.; Macura, B.; Callaghan, M.; Creutzig, F. Quantifying the Potential for Climate Change Mitigation of Consumption Options. Environ. Res. Lett. 2020, 15, 093001. [Google Scholar] [CrossRef]
- Hoek, A.C.; Malekpour, S.; Raven, R.; Court, E.; Byrne, E. Towards Environmentally Sustainable Food Systems: Decision-Making Factors in Sustainable Food Production and Consumption. Sustain. Prod. Consum. 2021, 26, 610–626. [Google Scholar] [CrossRef]
- Deloitte, U. How Consumers Are Embracing Sustainability: Adoption of Sustainable Lifestyles Is on the Rise, but Consumers Need More Help; Deloitte: Zürich, Switzerland, 2022. [Google Scholar]
- Weinrich, R. Opportunities for the Adoption of Health-Based Sustainable Dietary Patterns: A Review on Consumer Research of Meat Substitutes. Sustainability 2019, 11, 4028. [Google Scholar] [CrossRef]
- Varela, P.; Arvisenet, G.; Gonera, A.; Myhrer, K.S.; Fifi, V.; Valentin, D. Meat Replacer? No Thanks! The Clash between Naturalness and Processing: An Explorative Study of the Perception of Plant-Based Foods. Appetite 2022, 169, 105793. [Google Scholar] [CrossRef]
- Vitale, M.; Giosuè, A.; Vaccaro, O.; Riccardi, G. Recent Trends in Dietary Habits of the Italian Population: Potential Impact on Health and the Environment. Nutrients 2021, 13, 476. [Google Scholar] [CrossRef]
- Marchi, E.D.; Scappaticci, G.; Banterle, A.; Alamprese, C. What Is the Role of Environmental Sustainability Knowledge in Food Choices? A Case Study on Egg Consumers in Italy. J. Clean. Prod. 2024, 441, 141038. [Google Scholar] [CrossRef]
- Lazzarini, G.A.; Visschers, V.H.M.; Siegrist, M. Our Own Country Is Best: Factors Influencing Consumers’ Sustainability Perceptions of Plant-Based Foods. Food Qual. Prefer. 2017, 60, 165–177. [Google Scholar] [CrossRef]
- Graça, J.; Truninger, M.; Junqueira, L.; Schmidt, L. Consumption Orientations May Support (or Hinder) Transitions to More Plant-Based Diets. Appetite 2019, 140, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Aschemann-Witzel, J.; Gantriis, R.F.; Fraga, P.; Perez-Cueto, F.J. Plant-Based Food and Protein Trend from a Business Perspective: Markets, Consumers, and the Challenges and Opportunities in the Future. Crit. Rev. Food Sci. Nutr. 2021, 61, 3119–3128. [Google Scholar] [CrossRef]
- Reipurth, M.F.S.; Hørby, L.; Gregersen, C.G.; Bonke, A.; Cueto, F.J.A.P. Barriers and Facilitators towards Adopting a More Plant-Based Diet in a Sample of Danish Consumers. Food Qual. Prefer. 2019, 73, 288–292. [Google Scholar] [CrossRef]
- Wang, Y.; Tibbetts, S.M.; McGinn, P.J. Microalgae as Sources of High-Quality Protein for Human Food and Protein Supplements. Foods 2021, 10, 3002. [Google Scholar] [CrossRef]
- Jetzke, T.; Bovenschulte, M.; Ehrenberg-Silies, S. Fleisch 2.0–Unkonventionelle Proteinquellen; Institut für Technikfolgenabschätzung und Systemanalyse (ITAS): Karlsruhe, Germany, 2016. [Google Scholar]
- Dupont, J.; Harms, T.; Fiebelkorn, F. Acceptance of Cultured Meat in Germany—Application of an Extended Theory of Planned Behaviour. Foods 2022, 11, 424. [Google Scholar] [CrossRef] [PubMed]
- Estruch, R.; Ros, E.; Salas-Salvadó, J.; Covas, M.-I.; Corella, D.; Arós, F.; Gómez-Gracia, E.; Ruiz-Gutiérrez, V.; Fiol, M.; Lapetra, J.; et al. Primary Prevention of Cardiovascular Disease with a Mediterranean Diet Supplemented with Extra-Virgin Olive Oil or Nuts. N. Engl. J. Med. 2018, 378, e34. [Google Scholar] [CrossRef] [PubMed]
- Gantenbein, K.V.; Kanaka-Gantenbein, C. Mediterranean Diet as an Antioxidant: The Impact on Metabolic Health and Overall Wellbeing. Nutrients 2021, 13, 1951. [Google Scholar] [CrossRef]
- Rees, K.; Takeda, A.; Martin, N.; Ellis, L.; Wijesekara, D.; Vepa, A.; Das, A.; Hartley, L.; Stranges, S. Mediterranean-style Diet for the Primary and Secondary Prevention of Cardiovascular Disease. Cochrane Database Syst. Rev. 2019. [Google Scholar] [CrossRef]
- Ventriglio, A.; Sancassiani, F.; Contu, M.P.; Latorre, M.; Di Slavatore, M.; Fornaro, M.; Bhugra, D. Mediterranean Diet and Its Benefits on Health and Mental Health: A Literature Review. Clin. Pract. Epidemiol. Ment. Health CP & EMH 2020, 16, 156. [Google Scholar]
- Theodoridis, X.; Triantafyllou, A.; Chrysoula, L.; Mermigkas, F.; Chroni, V.; Dipla, K.; Gkaliagkousi, E.; Chourdakis, M. Impact of the Level of Adherence to the DASH Diet on Blood Pressure: A Systematic Review and Meta-Analysis. Metabolites 2023, 13, 924. [Google Scholar] [CrossRef] [PubMed]
- Grdeń, P.; Jakubczyk, A. Health Benefits of Legume Seeds. J. Sci. Food Agric. 2023, 103, 5213–5220. [Google Scholar] [CrossRef]
