Towards Sustainable Biomass Conversion Technologies: A Review of Mathematical Modeling Approaches
Abstract
:1. Introduction
2. Granular Reactive Beds—From Micro- to Macro-Scale
2.1. Basic Governing Equations
- mass balance for solid and liquid phases
- mass balance for gas phase
- mass balance for species in gas phase
2.2. Phase Transitions
- based on the kinetic theory of gases [38].
3. Single-Particle Models
3.1. Micro-Particle Approach
- time phenomena—knowledge of these is essential when modeling the chemical reaction dynamics, the duration of which differs in a wide range: from days in the case of charcoal production to milliseconds for so-called flash pyrolysis. Both processes are characterized by different values of high heating rates [51,52,53];
3.2. Macro-Particle Approach
- chemical reactions occurring both on the surface and inside the fuel grain;
- solid–fluid-type reactions on the particle’s surface and in a particle’s interior;
- homogeneous (volumetric gas–gas-type reactions) on the particle’s surface and in a particle’s neighborhood;
- diffusion of gas and liquid molecules, including diffusion in pores, as well as convection in a grain;
- mass and heat transfer between the particle and its vicinity.
3.3. Kinetics of Decomposition
3.4. Thermal Effect
3.5. Complex Thermal and Flow Models
4. Multi-Particle Modeling
- Thermodynamic equilibrium;
- Kinetics of the processes;
- CFDs and coupled models;
- Machine learning methods.
4.1. Thermodynamic Equilibrium
4.2. Process Kinetics
4.3. Advanced CFD-Assisted Models
4.3.1. Computational Fluid Dynamics
4.3.2. Coupled Computations
4.3.3. Basic Equations in the Dynamic Module of XDEM
4.3.4. Basic Equations for Conversion Module of XDEM
4.3.5. Basic Equations for Fluid Flow in a CFD Module
4.4. Machine Learning Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
OD | Zero-dimensional |
1D | One-dimensional |
2D | Two-dimensional |
3D | Three-dimensional |
ANN | Artificial Neural Network |
CFDs | Computational Fluid Dynamics |
DEM | Discrete Element Method |
DPM | Discrete Particle Model |
RPM | Representative Particle Model |
XDEM | Extended Discrete Element Method |
References
- Mignogna, D.; Szabó, M.; Ceci, P.; Avino, P. Biomass Energy and Biofuels: Perspective, Potentials, and Challenges in the Energy Transition. Sustainability 2024, 16, 7036. [Google Scholar] [CrossRef]
- Kardaś, D.; Polesek-Karczewska, S.; Turzyński, T.; Wardach-Święcicka, I.; Heda, Ł.; Szymborski, J.; Hercel, P. The red-hot air furnace for an externally fired gas turbine power unit–Designing aspects and performance testing. Appl. Therm. Eng. 2024, 236, 121552. [Google Scholar] [CrossRef]
- Di Fraia, S.; Uddin, M.R. Energy Recovery from Waste Paper and Deinking Sludge to Support the Demand of the Paper Industry: A Numerical Analysis. Sustainability 2022, 14, 4669. [Google Scholar] [CrossRef]
- Guzmán-Bello, H.; López-Díaz, I.; Aybar-Mejía, M.; de Frias, J.A. A Review of Trends in the Energy Use of Biomass: The Case of the Dominican Republic. Sustainability 2022, 14, 3868. [Google Scholar] [CrossRef]
- Mousa, E.; Sjöblom, K. Modeling and Optimization of Biochar Injection into Blast Furnace to Mitigate the Fossil CO2 Emission. Sustainability 2022, 14, 2393. [Google Scholar] [CrossRef]
- Mahrabian, R.; Zahirovic, S.; Scharler, R.; Obernberger, I.; Kleditzsch, S.; Wirtz, S.; Scherer, V.; Lu, H.; Baxter, L.L. A CFD model for thermal conversion of thermally thick biomass particles. Fuel Proc. Techn. 2012, 95, 96–108. [Google Scholar] [CrossRef]
