CO2 Levels in Classrooms: What Actions to Take to Improve the Quality of Environments and Spaces
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
- Number of sources (building materials, furnishings, teaching materials, cleaning products, equipment, PCs, printers, screens, scanners, or other electronic products, combustion, etc.). When the number of indoor sources is large, so will the concentrations of pollutants regardless of other factors; the age of the building/aging, level of energy efficiency of the school building; location and outdoor air quality;
- Air exchange method-ventilation strategy (system operation consistent with the purposes and seasonality, number, shape, size and arrangement/location of the windows (which must take into account the purpose of the indoor environment).
- ✓
- Number of pupils, teachers, and conditions of use. Pupils and teachers are the main source of CO2;
- ✓
- Nature of activities (physical engagement);
- ✓
- Characteristics and size of rooms and indoor spaces;
- ✓
- Location of the school;
- ✓
- Frequency and duration of opening doors, windows and balconies;
- ✓
- Absence of other CO2-emitting sources, e.g., combustion;
- ✓
- Gear and timing of ventilation system operation.
- ✓
- The state of knowledge at the time the guiding value was developed;
- ✓
- Relationship between body odor bioeffluents and CO2;
- ✓
- Impacts of CO2 on occupant health;
- ✓
- Measure of air exchange rates;
- ✓
- Measurement of natural and mechanical ventilation performance.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stabile, L.; De Luca, G.; Pacitto, A.; Morawska, L.; Avino, P.; Buonanno, G. Ultrafine particle emission from floor cleaning products. Indoor Air 2021, 31, 63–73. [Google Scholar] [CrossRef] [PubMed]
- Alhussain, H.; Ghani, S.; Eltai, N.O. Breathing clean air: Navigating indoor air purification techniques and finding the ideal solution. Int. J. Environ. Res. Public Health 2024, 21, 1107. [Google Scholar] [CrossRef] [PubMed]
- Salonen, H.; Salthammer, T.; Castagnoli, E.; Täubel, M.; Morawska, L. cleaning products: Their chemistry, effects on indoor air quality, and implications for human health. Environ. Int. 2024, 190, 108836. [Google Scholar] [CrossRef] [PubMed]
- Morawska, L.; Li, Y.; Salthammer, T. Lessons from the COVID-19 pandemic for ventilation and indoor air quality. Science 2024, 385, 396–401. [Google Scholar] [CrossRef]
- Langiano, E.; Ferrara, M.; Falese, L.; Lanni, L.; Diotaiuti, P.; Di Libero, T.; De Vito, E. Assessment of indoor air quality in school facilities: An educational experience of pathways for transversal skills and orientation (PCTO). Sustainability 2024, 16, 6612. [Google Scholar] [CrossRef]
- Qutub, R.A.; Luo, Z.; Vasilikou, C.; Tavassoli, T.; Essah, E.; Marcham, H. Impacts of school environment quality on autistic pupil’s behaviours—A systematic review. Build. Environ. 2024, 265, 111981. [Google Scholar] [CrossRef]
- Miao, S.; Gangolells, M.; Tejedor, B. A comprehensive assessment of indoor air quality and thermal comfort in educational buildings in the Mediterranean climate. Indoor Air 2023, 2023, 6649829. [Google Scholar] [CrossRef]
- Branco, P.T.B.S.; Sousa, S.I.V.; Dudzińska, M.R.; Ruzgar, D.G.; Mutlu, M.; Panaras, G.; Papadopoulos, G.; Saffell, J.; Scutaru, A.M.; Struck, C.; et al. A review of relevant parameters for assessing indoor air quality in educational facilities. Environ. Res. 2024, 261, 119713. [Google Scholar] [CrossRef]
- Early Childhood Education Statistics. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Early_childhood_education_statistics (accessed on 12 June 2024).