- Kelly, R.; Hanus, A.; Payne-Foster, P.; Calhoun, J.; Stout, R.; Sherman, B.W. Health Benefits of a 16-Week Whole Food, High Fiber, Plant Predominant Diet among U.S. Employees. Am. J. Health Promot. 2023, 37, 168–176. [Google Scholar] [CrossRef]
- Yanni, A.E.; Iakovidi, S.; Vasilikopoulou, E.; Karathanos, V.T. Legumes: A Vehicle for Transition to Sustainability. Nutrients 2024, 16, 98. [Google Scholar] [CrossRef]
- Stephens, N.; Silvio, L.D.; Dunsford, I.; Ellis, M.; Glencross, A.; Sexton, A. Bringing Cultured Meat to Market: Technical, Socio-Political, and Regulatory Challenges in Cellular Agriculture. Trends Food Sci. Technol. 2018, 78, 155–166. [Google Scholar] [CrossRef]
- Rorheim, A.; Mannino, A.; Baumann, T.; Caviola, L. Cultured Meat: An Ethical Alternative to Industrial Animal Farming. Policy Pap. Sentience Politics 2016, 1, 1–14. [Google Scholar]
- Lynch, J.; Pierrehumbert, R. Climate Impacts of Cultured Meat and Beef Cattle. Front. Sustain. Food Syst. 2019, 3, 421491. [Google Scholar] [CrossRef]
- Liu, W.; Hao, Z.; Florkowski, W.J.; Wu, L.; Yang, Z. Assuring Food Security: Consumers’ Ethical Risk Perception of Meat Substitutes. Agriculture 2022, 12, 671. [Google Scholar] [CrossRef]
- Onwezen, M.C.; Bouwman, E.P.; Reinders, M.J.; Dagevos, H. A Systematic Review on Consumer Acceptance of Alternative Proteins: Pulses, Algae, Insects, Plant-Based Meat Alternatives, and Cultured Meat. Appetite 2021, 159, 105058. [Google Scholar] [CrossRef] [PubMed]
- Knežić, T.; Janjušević, L.; Djisalov, M.; Yodmuang, S.; Gadjanski, I. Using Vertebrate Stem and Progenitor Cells for Cellular Agriculture, State-of-the-Art, Challenges, and Future Perspectives. Biomolecules 2022, 12, 699. [Google Scholar] [CrossRef] [PubMed]
- Choudhury, D.; Tseng, T.W.; Swartz, E. The Business of Cultured Meat. Trends Biotechnol. 2020, 38, 573–577. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Chatli, M.K.; Mehta, N.; Singh, P.; Malav, O.P.; Verma, A.K. Meat Analogues: Health Promising Sustainable Meat Substitutes. Crit. Rev. Food Sci. Nutr. 2017, 57, 923–932. [Google Scholar] [CrossRef] [PubMed]
- Collier, E.S.; Normann, A.; Harris, K.L.; Oberrauter, L.-M.; Bergman, P. Making More Sustainable Food Choices One Meal at a Time: Psychological and Practical Aspects of Meat Reduction and Substitution. Foods 2022, 11, 1182. [Google Scholar] [CrossRef]
- Hartmann, C.; Furtwaengler, P.; Siegrist, M. Consumers’ Evaluation of the Environmental Friendliness, Healthiness and Naturalness of Meat, Meat Substitutes, and Other Protein-Rich Foods. Food Qual. Prefer. 2022, 97, 104486. [Google Scholar] [CrossRef]
- Macdiarmid, J.I.; Clark, H.; Whybrow, S.; de Ruiter, H.; McNeill, G. Assessing National Nutrition Security: The UK Reliance on Imports to Meet Population Energy and Nutrient Recommendations. PLoS ONE 2018, 13, e0192649. [Google Scholar] [CrossRef] [PubMed]
- González-García, S.; Esteve-Llorens, X.; Moreira, M.T.; Feijoo, G. Carbon Footprint and Nutritional Quality of Different Human Dietary Choices. Sci. Total Environ. 2018, 644, 77–94. [Google Scholar] [CrossRef] [PubMed]
- Lane, M.M.; Davis, J.A.; Beattie, S.; Gómez-Donoso, C.; Loughman, A.; O’Neil, A.; Jacka, F.; Berk, M.; Page, R.; Marx, W.; et al. Ultraprocessed Food and Chronic Noncommunicable Diseases: A Systematic Review and Meta-Analysis of 43 Observational Studies. Obes. Rev. 2021, 22, e13146. [Google Scholar] [CrossRef] [PubMed]
- Farsi, D.N.; Uthumange, D.; Munoz Munoz, J.; Commane, D.M. The Nutritional Impact of Replacing Dietary Meat with Meat Alternatives in the UK: A Modelling Analysis Using Nationally Representative Data. Br. J. Nutr. 2022, 127, 1731–1741. [Google Scholar] [CrossRef]
- Salomé, M.; Huneau, J.-F.; Baron, C.L.; Kesse-Guyot, E.; Fouillet, H.; Mariotti, F. Substituting Meat or Dairy Products with Plant-Based Substitutes Has Small and Heterogeneous Effects on Diet Quality and Nutrient Security: A Simulation Study in French Adults (INCA3). J. Nutr. 2021, 151, 2435–2445. [Google Scholar] [CrossRef] [PubMed]
- Langyan, S.; Yadava, P.; Khan, F.N.; Dar, Z.A.; Singh, R.; Kumar, A. Sustaining Protein Nutrition Through Plant-Based Foods. Front. Nutr. 2022, 8, 772573. [Google Scholar] [CrossRef]
- Spendrup, S.; Hovmalm, H.P. Consumer Attitudes and Beliefs towards Plant-Based Food in Different Degrees of Processing—The Case of Sweden. Food Qual. Prefer. 2022, 102, 104673. [Google Scholar] [CrossRef]
- Jones, P. UK Retailers and Plant-Based Alternatives to Meat and Dairy Products. Athens J. Bus. Econ. 2023, 9, 207–220. [Google Scholar] [CrossRef]