- Thunman, H.; Leckner, B.; Niklasson, F.; Johnsson, F. Combustion of wood particles—A particle model for Eulerian calculations. Combust. Flame 2002, 129, 30–46. [Google Scholar] [CrossRef]
- Porteiro, J.; Granada, E.; Collazo, J.; Patino, D.; Moran, J.C. A model for the combustion of large particles of densified wood. Energy Fuels 2007, 21, 3151–3159. [Google Scholar] [CrossRef]
- Di Blasi, C. Heat, momentum and mass transport through a shrinking biomass particle exposed to thermal radiation. Chem. Eng. Sci. 1996, 51, 1121–1132. [Google Scholar] [CrossRef]
- Bryden, K.M.; Ragl, K.W.; Ruthl, C.J. Modeling thermally thick pyrolysis of wood. Biomass Bioenergy 2002, 22, 41–53. [Google Scholar] [CrossRef]
- Kwiatkowski, K.; Bajer, K.; Celińska, A.; Dudyński, M.; Korotko, J.; Sosnowska, M. Pyrolysis and gasification of a thermally thick wood particle—Effect of fragmentation. Fuel 2014, 132, 125–134. [Google Scholar] [CrossRef]
- Peters, B.; Bruch, C. A flexible and stable numerical method for simulating the thermal decomposition of wood particles. Chemosphere 2001, 42, 481–490. [Google Scholar] [CrossRef] [PubMed]
- Peters, B.; Schroder, E.; Bruch, C. Measurements and particle resolved modelling of thermo- and fluid dynamics of a packed bed. J. Anal. Appl. Pyrolysis 2003, 70, 211–231. [Google Scholar] [CrossRef]
- Peters, B. Measurements and application of a Discrete Particle Model (DPM) to simulate combustion of a packed bed of individual fuel particles. Combust. Flame 2002, 131, 132–146. [Google Scholar] [CrossRef]
- Johansson, R.; Thunman, H.; Leckner, B. Influence of intraparticle gradients in modeling of fixed bed combustion. Combust. Flame 2007, 149, 49–62. [Google Scholar] [CrossRef]
- Peters, B. Thermal Conversion of Solid Fuels; WIT Press: London, UK, 2003. [Google Scholar]
- Anca-Couce, A.; Zobel, N.; Jakobsen, H.A. Multi-scale modeling of fixed-bed thermo-chemical processes of biomass with the representative particle model: Application to pyrolysis. Fuel 2013, 103, 773–782. [Google Scholar] [CrossRef]
- Wurzenberger, J.C.; Wallner, S.; Raupenstrauch, H.; Khinsat, J.G. Thermal conversion of biomass: Comprehensive reactor and particle modeling. AIChE J. 2002, 48, 2398–2411. [Google Scholar] [CrossRef]
- Yang, Y.B.; Phan, A.N.; Ryu, C.; Sharifi, V.; Swithenbank, Y. Mathematical modelling of slow pyrolysis of segregated solid wastes in a packed-bed pyrolyser. Fuel 2007, 86, 169–180. [Google Scholar] [CrossRef]
- Vijeu, R.; Gerun, L.; Tazeriut, M.; Castelain, C.; Bellettre, J. Dimensional modelling of wood pyrolysis using a nodal approach. Fuel 2008, 87, 3292–3303. [Google Scholar] [CrossRef]
- Sharma, A.K. Modeling fluid and heat transport in the reactive, porous bed of downdraft (biomass) gasifier. Int. J. Heat Fluid Flow 2007, 28, 1518–1530. [Google Scholar] [CrossRef]
- Perez, J.F.; Melgar, A.; Tinaut, F.V. Modeling of fixed bed downdraft biomass gasification: Application on lab-scale and industrial reactors. Int. J. Energy Res. 2014, 38, 319–338. [Google Scholar] [CrossRef]
- Di Blasi, C. Modeling wood gasification in a countercurrent fixed-bed reactor. AIChE J. 2004, 50, 2306–2319. [Google Scholar] [CrossRef]
- Yang, W.; Ponzio, A.; Lucas, C.; Blasiak, W. Performance analysis of a fixed-bed biomass gasifier using high-temperature air. Fuel 2006, 87, 235–245. [Google Scholar] [CrossRef]
- Mandl, C.; Obernberger, I.; Biedermann, F. Modelling of an updraft fixed-bed gasifier operated with softwood pellets. Fuel 2010, 89, 3795–3806. [Google Scholar] [CrossRef]