- WHO. Literature Review on Chemical Pollutants in Indoor Air in Public Settings for Children and Overview of Their Health Effects with a Focus on Schools, Kindergartens and Day-Care Centres; Supplementary publication to the screening tool for assessment of health risks from combined exposure to multiple chemicals in indoor air in public settings for children; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Khoshakhlagh, A.H.; Mohammadzadeh, M.; Gruszecka-Kosowska, A.; Oikonomou, E. Burden of cardiovascular disease attributed to air pollution: A systematic review. Global Health 2024, 20, 37. [Google Scholar]
- Wang, J.; Janson, C.; Gislason, T.; Gunnbjörnsdottir, M.; Jogi, R.; Orru, H.; Norbäck, D. Volatile organic compounds (VOC) in homes associated with asthma and lung function among adults in Northern Europe. Environ. Pollut. 2023, 321, 121103. [Google Scholar] [CrossRef]
- Education and Training Monitor 2023—Italy. Available online: https://op.europa.eu/webpub/eac/education-and-training-monitor-2023/en/country-reports/italy.html (accessed on 20 June 2024).
- Vitaliano, S.; Cascone, S.; D’Urso, P.R. Mitigating built environment air pollution by green systems: An in-depth review. Appl. Sci. 2024, 14, 6487. [Google Scholar] [CrossRef]
- Zauli Sajani, S.; Colaiacomo, E.; De Maio, F.; Lauriola, P.; Sinisi, L.; Gruppo SEARCH. School environment and children respiratory health: The SEARCH project. Epidemiol. Prev. 2009, 33, 239–241. [Google Scholar] [PubMed]
- Simoni, M.; Annesi-Maesano, I.; Sigsgaard, T.; Norback, D.; Wieslander, G.; Nystad, W.; Canciani, M.; Sestini, P.; Viegi, G. School air quality related to dry cough, rhinitis, and nasal patency in children. Eur. Respir. J. 2010, 35, 742–749. [Google Scholar] [CrossRef] [PubMed]
- Arya, V.K.; Rasheed, E.O.; Samarasinghe, D.A.S.; Wilkinson, S. Comparative analysis of indoor air quality and thermal comfort standards in school buildings across New Zealand with other OECD countries. Buildings 2024, 14, 1556. [Google Scholar] [CrossRef]
- Ismail, Z.-A. Machine learning applications for a better demand controlled ventilation system experience in buildings: A review. Open House Int. 2024, 49, 444–467. [Google Scholar] [CrossRef]
- Gruppo di Lavoro ISS Ambiente e Qualità Dell’aria Indoor. Indicazioni ad Interim per la Prevenzione e Gestione Degli Ambienti Indoor in Relazione Alla Trasmissione Dell’infezione da Virus SARS-CoV-2; Versione del 23 marzo 2020; Istituto Superiore di Sanità: Roma, Italy, 2020; (Rapporto ISS COVID-19, n. 5/2020). [Google Scholar]
- Gruppo di Lavoro ISS Ambiente e Qualità Dell’aria Indoor. Indicazioni ad Interim per la Prevenzione e Gestione Degli Ambienti Indoor in Relazione Alla Trasmissione Dell’infezione da Virus SARS-CoV-2; Versione del 21 aprile 2020; Istituto Superiore di Sanità: Roma, Italy, 2020; (Rapporto ISS COVID-19, n. 5/2020. Rev). [Google Scholar]
- Gruppo di Lavoro ISS Ambiente e Qualità Dell’aria Indoor. Indicazioni ad Interim per la Prevenzione e Gestione Degli Ambienti Indoor in Relazione Alla Trasmissione Dell’infezione da Virus SARS-CoV-2; Versione del 25 maggio 2020; Istituto Superiore di Sanità: Roma, Italy, 2020; (Rapporto ISS COVID-19, n. 5/2020. Rev.2). [Google Scholar]
- Gruppo di Lavoro ISS Ambiente e Qualità Dell’aria Indoor. Indicazioni ad Interim per la Prevenzione e Gestione Degli Ambienti Indoor in Relazione Alla Trasmissione Dell’infezione da Virus SARS-CoV-2; Versione del 18 aprile 2021; Istituto Superiore di Sanità: Roma, Italy, 2021; (Rapporto ISS COVID-19, n. 11/2021); Available online: https://www.iss.it/rapporti-covid-19/-/asset_publisher/btw1J82wtYzH/content/rapporto-iss-covid-19-n.-11-2021-indicazioni-ad-interim-per-la-prevenzione-e-gestione-degli-ambienti-indoor-in-relazione-alla-trasmissione-dell-infezione-da-virus-sars-cov-2.-aggiornamento-del-rapporto-iss-covid-19-n.-5-2020-rev.-2.-versione-del-18-aprile (accessed on 10 September 2024).