- Cole, E.; Goeler-Slough, N.; Cox, A.; Nolden, A. Examination of the Nutritional Composition of Alternative Beef Burgers Available in the United States. Int. J. Food Sci. Nutr. 2022, 73, 425–432. [Google Scholar] [CrossRef]
- Curtain, F.; Grafenauer, S. Plant-Based Meat Substitutes in the Flexitarian Age: An Audit of Products on Supermarket Shelves. Nutrients 2019, 11, 2603. [Google Scholar] [CrossRef]
- Pointke, M.; Pawelzik, E. Plant-Based Alternative Products: Are They Healthy Alternatives? Micro- and Macronutrients and Nutritional Scoring. Nutrients 2022, 14, 601. [Google Scholar] [CrossRef] [PubMed]
- Romão, B.; Botelho, R.B.A.; Nakano, E.Y.; Raposo, A.; Han, H.; Vega-Muñoz, A.; Ariza-Montes, A.; Zandonadi, R.P. Are Vegan Alternatives to Meat Products Healthy? A Study on Nutrients and Main Ingredients of Products Commercialized in Brazil. Front. Public Health 2022, 10, 900598. [Google Scholar] [CrossRef]
- Tonheim, L.E.; Austad, E.; Torheim, L.E.; Henjum, S. Plant-Based Meat and Dairy Substitutes on the Norwegian Market: Comparing Macronutrient Content in Substitutes with Equivalent Meat and Dairy Products. J. Nutr. Sci. 2022, 11, e9. [Google Scholar] [CrossRef] [PubMed]
- Alexander, P.; Brown, C.; Arneth, A.; Dias, C.; Finnigan, J.; Moran, D.; Rounsevell, M.D.A. Could Consumption of Insects, Cultured Meat or Imitation Meat Reduce Global Agricultural Land Use? Glob. Food Secur. 2017, 15, 22–32. [Google Scholar] [CrossRef]
- Rizzolo-Brime, L.; Orta-Ramirez, A.; Puyol Martin, Y.; Jakszyn, P. Nutritional Assessment of Plant-Based Meat Alternatives: A Comparison of Nutritional Information of Plant-Based Meat Alternatives in Spanish Supermarkets. Nutrients 2023, 15, 1325. [Google Scholar] [CrossRef] [PubMed]
- Koyande, A.K.; Chew, K.W.; Rambabu, K.; Tao, Y.; Chu, D.-T.; Show, P.-L. Microalgae: A Potential Alternative to Health Supplementation for Humans. Food Sci. Hum. Wellness 2019, 8, 16–24. [Google Scholar] [CrossRef]
- Yang, S.; Fan, Y.; Cao, Y.; Wang, Y.; Mou, H.; Sun, H. Technological Readiness of Commercial Microalgae Species for Foods. Crit. Rev. Food Sci. Nutr. 2023, 64, 7993–8017. [Google Scholar] [CrossRef] [PubMed]
- Verni, M.; Demarinis, C.; Rizzello, C.G.; Pontonio, E. Bioprocessing to Preserve and Improve Microalgae Nutritional and Functional Potential: Novel Insight and Perspectives. Foods 2023, 12, 983. [Google Scholar] [CrossRef] [PubMed]
- Wells, M.L.; Potin, P.; Craigie, J.S.; Raven, J.A.; Merchant, S.S.; Helliwell, K.E.; Smith, A.G.; Camire, M.E.; Brawley, S.H. Algae as Nutritional and Functional Food Sources: Revisiting Our Understanding. J. Appl. Phycol. 2017, 29, 949–982. [Google Scholar] [CrossRef]
- Quesada-Salas, M.C.; Delfau-Bonnet, G.; Willig, G.; Préat, N.; Allais, F.; Ioannou, I. Optimization and Comparison of Three Cell Disruption Processes on Lipid Extraction from Microalgae. Processes 2021, 9, 369. [Google Scholar] [CrossRef]
- Akhtar, Y.; Isman, M.B. Insects as an Alternative Protein Source. In Proteins in Food Processing; Elsevier: Amsterdam, The Netherlands, 2018; pp. 263–288. [Google Scholar]
- Van Huis, A.; Van Itterbeeck, J.; Klunder, H.; Mertens, E.; Halloran, A.; Muir, G.; Vantomme, P. Edible Insects: Future Prospects for Food and Feed Security; Food and Agriculture Organization of the United Nations: Rome, Italy, 2013; ISBN 92-5-107596-4. [Google Scholar]
- Ndiritu, A.K.; Kinyuru, J.N.; Kenji, G.M.; Gichuhi, P.N. Extraction Technique Influences the Physico-Chemical Characteristics and Functional Properties of Edible Crickets (Acheta Domesticus) Protein Concentrate. J. Food Meas. Charact. 2017, 11, 2013–2021. [Google Scholar] [CrossRef]
- Vandeweyer, D.; Lievens, B.; Van Campenhout, L. Identification of Bacterial Endospores and Targeted Detection of Foodborne Viruses in Industrially Reared Insects for Food. Nature Food 2020, 1, 511–516. [Google Scholar] [CrossRef] [PubMed]
- EFSA Scientific Committee. Risk Profile Related to Production and Consumption of Insects as Food and Feed. EFSA J. 2015, 13, 4257. [Google Scholar] [CrossRef]
- Kouřimská, L.; Adámková, A. Nutritional and Sensory Quality of Edible Insects. NFS J. 2016, 4, 22–26. [Google Scholar] [CrossRef]
- Glover, D.; Sexton, A. Edible Insects and the Future of Food: A Foresight Scenario Exercise on Entomophagy and Global Food Security. 2015. Available online: https://www.researchgate.net/publication/282094473_Edible_Insects_and_the_Future_of_Food_A_Foresight_Scenario_Exercise_on_Entomophagy_and_Global_Food_Security (accessed on 14 July 2024).