- Lamarche, P.; Tazerout, M.; Gelix, F.; Kohler, S.; Mati, K.; Paviet, F. Modelling of an indirectly heated fixed bed pyrolysis reactor of wood: Transition from batch to continuous staged gasification. Fuel 2013, 106, 118–128. [Google Scholar] [CrossRef]
- Sobieski, W.; Lipiński, S.; Dudda, W.; Trykozko, A.; Marek, M.; Wiącek, J.; Matyka, M.; Gołembiewski, J. Granular Porous Media; Katedra Mechaniki i Podstaw Konstrukcji Maszyn, Uniwersytet Warmińsko-Mazurski: Olsztyn, Poland, 2016. (In Polish) [Google Scholar]
- Kloss, C.; Goniva, C.; Aichinger, G.; Pirker, S. Comprehensive DEM-DPM-CFD simulations–model synthesis, experimental validation and scalability. In Proceedings of the Seventh International Conference on CFD in the Minerals and Process Industries, CSIRO, Melbourne, Australia, 9–11 December 2009. [Google Scholar]
- Kaviany, M. Principles of Heat Transfer in Porous Media; Springer: New York, NY, USA, 1995. [Google Scholar] [CrossRef]
- Polesek-Karczewska, S.; Turzyński, T.; Kardaś, D.; Heda, Ł. Front velocity in the combustion of blends of poultry litter with straw. Fuel Proc. Techn. 2018, 176, 3017–3315. [Google Scholar] [CrossRef]
- Porteiro, J.; Patiño, D.; Collazo, J.; Granada, E.; Moran, J.; Miguez, J.L. Experimental analysis of the ignition front propagation of several biomass fuels in a fixed-bed combustor. Fuel 2010, 89, 26–35. [Google Scholar] [CrossRef]
- Polesek-Karczewska, S. Modelling of Phenomena in Thermal Conversion of Solid Fuels; Wydawnictwo IMP PAN: Gdańsk, Polish, 2018. (In Polish) [Google Scholar]
- Polesek-Karczewska, S.; Kardaś, D.; Ciżmiński, P.; Mertas, B. Three phase transient model of wet coal pyrolysis. J. Anal. Appl. Pyrol. 2015, 113, 259–265. [Google Scholar] [CrossRef]
- Atkinson, B.; Merrick, D. Mathematical models of the thermal decomposition of coal: 4. Heat transfer and temperature profiles in a coke-oven charge. Fuel 1983, 62, 553–561. [Google Scholar] [CrossRef]
- Osinski, E.J.; Barr, P.V.; Brimacombe, J.K. Mathematical model for tall coke oven battery. Part 1. Development of thermal model for heat transfer within coke oven charge. Iron. Steel. 1993, 20, 350–361. [Google Scholar]
- Buczynski, R.; Weber, R.; Kim, R.; Schwöppe, P. One-dimensional model of heat-recovery, non-recovery coke ovens. Part II: Coking-bed sub-model. Fuel 2016, 181, 1115–1131. [Google Scholar] [CrossRef]
- Krieger-Brockett, B.; Glaister, D.S. Wood Devolat1lization—Sensitivity to Feed Properties and Process Variables. In Research in Thermochemical Biomass Conversion; Bridgwater, A.V., Kuester, J.L., Eds.; Springer: Dordrecht, The Netherlands, 1988; pp. 127–142. [Google Scholar] [CrossRef]
- Słupik, Ł.; Fic, A.; Buliński, Z.; Nowak, A.J.; Kosyrczyk, L.; Łabojko, G. CFD model of the coal carbonization process. Fuel 2015, 150, 415–424. [Google Scholar]
- Polesek-Karczewska, S.; Kardaś, D. Prediction of thermal behavior of pyrolyzed wet biomass by means of model with inner wood structure. J. Therm. Sci. 2015, 24, 82–89. [Google Scholar] [CrossRef]
- Kardaś, D.; Polesek-Karczewska, S.; Ciżmiński, P.; Stelmach, S. Prediction of coking dynamics for wet coal charge. Chem. Proc. Eng. 2015, 36, 291–303. [Google Scholar] [CrossRef]
- Wardach-Świȩcicka, I.; Kardaś, D. Modelling thermal behaviour of a single solid particle pyrolysing in a hot gas flow. Energy 2021, 221, 119802. [Google Scholar] [CrossRef]
- Kardaś, D.; Hercel, P.; Polesek-Karczewska, S.; Wardach-Świȩcicka, I. A novel insight into biomass pyrolysis – The process analysis by identifying timescales of heat diffusion, heating rate and reaction rate. Energy 2019, 189, 116159. [Google Scholar] [CrossRef]