- New Coronavirus. Advice for Closed Environments. Available online: https://www.iss.it/documents/20126/0/Poster+INDOOR_r+%282%29.pdf/5d94072b-af95-fb36-a522-e63a3ea8d8cc?t=1584100070035 (accessed on 12 June 2024).
- Horne, J.; Dunne, N.; Singh, N.; Safiuddin, M.; Esmaeili, N.; Erenler, M.; Ho, I.; Luk, E. Building parameters linked with indoor transmission of SARS-CoV-2. Environ. Res. 2023, 2381, 117156. [Google Scholar] [CrossRef]
- Murphy, J.; Tharumakunarajah, R.; Holden, K.A.; King, C.; Lee, A.R.; Rose, K.; Hawcutt, D.B.; Sinha, I.P. Impact of indoor environment on children’s pulmonary health. Expert. Rev. Respir. Med. 2023, 17, 1249–1259. [Google Scholar] [CrossRef]
- WHO-CERN. Indoor Airborne Risk Assessment in the Context of SARS-CoV-2 Description of Airborne Transmission Mechanism and Method to Develop a New Standardized Model for Risk Assessment; WHO-CERN: Genève, Switzerland, 2024. [Google Scholar]
- Manigrasso, M.; Natale, C.; Vitali, M.; Protano, C.; Avino, P. Pedestrians in traffic environments: Ultrafine particle respiratory doses. Int. J. Environ. Res. Public Health 2017, 14, 288. [Google Scholar] [CrossRef]
- Kim, J.Y.; Magari, S.R.; Herrick, R.F.; Smith, T.J.; Christiani, D.C. Comparison of fine particle measurements from a direct-reading instrument and a gravimetric sampling method. J. Occup. Environ. Hyg. 2004, 1, 707–715. [Google Scholar] [CrossRef]
- Settimo, G.; Indinnimeo, L.; Inglessis, M.; De Felice, M.; Morlino, R.; di Coste, A.; Fratianni, A.; Avino, P. Indoor air quality levels in schools: Role of student activities and no activities. Int. J. Environ. Res. Public Health 2020, 17, 6695. [Google Scholar] [CrossRef]
- Rivas, I.; Mazaheri, M.; Viana, M.; Moreno, T.; Clifford, S.; He, C.; Bischof, O.F.; Martins, V.; Reche, C.; Alastuey, A.M.; et al. Identification of technical problems affecting performance of DustTrak DRX aerosol monitors. Sci. Total Environ. 2017, 584, 849–855. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Calderón, L.; Patton, A.P.; Sorensen Allacci, M.; Senick, J.; Wener, R.; Andrews, C.J.; Mainelis, G. Comparison of real-time instruments and gravimetric method when measuring particulate matter in a residential building. J. Air Waste Manag. Assoc. 2016, 66, 1109–1120. [Google Scholar] [CrossRef] [PubMed]
- Moazami, T.N.; Svendsen, K.H.; Buhagen, M.; Jørgensen, R.K. Comparing PM2.5, respirable dust, and total dust fractions using real-time and gravimetric samples in an exposure chamber study. Heliyon 2023, 9, e16127. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Che, W.; Lau, A.K.H.; Fung, J.C.H.; Lin, C.; Lu, X. A feasible experimental framework for field calibration of portable light-scattering aerosol monitors: Case of TSI DustTrak. Environ. Pollut. 2019, 255, 113136. [Google Scholar] [CrossRef]
- International Standard ISO 16000-1:2004; Indoor Air—Part 1: General Aspects of Sampling Strategy Edition 1, 2004. Available online: https://www.iso.org/standard/39844.html (accessed on 3 November 2023).