- Orsi, L.; Voege, L.L.; Stranieri, S. Eating Edible Insects as Sustainable Food? Exploring the Determinants of Consumer Acceptance in Germany. Food Res. Int. 2019, 125, 108573. [Google Scholar] [CrossRef]
- Mishyna, M.; Chen, J.; Benjamin, O. Sensory Attributes of Edible Insects and Insect-Based Foods—Future Outlooks for Enhancing Consumer Appeal. Trends Food Sci. Technol. 2020, 95, 141–148. [Google Scholar] [CrossRef]
- Francis, F.; Doyen, V.; Debaugnies, F.; Mazzucchelli, G.; Caparros, R.; Alabi, T.; Blecker, C.; Haubruge, E.; Corazza, F. Limited Cross Reactivity among Arginine Kinase Allergens from Mealworm and Cricket Edible Insects. Food Chem. 2019, 276, 714–718. [Google Scholar] [CrossRef]
- Srinroch, C.; Srisomsap, C.; Chokchaichamnankit, D.; Punyarit, P.; Phiriyangkul, P. Identification of Novel Allergen in Edible Insect, Gryllus Bimaculatus and Its Cross-Reactivity with Macrobrachium Spp. Allergens. Food Chem. 2015, 184, 160–166. [Google Scholar] [CrossRef]
- Mwelwa, S.; Chungu, D.; Tailoka, F.; Beesigamukama, D.; Tanga, C. Biotransfer of Heavy Metals along the Soil-Plant-Edible Insect-Human Food Chain in Africa. Sci. Total Environ. 2023, 881, 163150. [Google Scholar] [CrossRef]
- Fatima, N.; Emambux, M.N.; Olaimat, A.N.; Stratakos, A.C.; Nawaz, A.; Wahyono, A.; Gul, K.; Park, J.; Shahbaz, H.M. Recent Advances in Microalgae, Insects, and Cultured Meat as Sustainable Alternative Protein Sources. Food Humanit. 2023, 1, 731–741. [Google Scholar] [CrossRef]
- Pandurangan, M.; Kim, D.H. A Novel Approach for in Vitro Meat Production. Appl. Microbiol. Biotechnol. 2015, 99, 5391–5395. [Google Scholar] [CrossRef]
- Zuhaib Fayaz Bhat, S.K.; Bhat, H.F. In Vitro Meat: A Future Animal-Free Harvest. Crit. Rev. Food Sci. Nutr. 2017, 57, 782–789. [Google Scholar] [CrossRef]
- Basile, A.; Ferranti, P. Synthetic Meat: Acceptance. In Reference Module in Food Science; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Garrison, G.L.; Biermacher, J.T.; Brorsen, B.W. How Much Will Large-Scale Production of Cell-Cultured Meat Cost? J. Agric. Food Res. 2022, 10, 100358. [Google Scholar] [CrossRef]
- Ye, Y.; Zhou, J.; Guan, X.; Sun, X. Commercialization of Cultured Meat Products: Current Status, Challenges, and Strategic Prospects. Future Foods 2022, 6, 100177. [Google Scholar] [CrossRef]
- Derbyshire, E.J.; Delange, J. Fungal Protein—What Is It and What Is the Health Evidence? A Systematic Review Focusing on Mycoprotein. Front. Sustain. Food Syst. 2021, 5, 581682. [Google Scholar] [CrossRef]
- Bottin, J.; Swann, J.; Cropp, E.; Chambers, E.; Ford, H.; Ghatei, M.; Frost, G. Mycoprotein Reduces Energy Intake and Postprandial Insulin Release without Altering Glucagon-like Peptide-1 and Peptide Tyrosine-Tyrosine Concentrations in Healthy Overweight and Obese Adults: A Randomised-Controlled Trial. Br. J. Nutr. 2016, 116, 306–374. [Google Scholar] [CrossRef] [PubMed]
- Coelho, M.O.C.; Monteyne, A.J.; Dirks, M.L.; Finnigan, T.J.A.; Stephens, F.B.; Wall, B.T. Daily Mycoprotein Consumption for 1 Week Does Not Affect Insulin Sensitivity or Glycaemic Control but Modulates the Plasma Lipidome in Healthy Adults: A Randomised Controlled Trial. Br. J. Nutr. 2021, 125, 147–160. [Google Scholar] [CrossRef]
- Hashempour-Baltork, F.; Khosravi-Darani, K.; Hosseini, H.; Farshi, P.; Reihani, S.F.S. Mycoproteins as Safe Meat Substitutes. J. Clean. Prod. 2020, 253, 119958. [Google Scholar] [CrossRef]
- Poore, J.; Nemecek, T. Reducing Food’s Environmental Impacts through Producers and Consumers. Science 2018, 360, 987–992. [Google Scholar] [CrossRef]
- Smetana, S.; Pernutz, C.; Toepfl, S.; Heinz, V.; Van Campenhout, L. High-Moisture Extrusion with Insect and Soy Protein Concentrates: Cutting Properties of Meat Analogues under Insect Content and Barrel Temperature Variations. J. Insects Food Feed 2019, 5, 29–34. [Google Scholar] [CrossRef]
- Sharma, P.; Kaur, H.; Kehinde, B.A.; Chhikara, N.; Sharma, D.; Panghal, A. Food-Derived Anticancer Peptides: A Review. Int. J. Pept. Res. Ther. 2021, 27, 55–70. [Google Scholar] [CrossRef]
- Coelho, M.O.; Monteyne, A.J.; Dunlop, M.V.; Harris, H.C.; Morrison, D.J.; Stephens, F.B.; Wall, B.T. Mycoprotein as a Possible Alternative Source of Dietary Protein to Support Muscle and Metabolic Health. Nutr. Rev. 2020, 78, 486–497. [Google Scholar] [CrossRef]
- Ahmadi, N.; Khosravi-Darani, K.; Mohammad Mortazavian, A.; Mashayekh, S.M. Effects of Process Variables on Fed-Batch Production of Propionic Acid. J. Food Process. Preserv. 2017, 41, e12853. [Google Scholar] [CrossRef]
- Sharif, M.; Zafar, M.H.; Aqib, A.I.; Saeed, M.; Farag, M.R.; Alagawany, M. Single Cell Protein: Sources, Mechanism of Production, Nutritional Value and Its Uses in Aquaculture Nutrition. Aquaculture 2021, 531, 735885. [Google Scholar] [CrossRef]