- Lin, Y.; Cho, J.; Davis, J.M.; Huber, G.W. Reaction-transport model for the pyrolysis of shrinking cellulose particles. Chem. Eng. Sci. 2012, 74, 160–171. [Google Scholar] [CrossRef]
- Bates, R.B.; Ghoniem, A.F. Modeling kinetics-transport interactions during biomass torrefaction: The effects of temperature, particle size, and moisture content. Fuel 2014, 137, 216–229. [Google Scholar] [CrossRef]
- Liu, J.; Zhong, F.; Niu, W.; Su, J.; Gao, Z.; Zhang, K. Effects of heating rate and gas atmosphere on the pyrolysis and combustion characteristics of different crop residues and the kinetics analysis. Energy 2019, 175, 320–332. [Google Scholar] [CrossRef]
- Biswas, A.K.; Umeki, K. Simplification of devolatilization models for thermally-thick particles: Differences between wood logs and pellets. Chem. Eng. J. 2015, 274, 181–191. [Google Scholar] [CrossRef]
- Wardach-Świȩcicka, I.; Kardaś, D. Modeling of heat and mass transfer during thermal decomposition of a single solid fuel particle. Arch. Thermodyn. 2013, 34, 53–71. [Google Scholar] [CrossRef]
- Kardaś, D.; Hercel, P.; Wardach-Świȩcicka, I.; Polesek-Karczewska, S. On the kinetic rate of biomass particle decomposition—Experimental and numerical analysis. Energy 2021, 219, 119575. [Google Scholar] [CrossRef]
- Miller, R.S.; Bellan, J. A generalized biomass pyrolysis model based on superimposed cellulose, hemicellulosic and lignin kinetics. Jet Propuls. Lab. Calif. Inst. Technol. Pasadena 1996, 126, 97–137. [Google Scholar] [CrossRef]
- Assoumani, N.; Simo-Tagne, M.; Kifani-Sahban, F.; Tagne Tagne, A.; El Marouani, M.; Obounou Akong, M.B.; Rogaume, Y.; Girods, P.; Zoulalian, A. Numerical Study of Cylindrical Tropical Woods Pyrolysis Using Python Tool. Sustainability 2021, 13, 13892. [Google Scholar] [CrossRef]
- Basu, P. Biomass Gasification, Pyrolysis and Torrefaction: Practical Design and Theory, 2nd ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2013. [Google Scholar] [CrossRef]
- Kardaś, D.; Kluska, J.; Klein, M.; Kazimierski, P.; Heda, L. Theoretical and Experimental Aspects of Wood and Waste Pyrolysis; Wydawnictwo UWM: Olsztyn, Poland, 2014. (In Polish) [Google Scholar]
- Demirbaş, A. Carboniztion ranking of selected biomass for charcoal, liquid and gaseous products. Energy Convers. Manag. 2001, 42, 1229–1238. [Google Scholar] [CrossRef]
- Overend, R.P. Thermochemical conversion of biomass, in Renewable Energy Sources Charged with Energy from the Sun and Originated from Earth-Moon Interaction. In Encyclopedia of Life Support Systems (EOLSS), Developed under the Auspices of the UNESCO; Eolss Publishers: Oxford, UK, 2004; Available online: http://www.eolss.net (accessed on 30 September 2024).
- Sánchez, M.A.; Menéndez, J.A.; Dominguez, A.; Pisb, J.J.; Martinez, O.; Calvo, L.F.; Bernad, P.L. Effect of pyrolysis temperature on the composition of the oils obtained from sewage sludge. Biomass Bioenergy 2009, 33, 933–940. [Google Scholar] [CrossRef]
- Tomeczek, J. Coal Gasification. Academic Scripts. No 1551/4; Wydawnictwo Politechniki Śla̧skiej: Gliwice, Poland, 1991. (In Polish) [Google Scholar]
- Ścia̧żko, M. Coal Classification Models in Thermodynamic and Kinetic Approaches; Wydawnictwa AGH: Kraków, Poland, 2010. (In Polish) [Google Scholar]
- Koufopanos, C.A.; Lucchesi, A.; Maschio, G. Kinetic Modelling of the Pyroysis of Biomass and Biomass Components. Can. J. Chem. Eng. 1989, 67, 75–84. [Google Scholar] [CrossRef]
- Grioui, N.; Halouani, K.; Zulalian, A.; Halouani, F. Thermochemical modeling of isothermal carbonization of thick wood particle–Effect of reactor temperature and wood particle size. Energy Convers. Manag. 2007, 48, 927–936. [Google Scholar] [CrossRef]