- Rodeheffer, C.D.; Chabal, S.; Clarke, J.M.; Fothergill, D.M. Acute exposure to low-to-moderate carbon dioxide levels and submariner decision making. Aerosp. Med. Hum. Perform. 2018, 89, 520–525. [Google Scholar] [CrossRef]
- Mendell, M.J.; Chen, W.; Ranasinghe, D.R.; Castorina, R.; Kumagai, K. Carbon dioxide guidelines for indoor air quality: A review. J. Expo. Sci. Environ. Epidemiol. 2024, 34, 555–569. [Google Scholar] [CrossRef]
- De Marco, R.; Bugiani, M.; Cazzoletti, L.; Carosso, A.; Accordini, S.; Buriani, O.; Carrozzi, L.; Dallari, R.; Giammanco, G.; Ginesu, F.; et al. The control of asthma in Italy. A multicentre descriptive study on young adults with doctor diagnosed current asthma. Allergy 2003, 58, 221–228. [Google Scholar] [CrossRef]
- Haddrell, A.; Oswin, H.; Fernandez, M.O.; Robinson, J.F.; Cogan, T.; Alexander, R.; Mann, J.F.S.; Hill, D.; Finn, A.; Davidson, A.D.; et al. Ambient carbon dioxide concentration correlates with SARS-CoV-2 aerostability and infection risk. Nature Commun. 2024, 15, 3487. [Google Scholar] [CrossRef]
- Du, B.; Tandoc, M.C.; Mack, M.L.; Siegel, J.A. Indoor CO2 concentrations and cognitive function: A critical review. Indoor Air 2020, 30, 1067–1082. [Google Scholar] [CrossRef]
- Satish, U.; Mendell, M.J.; Shekhar, K.; Hotchi, T.; Sullivan, D.; Streufert, S.; Fisk, W.J. Is CO2 an indoor pollutant? Direct effects of low-to-moderate CO2 concentrations on human decision-making performance. Environ. Health Perspect. 2012, 120, 1671–1677. [Google Scholar] [CrossRef]
- Persily, A.; de Jonge, L. Carbon dioxide generation rates for building occupants. Indoor Air 2017, 278, 868–879. [Google Scholar] [CrossRef] [PubMed]
- Seppänen, O.A.; Fisk, W.J.; Mendell, M.J. Association of ventilation rates and CO2 concentrations with health and other responses in commercial and institutional buildings. Indoor Air 1999, 9, 226–252. [Google Scholar] [CrossRef]
- Guais, A.; Brand, G.; Jacquot, L.; Karrer, M.; Dukan, S.; Grévillot, G.; Molina, T.J.; Bonte, J.; Regnier, M.; Schwartz, L. Toxicity of carbon dioxide: A review. Chem. Res. Toxicol. 2011, 24, 2061–2070. [Google Scholar] [CrossRef] [PubMed]
- Annesi-Maesano, I.; Baiz, N.; Banerjee, S.; Rudnai, P.; Rive, S. Indoor air quality and sources in schools and related health effects. J. Toxicol. Environ. Health B Crit. Rev. 2013, 16, 491–550. [Google Scholar] [CrossRef] [PubMed]
- Settimo, G.; Manigrasso, M.; Avino, P. Indoor air quality: A focus on the European legislation and state-of-the-art research in Italy. Atmosphere 2020, 11, 370. [Google Scholar] [CrossRef]
- Settimo, G.; Yu, Y.; Gola, M.; Buffoli, M.; Capolongo, S. Challenges in IAQ for indoor spaces: A Comparison of the reference guideline values of indoor air pollutants from the governments and international institutions. Atmosphere 2023, 14, 633. [Google Scholar] [CrossRef]
- Michelot, N.; Marchand, C.; Ramalho, O.; Delmas, V.; Carrega, M. Monitoring indoor air quality in French schools and day-care centres. HVAC&R Res. 2013, 19, 1083–1089. [Google Scholar]