- Ahmad, M.I.; Farooq, S.; Alhamoud, Y.; Li, C.; Zhang, H. A Review on Mycoprotein: History, Nutritional Composition, Production Methods, and Health Benefits. Trends Food Sci. Technol. 2022, 121, 14–29. [Google Scholar] [CrossRef]
- Zhang, T.; Dou, W.; Zhang, X.; Zhao, Y.; Zhang, Y.; Jiang, L.; Sui, X. The Development History and Recent Updates on Soy Protein-Based Meat Alternatives. Trends Food Sci. Technol. 2021, 109, 702–710. [Google Scholar] [CrossRef]
- Hocquette, J.-F. Is in Vitro Meat the Solution for the Future? Meat Sci. 2016, 120, 167–176. [Google Scholar] [CrossRef] [PubMed]
- Jin, F.-J.; Hu, S.; Wang, B.-T.; Jin, L. Advances in Genetic Engineering Technology and Its Application in the Industrial Fungus Aspergillus Oryzae. Front. Microbiol. 2021, 12, 644404. [Google Scholar] [CrossRef]
- Santo, R.E.; Kim, B.F.; Goldman, S.E.; Dutkiewicz, J.; Biehl, E.M.B.; Bloem, M.W.; Neff, R.A.; Nachman, K.E. Considering Plant-Based Meat Substitutes and Cell-Based Meats: A Public Health and Food Systems Perspective. Front. Sustain. Food Syst. 2020, 4, 134. [Google Scholar] [CrossRef]
- Faccio, E.; Guiotto Nai Fovino, L. Food Neophobia or Distrust of Novelties? Exploring Consumers’ Attitudes toward GMOs, Insects and Cultured Meat. Appl. Sci. 2019, 9, 4440. [Google Scholar] [CrossRef]
- Givens, D.I. Animal Board Invited Review: Dietary Transition from Animal to Plant-Derived Foods: Are There Risks to Health? Animal 2024, 18, 101263. [Google Scholar] [CrossRef] [PubMed]
- Viroli, G.; Kalmpourtzidou, A.; Cena, H. Exploring Benefits and Barriers of Plant-Based Diets: Health, Environmental Impact, Food Accessibility and Acceptability. Nutrients 2023, 15, 4723. [Google Scholar] [CrossRef]
- Pellinen, T.; Päivärinta, E.; Isotalo, J.; Lehtovirta, M.; Itkonen, S.T.; Korkalo, L.; Erkkola, M.; Pajari, A.-M. Replacing Dietary Animal-Source Proteins with Plant-Source Proteins Changes Dietary Intake and Status of Vitamins and Minerals in Healthy Adults: A 12-Week Randomized Controlled Trial. Eur. J. Nutr. 2022, 61, 1391–1404. [Google Scholar] [CrossRef] [PubMed]
- Fairweather-Tait, S. The Role of Meat in Iron Nutrition of Vulnerable Groups of the UK Population. Front. Anim. Sci. 2023, 4, 1142252. [Google Scholar] [CrossRef]
- Nowacka, M.; Trusinska, M.; Chraniuk, P.; Piatkowska, J.; Pakulska, A.; Wisniewska, K.; Wierzbicka, A.; Rybak, K.; Pobiega, K. Plant-Based Fish Analogs—A Review. Appl. Sci. 2023, 13, 4509. [Google Scholar] [CrossRef]
- Macdiarmid, J.I.; Douglas, F.; Campbell, J. Eating like There’s No Tomorrow: Public Awareness of the Environmental Impact of Food and Reluctance to Eat Less Meat as Part of a Sustainable Diet. Appetite 2016, 96, 487–493. [Google Scholar] [CrossRef]
- Food and Agriculture Organization. Sustainable Healthy Diets-Guiding Principles; FAO: Rome, Italy, 2019. [Google Scholar]
- von Koerber, K.; Bader, N.; Leitzmann, C. Wholesome Nutrition: An Example for a Sustainable Diet. Proc. Nutr. Soc. 2017, 76, 34–41. [Google Scholar] [CrossRef]
- Aiking, H.; de Boer, J. The next Protein Transition. Trends Food Sci. Technol. 2020, 105, 515–522. [Google Scholar] [CrossRef]
- Stiftung, H.B. MEAT ATLAS: Facts and Figures about the Animals We Eat; Heinrich-Böll-Stiftung: Berlin, Germany, 2014. [Google Scholar]
- Drewnowski, A.; Finley, J.; Hess, J.M.; Ingram, J.; Miller, G.; Peters, C. Toward Healthy Diets from Sustainable Food Systems. Curr. Dev. Nutr. 2020, 4, nzaa083. [Google Scholar] [CrossRef]
- Szczebyło, A.; Halicka, E.; Rejman, K.; Kaczorowska, J. Is Eating Less Meat Possible? Exploring the Willingness to Reduce Meat Consumption among Millennials Working in Polish Cities. Foods 2022, 11, 358. [Google Scholar] [CrossRef]
- Paslakis, G.; Richardson, C.; Nöhre, M.; Brähler, E.; Holzapfel, C.; Hilbert, A.; de Zwaan, M. Prevalence and Psychopathology of Vegetarians and Vegans–Results from a Representative Survey in Germany. Sci. Rep. 2020, 10, 6840. [Google Scholar] [CrossRef]
- Hargreaves, S.M.; Raposo, A.; Saraiva, A.; Zandonadi, R.P. Vegetarian Diet: An Overview through the Perspective of Quality of Life Domains. Int. J. Environ. Res. Public Health 2021, 18, 4067. [Google Scholar] [CrossRef]
- Eckl, M.R.; Biesbroek, S.; van’t Veer, P.; Geleijnse, J.M. Replacement of Meat with Non-Meat Protein Sources: A Review of the Drivers and Inhibitors in Developed Countries. Nutrients 2021, 13, 3602. [Google Scholar] [CrossRef] [PubMed]
- Chodkowska, K.A.; Wódz, K.; Wojciechowski, J. Sustainable Future Protein Foods: The Challenges and the Future of Cultivated Meat. Foods 2022, 11, 4008. [Google Scholar] [CrossRef]
- Raheem, D.; Carrascosa, C.; Oluwole, O.B.; Nieuwland, M.; Saraiva, A.; Millán, R.; Raposo, A. Traditional Consumption of and Rearing Edible Insects in Africa, Asia and Europe. Crit. Rev. Food Sci. Nutr. 2019, 59, 2169–2188. [Google Scholar] [CrossRef] [PubMed]
- van der Fels-Klerx, H.J.; Camenzuli, L.; Belluco, S.; Meijer, N.; Ricci, A. Food Safety Issues Related to Uses of Insects for Feeds and Foods. Compr. Rev. Food Sci. Food Saf. 2018, 17, 1172–1183. [Google Scholar] [CrossRef]