- Settimo, G.; Bertinato, L.; Martuzzi, M.; Inglessis, M.; D’Ancona, F.; Soggiu, M.; Brusaferro, S. CO2 Monitoring for Prevention and Management in Indoor Environments in Relation to the Transmission of SARS-CoV-2 Virus Infection; English Version; Interim Technical Note; Istituto Superiore di Sanità: Rome, Italy, 2022. [Google Scholar]
- Belgium. 6 November 2022. Loi Relative à L’amélioration de la Qualité de L’air Intérieur Dans les Lieux Fermés Accessibles au Public. Service Public Federal Sante Publique, Securite De La Chaine Alimentaire Et Environnement. Moniteur Belge 1-12-2022. Available online: https://www.health.belgium.be/fr/vers-un-cadre-legal-pour-la-qualite-de-lair-interieur#:~:text=La%20loi%20a%20pour%20objet,ou%20purement%20la%20sphère%20professionnelle (accessed on 29 September 2024).
- Finland. Classification for Indoor Environment 2018, Finnish Society of Indoor Air Quality and Climate, FISIAQ. Espoo, Finland, The Building Information Foundation RTS sr, Helsinki, Finland. Available online: https://finvac.org/wp-content/uploads/2020/06/Opas_ilmanvaihdon_mitoitukseen_muissa_kuin_asuinrakennuksissa_LUONNOS18062019.pdf (accessed on 29 September 2024).
- France. Haut Conseil de la Santé Publique-HCSP. Avis du 28 Avril 2021 Relatif à L’adaptation des Mesures D’aération, de Ventilation et de Mesure du Dioxyde de Carbone (CO2) Dans les éTablissements Recevant du Public (ERP) Pour maîtriser la Transmission du SARS-CoV-2. Available online: https://www.hcsp.fr/explore.cgi/avisrapportsdomaine?clefr=1009 (accessed on 29 September 2024).
- France. Haut Conseil de la Santé Publique-HCSP. Avis du 21 Janvier 2022 Relatif à la Mesure du Dioxyde de Carbone (CO2) Dans les Établissements Recevant du Public (ERP) Pour Maîtriser la Transmission du SARS-CoV-2. Available online: https://www.hcsp.fr/explore.cgi/avisrapportsdomaine?clefr=1154 (accessed on 29 September 2024).
- France. Arrêté du 27 Décembre 2022 Modifiant L’arrêté du 1er juin 2016 Relatif aux Modalités de Surveillance de la Qualité de L’air Intérieur Dans Certains Établissements Recevant du Public. Journal Officiel de la République Française, 29 Décembre 2022. Available online: https://www.legifrance.gouv.fr/jorf/id/JORFTEXT000046829603 (accessed on 29 September 2024).
- France. Décret no 2022-1690 du 27 Décembre 2022 Modifiant le Décret no 2012-14 du 5 Janvier 2012 Relatif à L’évaluation des Moyens D’aération et à la Mesure des Polluants Effectuées au Titre de la Surveillance de la Qualité de L’air Intérieur de Certains Établissements Recevant du Public. Journal Officiel de la République Française, 29 décembre 2022. Available online: https://www.legifrance.gouv.fr/jorf/id/JORFTEXT000046829352#:~:text=2012%20relatif%20...-,Décret%20n°%202022%2D1690%20du%2027%20décembre%202022%20modifiant,certains%20établissements%20recevant%20du%20public (accessed on 29 September 2024).
- The Netherlands. National Institute for Public Health and the Environment-RIVM. Ventilatie en COVID-19 Notitie bij LCI-richtlijn COVID-19. Notitie 3 juni 2021, wijziging 21 december 2021. Available online: https://lci.rivm.nl/aerogene-transmissie-sars-cov-2 (accessed on 29 September 2024).
- Portugal. Diário da República, 1.a Série. Saúde e Ambiente e Ação Climática Portaria no 138- G/2021 de 1 de Julho. Available online: https://diariodarepublica.pt/dr/detalhe/portaria/138-g-2021-166296490 (accessed on 29 September 2024).
- Instituto Nacional de Seguridad y Salud en el Trabajo (INSST). La Ventilación Como Medida Preventiva Frente al Coronavirus SARS-CoV-2. Documento Técnico. 2021. Available online: https://www.insst.es/noticias-insst/la-ventilacion-como-medida-preventiva-frente-al-coronavirus-sars-cov-2 (accessed on 29 September 2024).
- United Kingdom. UK BB101-Department for Education (DfE). Guidelines on Ventilation, Thermal Comfort and Indoor Air Quality in Schools, UK. 2018. Available online: https://www.gov.uk/government/publications/building-bulletin-101-ventilation-for-school-buildings (accessed on 29 September 2024).
- Centers for Disease Control and Prevention-CDC. Ventilation in Buildings. Update 12 May 2023. Available online: https://www.cdc.gov/coronavirus/2019-ncov/community/ventilation.html (accessed on 29 September 2024).
- WHO Guidelines for Indoor Air Quality: Selected Pollutants. Available online: https://iris.who.int/bitstream/handle/10665/260127/9789289002134-eng.pdf (accessed on 25 June 2024).
- WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide. Available online: https://iris.who.int/handle/10665/345329 (accessed on 29 September 2024).
- Settimo, G.; Avino, P. The dichotomy between indoor air quality and energy efficiency in light of the onset of the COVID-19 pandemic. Atmosphere 2021, 12, 791. [Google Scholar] [CrossRef]
PM2.5 Indoor (µg m−3) | PM2.5 Outdoor (µg m−3) | CO2 (ppm) | Temp (°C) | RH (%) | |
---|---|---|---|---|---|
mean | 53.6 | 87.0 | 894.4 | 22.4 | 31.1 |
median | 49.0 | 77.0 | 657.0 | 22.4 | 30.6 |
minimum | 34.0 | 25.0 | 503.0 | 19.3 | 24.3 |
maximum | 123.0 | 284.0 | 2455.0 | 25.1 | 42.7 |
st. deviation | 15.4 | 47.7 | 482.5 | 1.5 | 2.7 |
cv% 1 | 28.7 | 54.8 | 53.9 | 6.5 | 8.6 |
60th percentile | 53.0 | 88.0 | 770.8 | 22.9 | 30.8 |
90th percentile | 74.0 | 159.0 | 1821.4 | 24.4 | 34.2 |
95th percentile | 83.0 | 198.0 | 1970.0 | 24.6 | 36.5 |
99th percentile | 105.0 | 212.0 | 2286.5 | 24.8 | 40.5 |
Country/Area | Guideline Values |
---|---|
European country | |
Belgium | 1620 mg m−3 (900 ppmv) for 8 h [49] 2160 mg m−3 (1200 ppmv) for 8 h [49] |
Finland | S1 1350 mg m−3 (750 ppmv) [50] S2 1710 mg m−3 (950 ppmv) [50] |
France | 1440 mg m−3 (800 ppmv) [51,52,53,54] 1800 mg m−3 (1000 ppmv) [51,52,53,54] |
Germany | 1800 mg m−3 (1000 ppmv) <1800 mg m−3 (1000 ppmv) harmless concentration; between 1800 mg m−3 (1000 ppmv)* and 3600 mg m−3 (2000 ppmv)* high concentration >3600 mg m−3 (2000 ppmv) unacceptable concentration |