- Hawkey, K.J.; Lopez-Viso, C.; Brameld, J.M.; Parr, T.; Salter, A.M. Insects: A Potential Source of Protein and Other Nutrients for Feed and Food. Annu. Rev. Anim. Biosci. 2021, 9, 333–354. [Google Scholar] [CrossRef] [PubMed]
- van Huis, A. Prospects of Insects as Food and Feed. Org. Agric. 2021, 11, 301–308. [Google Scholar] [CrossRef]
- Van Huis, A. Insects as Food and Feed, a New Emerging Agricultural Sector: A Review. J. Insects Food Feed 2020, 6, 27–44. [Google Scholar] [CrossRef]
- Rzymski, P.; Kulus, M.; Jankowski, M.; Dompe, C.; Bryl, R.; Petitte, J.N.; Kempisty, B.; Mozdziak, P. COVID-19 Pandemic Is a Call to Search for Alternative Protein Sources as Food and Feed: A Review of Possibilities. Nutrients 2021, 13, 150. [Google Scholar] [CrossRef]
- Homann, A.; Ayieko, M.A.; Konyole, S.; Roos, N. Acceptability of Biscuits Containing 10% Cricket (Acheta Domesticus) Compared to Milk Biscuits among 5-10-Year-Old Kenyan Schoolchildren. J. Insects Food Feed 2017, 3, 95–103. [Google Scholar] [CrossRef]
- Akande, A.O.; Jolayemi, O.S.; Adelugba, V.A.; Akande, S.T. Silkworm Pupae (Bombyx Mori) and Locusts as Alternative Protein Sources for High-Energy Biscuits. J. Asia-Pac. Entomol. 2020, 23, 234–241. [Google Scholar] [CrossRef]
- Biró, B.; Sipos, M.A.; Kovács, A.; Badak-Kerti, K.; Pásztor-Huszár, K.; Gere, A. Cricket-Enriched Oat Biscuit: Technological Analysis and Sensory Evaluation. Foods 2020, 9, 1561. [Google Scholar] [CrossRef]
- Ramírez-Rivera, E.; Hernández-Santos, B.; Juárez-Barrientos, J.; Torruco-Uco, J.; Ramírez-Figueroa, E.; Rodríguez-Miranda, J. Effects of Formulation and Process Conditions on Chemical Composition, Color Parameters, and Acceptability of Extruded Insect-Rich Snack. J. Food Process. Preserv. 2021, 45, e15499. [Google Scholar] [CrossRef]
- Angaman, D.M.; Ehouman, A.G.; Boko, A.C.E. Propriétés Physico-Chimiques, Fonctionnelles et Microbiologiques de La Farine de Maïs Germé Enrichie de Larves d’insectes Comestibles Rhynchophorus Phoenicis et Oryctes Owariensis. J. Appl. Biosci. 2021, 158, 16310–16320. [Google Scholar]
- Machado, C.d.R.; Thys, R.C.S. Cricket Powder (Gryllus Assimilis) as a New Alternative Protein Source for Gluten-Free Breads. Innov. Food Sci. Emerg. Technol. 2019, 56, 102180. [Google Scholar] [CrossRef]
- Bawa, M.; Songsermpong, S.; Kaewtapee, C.; Chanput, W. Nutritional, Sensory, and Texture Quality of Bread and Cookie Enriched with House Cricket (Acheta Domesticus) Powder. J. Food Process. Preserv. 2020, 44, e14601. [Google Scholar] [CrossRef]
- Osimani, A.; Milanović, V.; Cardinali, F.; Roncolini, A.; Garofalo, C.; Clementi, F.; Pasquini, M.; Mozzon, M.; Foligni, R.; Raffaelli, N.; et al. Bread Enriched with Cricket Powder (Acheta Domesticus): A Technological, Microbiological and Nutritional Evaluation. Innov. Food Sci. Emerg. Technol. 2018, 48, 150–163. [Google Scholar] [CrossRef]
- Park, Y.-S.; Choi, Y.-S.; Hwang, K.-E.; Kim, T.-K.; Lee, C.-W.; Shin, D.-M.; Han, S.G. Physicochemical Properties of Meat Batter Added with Edible Silkworm Pupae (Bombyx Mori) and Transglutaminase. Korean J. Food Sci. Anim. Resour. 2017, 37, 351–359. [Google Scholar] [CrossRef]
- Kim, H.-W.; Setyabrata, D.; Lee, Y.J.; Jones, O.G.; Kim, Y.H.B. Pre-Treated Mealworm Larvae and Silkworm Pupae as a Novel Protein Ingredient in Emulsion Sausages. Innov. Food Sci. Emerg. Technol. 2016, 38, 116–123. [Google Scholar] [CrossRef]
- Duda, A.; Adamczak, J.; Chełmińska, P.; Juszkiewicz, J.; Kowalczewski, P. Quality and Nutritional/Textural Properties of Durum Wheat Pasta Enriched with Cricket Powder. Foods 2019, 8, 46. [Google Scholar] [CrossRef] [PubMed]
- Borremans, A.; Bußler, S.; Sagu, S.T.; Rawel, H.; Schlüter, O.K.; Leen, V.C. Effect of Blanching Plus Fermentation on Selected Functional Properties of Mealworm (Tenebrio Molitor) Powders. Foods 2020, 9, 917. [Google Scholar] [CrossRef]
- Purschke, B.; Tanzmeister, H.; Meinlschmidt, P.; Baumgartner, S.; Lauter, K.; Jäger, H. Recovery of Soluble Proteins from Migratory Locust (Locusta Migratoria) and Characterisation of Their Compositional and Techno-Functional Properties. Food Res. Int. 2018, 106, 271–279. [Google Scholar] [CrossRef] [PubMed]
- Stull, V.J.; Kersten, M.; Bergmans, R.S.; Patz, J.A.; Paskewitz, S. Crude Protein, Amino Acid, and Iron Content of Tenebrio Molitor (Coleoptera, Tenebrionidae) Reared on an Agricultural Byproduct from Maize Production: An Exploratory Study. Ann. Entomol. Soc. Am. 2019, 112, 533–543. [Google Scholar] [CrossRef]
- Bawa, M.; Songsermpong, S.; Kaewtapee, C.; Chanput, W. Effect of Diet on the Growth Performance, Feed Conversion, and Nutrient Content of the House Cricket. J. Insect Sci. 2020, 20, 10. [Google Scholar] [CrossRef]
- Mlček, J.; Adámková, A.; Adámek, M.; Borkovcová, M.; Bednářová, M.; Kouřimská, L. Selected Nutritional Values of Field Cricket (Gryllus Assimilis) and Its Possible Use as a Human Food. Indian J. Tradit. Knowl. 2018, 17, 518–524. [Google Scholar]
- Luna, G.C.; Martin-Gonzalez, F.S.; Mauer, L.; Liceaga, A. Cricket (Acheta Domesticus) Protein Hydrolysates’ Impact on the Physicochemical, Structural and Sensory Properties of Tortillas and Tortilla Chips. J. Insects Food Feed 2021, 7, 109–120. [Google Scholar] [CrossRef]
- Lucchese-Cheung, T.; de Aguiar, L.K.; Spers, E.E.; De Lima, L.M. The Brazilians’ Sensorial Perceptions for Novel Food—Cookies with Insect Protein. J. Insects Food Feed 2021, 7, 287–299. [Google Scholar] [CrossRef]
- Akande, O.A.; Falade, O.O.; Badejo, A.A.; Adekoya, I. Assessment of Mulberry Silkworm Pupae and African Palm Weevil Larvae as Alternative Protein Sources in Snack Fillings. Heliyon 2020, 6, e03754. [Google Scholar] [CrossRef]
- Awobusuyi, T.D.; Pillay, K.; Siwela, M. Consumer Acceptance of Biscuits Supplemented with a Sorghum–Insect Meal. Nutrients 2020, 12, 895. [Google Scholar] [CrossRef]
- Adámek, M.; Adámková, A.; Mlček, J.; Borkovcová, M.; Bednářová, M. Acceptability and Sensory Evaluation of Energy Bars and Protein Bars Enriched with Edible Insect. Potravin. Slovak J. Food Sci. 2018, 12, 431–437. [Google Scholar] [CrossRef] [PubMed]
- Akullo, J.; Agea, J.G.; Obaa, B.B.; Acai, J.O.; Nakimbugwe, D. Process Development, Sensory and Nutritional Evaluation of Honey Spread Enriched with Edible Insects Flour. Afr. J. Food Sci. 2017, 11, 30–39. [Google Scholar]
- Molfetta, M.; Morais, E.G.; Barreira, L.; Bruno, G.L.; Porcelli, F.; Dugat-Bony, E.; Bonnarme, P.; Minervini, F. Protein Sources Alternative to Meat: State of the Art and Involvement of Fermentation. Foods 2022, 11, 2065. [Google Scholar] [CrossRef] [PubMed]
- Raksasat, R.; Lim, J.W.; Kiatkittipong, W.; Kiatkittipong, K.; Ho, Y.C.; Lam, M.K.; Font-Palma, C.; Zaid, H.F.M.; Cheng, C.K. A Review of Organic Waste Enrichment for Inducing Palatability of Black Soldier Fly Larvae: Wastes to Valuable Resources. Environ. Pollut. 2020, 267, 115488. [Google Scholar] [CrossRef]
- Bruno, D.; Bonacci, T.; Reguzzoni, M.; Casartelli, M.; Grimaldi, A.; Tettamanti, G.; Brandmayr, P. An In-Depth Description of Head Morphology and Mouthparts in Larvae of the Black Soldier Fly Hermetia Illucens. Arthropod Struct. Dev. 2020, 58, 100969. [Google Scholar] [CrossRef]
- Castro-López, C.; Santiago-López, L.; Vallejo-Cordoba, B.; González-Córdova, A.F.; Liceaga, A.M.; García, H.S.; Hernández-Mendoza, A. An Insight to Fermented Edible Insects: A Global Perspective and Prospective. Food Res. Int. 2020, 137, 109750. [Google Scholar] [CrossRef]
- Kuttiyatveetil, J.R.A.; Mitra, P.; Goldin, D.; Nickerson, M.T.; Tanaka, T. Recovery of Residual Nutrients from Agri-Food Byproducts Using a Combination of Solid-State Fermentation and Insect Rearing. Int. J. Food Sci. Technol. 2019, 54, 1130–1140. [Google Scholar] [CrossRef]
- Liu, H.; Tan, B.; Kong, X.; Li, J.; Li, G.; He, L.; Bai, M.; Yin, Y. Dietary Insect Powder Protein Sources Improve Protein Utilization by Regulation on Intestinal Amino Acid-Chemosensing System. Animals 2020, 10, 1590. [Google Scholar] [CrossRef]
- Suman, G.; Nupur, M.; Anuradha, S.; Pradeep, B. Single Cell Protein Production: A Review. Int. J. Curr. Microbiol. Appl. Sci 2015, 4, 251–262. [Google Scholar]
- Ercili-Cura, D.; Häkämies, A.; Sinisalo, L.; Vainikka, P.; Pitkänen, J.-P. Food out of Thin Air. Food Sci. Technol. 2020, 34, 44–48. [Google Scholar] [CrossRef]
- Ritala, A.; Häkkinen, S.T.; Toivari, M.; Wiebe, M.G. Single Cell Protein—State-of-the-Art, Industrial Landscape and Patents 2001–2016. Front. Microbiol. 2017, 8, 2009. [Google Scholar] [CrossRef]
- Bratosin, B.C.; Darjan, S.; Vodnar, D.C. Single Cell Protein: A Potential Substitute in Human and Animal Nutrition. Sustainability 2021, 13, 9284. [Google Scholar] [CrossRef]
- Leger, D.; Matassa, S.; Noor, E.; Shepon, A.; Milo, R.; Bar-Even, A. Photovoltaic-Driven Microbial Protein Production Can Use Land and Sunlight More Efficiently than Conventional Crops. Proc. Natl. Acad. Sci. USA 2021, 118, e2015025118. [Google Scholar] [CrossRef]
- Matassa, S.; Boon, N.; Pikaar, I.; Verstraete, W. Microbial Protein: Future Sustainable Food Supply Route with Low Environmental Footprint. Microb. Biotechnol. 2016, 9, 568–575. [Google Scholar] [CrossRef] [PubMed]
- Linder, T. Making the Case for Edible Microorganisms as an Integral Part of a More Sustainable and Resilient Food Production System. Food Secur. 2019, 11, 265–278. [Google Scholar] [CrossRef]
- Ciani, M.; Lippolis, A.; Fava, F.; Rodolfi, L.; Niccolai, A.; Tredici, M.R. Microbes: Food for the Future. Foods 2021, 10, 971. [Google Scholar] [CrossRef]
- Sillman, J.; Nygren, L.; Kahiluoto, H.; Ruuskanen, V.; Tamminen, A.; Bajamundi, C.; Nappa, M.; Wuokko, M.; Lindh, T.; Vainikka, P.; et al. Bacterial Protein for Food and Feed Generated via Renewable Energy and Direct Air Capture of CO2: Can It Reduce Land and Water Use? Glob. Food Secur. 2019, 22, 25–32. [Google Scholar] [CrossRef]