Norway | 1800 mg m−3 (1000 ppmv) |
The Netherlands | Schools and new buildings: 1710 mg m−3 (950 ppmv) [55] 2160 mg m−3 (1200 ppmv) [55] |
Portugal | 1800 mg m−3 (1000 ppmv) [56] 2250 mg m−3 (1250 ppmv) [56] |
Spain | 1440 mg m−3 (800 ppmv) [57] 1800 mg m−3 (1000 ppmv) [57] |
World country | |
Brazil | 1800 mg m−3 (1000 ppmv) |
Canada | 1800 mg m−3 (1000 ppmv) |
Japan | 1800 mg m−3 (1000 ppmv) schools: 2700 mg m−3 (1500 ppmv) average concentration during the school day |
Hong Kong | 1440–1800 mg m−3 (800–1000 ppmv)* for 8 h |
United Kingdom | 1800 mg m−3 (1000 ppmv)*, level used if the objective is energy saving 972 mg m−3 (1750 ppmv)* restored building schools [58] 1800 mg m−3 (1000 ppmv)* during the period of occupation (classrooms equipped with VMC and VMC + natural ventilation) 2700 mg m−3 (1500 ppmv)* for more than 20 consecutive minutes every day (classrooms with natural ventilation) 3600 mg m−3 (2000 ppmv)* maximum concentration which must not be exceeded for more than 20 consecutive minutes each day (classrooms with natural ventilation) |
Republic of Korea | 1800 mg m−3 (1000 ppmv)* |
Singapore | 1800 mg m−3 (1000 ppmv)* for 8 h |
United States | CDC 1440 mg m−3 (800 ppmv) [59] ASHRAE 1800 mg m−3 (1000 ppmv) According to the ASHRAE 62.1:2016 standard, the limit value for the acceptability of IAQ is set equal to a difference between indoor and outdoor CO2 concentration of 1260 mg m−3 (700 ppmv) and corresponds to ventilation conditions considered uncomfortable by about 20 % of the people present; 1800 mg m−3 (1000 ppmv) Illinois |
Taiwan | 1800 mg m−3 (1000 ppmv)* |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Settimo, G.; Indinnimeo, L.; Inglessis, M.; De Felice, M.; Morlino, R.; di Coste, A.; Carriera, F.; Di Fiore, C.; Avino, P. CO2 Levels in Classrooms: What Actions to Take to Improve the Quality of Environments and Spaces. Sustainability 2024, 16, 8619. https://doi.org/10.3390/su16198619
Settimo G, Indinnimeo L, Inglessis M, De Felice M, Morlino R, di Coste A, Carriera F, Di Fiore C, Avino P. CO2 Levels in Classrooms: What Actions to Take to Improve the Quality of Environments and Spaces. Sustainability. 2024; 16(19):8619. https://doi.org/10.3390/su16198619
Chicago/Turabian StyleSettimo, Gaetano, Luciana Indinnimeo, Marco Inglessis, Marco De Felice, Roberta Morlino, Annalisa di Coste, Fabiana Carriera, Cristina Di Fiore, and Pasquale Avino. 2024. "CO2 Levels in Classrooms: What Actions to Take to Improve the Quality of Environments and Spaces" Sustainability 16, no. 19: 8619. https://doi.org/10.3390/su16198619
APA StyleSettimo, G., Indinnimeo, L., Inglessis, M., De Felice, M., Morlino, R., di Coste, A., Carriera, F., Di Fiore, C., & Avino, P. (2024). CO2 Levels in Classrooms: What Actions to Take to Improve the Quality of Environments and Spaces. Sustainability, 16(19), 8619. https://doi.org/10.3390/su16198619