- Somda, M.K.; Nikiema, M.; Keita, I.; Mogmenga, I.; Kouhounde, S.H.; Dabire, Y.; Coulibaly, W.H.; Taale, E.; Traore, A.S. Production of Single Cell Protein (SCP) and Essentials Amino Acids from Candida Utilis FMJ12 by Solid State Fermentation Using Mango Waste Supplemented with Nitrogen Sources. Afr. J. Biotechnol. 2018, 17, 716–723. [Google Scholar]
- Bamforth, C.W.; Cook, D.J. Food, Fermentation, and Micro-Organisms; John Wiley & Sons: Hoboken, NJ, USA, 2019; ISBN 1-4051-9872-9. [Google Scholar]
- Barzee, T.J.; Cao, L.; Pan, Z.; Zhang, R. Fungi for Future Foods. J. Future Foods 2021, 1, 25–37. [Google Scholar] [CrossRef]
- Jach, M.E.; Serefko, A. Chapter 9—Nutritional Yeast Biomass: Characterization and Application. In Diet, Microbiome and Health; Holban, A.M., Grumezescu, A.M., Eds.; Handbook of Food Bioengineering; Academic Press: Cambridge, MA, USA, 2018; pp. 237–270. ISBN 978-0-12-811440-7. [Google Scholar]
- Jach, M.E.; Serefko, A.; Ziaja, M.; Kieliszek, M. Yeast Protein as an Easily Accessible Food Source. Metabolites 2022, 12, 63. [Google Scholar] [CrossRef]
- Hashempour-Baltork, F.; Hosseini, S.M.; Assarehzadegan, M.-A.; Khosravi-Darani, K.; Hosseini, H. Safety Assays and Nutritional Values of Mycoprotein Produced by Fusarium Venenatum IR372C from Date Waste as Substrate. J. Sci. Food Agric. 2020, 100, 4433–4441. [Google Scholar] [CrossRef] [PubMed]
- Irazusta-Garmendia, A.; Orpí, E.; Bach-Faig, A.; González Svatetz, C.A. Food Sustainability Knowledge, Attitudes, and Dietary Habits among Students and Professionals of the Health Sciences. Nutrients 2023, 15, 2064. [Google Scholar] [CrossRef]
- Milanesi, M.; Guercini, S.; Runfola, A. Let’s Play! Gamification as a Marketing Tool to Deliver a Digital Luxury Experience. Electron. Commer. Res. 2023, 23, 2135–2152. [Google Scholar] [CrossRef]
- Huang, M.; Mohamad Saleh, M.S.; Zolkepli, I.A. The Moderating Effect of Green Advertising on the Relationship between Gamification and Sustainable Consumption Behavior: A Case Study of the Ant Forest Social Media App. Sustainability 2023, 15, 2883. [Google Scholar] [CrossRef]
- Grangeia, T.d.A.G.; De Jorge, B.; Cecílio-Fernandes, D.; Tio, R.A.; de Carvalho-Filho, M.A. Learn+ Fun! Social Media and Gamification Sum up to Foster a Community of Practice during an Emergency Medicine Rotation. Health Prof. Educ. 2019, 5, 321–335. [Google Scholar] [CrossRef]
- Bogusz, M.; Matysik-Pejas, R.; Krasnodębski, A.; Dziekański, P. Sustainable Consumption of Households According to the Zero Waste Concept. Energies 2023, 16, 6516. [Google Scholar] [CrossRef]
- Nekmahmud, M.; Ramkissoon, H.; Fekete-Farkas, M. Green Purchase and Sustainable Consumption: A Comparative Study between European and Non-European Tourists. Tour. Manag. Perspect. 2022, 43, 100980. [Google Scholar] [CrossRef]
Consumer Behaviors towards Sustainable Development | Source |
---|---|
| [81] |
| [85] |
| [86] |
| [87] |
| [88] |
| [89] |
| [90] |
| [91] |
| [92] |
| [93] |
| [94] |
| [95] |
Alternative Protein Sources | Advantages and Development Potential | Reference | Barriers and Risks | Reference |
---|---|---|---|---|
Plant-based alternative foods (PBAF) |
| [142,143,144,145,146,147,148,149] |
| [94] |
| [150,151,152,153,154,155,156,157] |
| [158,159] | |
| [149,160,161] |
| [162,163,164] | |
| [165] |
| [166] | |
| [27,167,168,169,170,171,172] | |||
| [173,174] | |||
Microalgae |
| [175] |
| [175] |
| [175] |
| [175] | |
| [175] |
| [176] | |
| [175] |
| [177] | |
| [178] |
| [179] | |
| [175] | |||
Insects |
| [180,181,182] |
| [183] |
| [181] |
| [184] | |
| [181] |
| [185] | |
| [181] |
| [184] | |
| [186] |
| [187] | |
| [188] | |||
| [181,189] | |||
| [190] | |||
| [191] | |||
Cultivated meat |
| [192] |
| [173] |
| [150] |
| [69] | |
| [193] |
| [105] | |
| [193,194] |
| [105,193,195] | |
| [196,197] | |||
Mushrooms |
| [198,199,200] |
| [201] |
| [202] |
| [203] | |
| [201] | |||
| [204] | |||
| [199,200,205,206,207] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gil, M.; Rudy, M.; Duma-Kocan, P.; Stanisławczyk, R.; Krajewska, A.; Dziki, D.; Hassoon, W.H. Sustainability of Alternatives to Animal Protein Sources, a Comprehensive Review. Sustainability 2024, 16, 7701. https://doi.org/10.3390/su16177701
Gil M, Rudy M, Duma-Kocan P, Stanisławczyk R, Krajewska A, Dziki D, Hassoon WH. Sustainability of Alternatives to Animal Protein Sources, a Comprehensive Review. Sustainability. 2024; 16(17):7701. https://doi.org/10.3390/su16177701
Chicago/Turabian StyleGil, Marian, Mariusz Rudy, Paulina Duma-Kocan, Renata Stanisławczyk, Anna Krajewska, Dariusz Dziki, and Waleed H. Hassoon. 2024. "Sustainability of Alternatives to Animal Protein Sources, a Comprehensive Review" Sustainability 16, no. 17: 7701. https://doi.org/10.3390/su16177701