- Sadhukhan, A.K.; Gupta, P.; Saha, R.K. Modelling and experimenatal studies on pyrolysis of biomass particles. J. Anal. Appl. Pyrolysis 2008, 81, 183–192. [Google Scholar] [CrossRef]
- Di Blasi, C. Physico-chemical processes occurring inside a degrading two-dimensional anisotropic porous medium. Int. J. Heat Mass Transf. 1998, 30, 4139–4150. [Google Scholar] [CrossRef]
- Di Blasi, C. Heat transfer mechanisms and multi-step kinetics in the ablative pyrolysis of cellulose. Chem. Eng. Sci. 1996, 51, 2210–2220. [Google Scholar] [CrossRef]
- Yuen, R.K.K.; Yeoh, G.H.; de Vahl Davis, G.; Leonardi, E. Modelling the pyrolysis of wet wood–I. Three-dimensional formulation and analysis. Int. J. Heat Mass Transf. 2007, 50, 4371–4386. [Google Scholar] [CrossRef]
- Yuen, R.K.K.; Yeoh, G.H.; de Vahl Davis, G.; Leonardi, E. Modelling the pyrolysis of wet wood –II. Three-dimensional cone calorimeter simulation. Int. J. Heat Mass Transf. 2007, 50, 4387–4399. [Google Scholar] [CrossRef]
- Wardach-Święcicka, I.; Kardaś, D. Prediction of Pyrolysis Gas Composition Based on the Gibbs Equation and TGA Analysis. Energies 2023, 16, 1147. [Google Scholar] [CrossRef]
- Sobek, S.; Werle, S. Kinetic modelling of waste wood devolatilization during pyrolysis based on thermogravimetric data and solar pyrolysis reactor performance. Fuel 2020, 261, 116459. [Google Scholar] [CrossRef]
- Sinha, S.; Jhalani, A.; Ravi, M.; Ray, A. Modelling of pyrolysis in wood: A review. J. Sol. Energy Soc. India (SESI) 2000, 10, 41–62. [Google Scholar]
- Li, M.; Zhang, Y.S.; Cheng, S.; Qu, B.; Li, A.; Meng, F.; Ji, G. The impact of heating rate on the decomposition kinetics and product distribution of algal waste pyrolysis with in-situ weight measurement. Chem. Eng. J. 2023, 457, 141368. [Google Scholar] [CrossRef]
- Kristanto, J.; Azis, M.M.; Purwono, S. Multi-distribution activation energy model on slow pyrolysis of cellulose and lignin in TGA/DSC. Heliyon 2021, 7, e07669. [Google Scholar] [CrossRef]
- Lédé, J. Cellulose pyrolysis kinetics: An historical review on the existence and role of intermediate active cellulose. J. Anal. Appl. Pyrolysis 2012, 94, 17–32. [Google Scholar] [CrossRef]
- Yeo, J.Y.; Chin, B.L.F.; Tan, J.K.; Loh, Y.S. Comparative studies on the pyrolysis of cellulose, hemicellulose, and lignin based on combined kinetics. J. Energy Inst. 2019, 92, 27–37. [Google Scholar] [CrossRef]
- Antal, M.J.; Várhegyi, G.; Jakab, E. Cellulose Pyrolysis Kinetics: Revisited. Ind. Eng. Chem. Res. 1998, 37, 1267–1275. [Google Scholar] [CrossRef]
- Brillard, A.; Brilhac, J.F. Improved relationships between kinetic parameters associated with biomass pyrolysis or combustion. Bioresour. Technol. 2021, 342, 126053. [Google Scholar] [CrossRef] [PubMed]
- Di Blasi, C.; Branca, C. Kinetics of Primary Product Formation from Wood Pyrolysis. Ind. Eng. Chem. Res. 2001, 40, 5547–5556. [Google Scholar] [CrossRef]
- Wagenaar, B.; Prins, W.; van Swaaij, W. Flash pyrolysis kinetics of pine wood. Fuel Process. Technol. 1993, 36, 291–298. [Google Scholar] [CrossRef]
- De Velden, M.V.; Baeyens, J.; Brems, A.; Janssens, B.; Dewil, R. Fundamentals, kinetics and endothermicity of the biomass pyrolysis reaction. Renew. Energy 2010, 35, 232–242. [Google Scholar] [CrossRef]
- Anca-Couce, A.; Zobel, N.; Berger, A.; Behrendt, F. Smouldering of pine wood: Kinetics and reaction heats. Combust. Flame 2012, 159, 1708–1719. [Google Scholar] [CrossRef]
- Mishra, G.; Kumar, J.; Bhaskar, T. Kinetic studies on the pyrolysis of pinewood. Bioresour. Technol. 2015, 182, 282–288. [Google Scholar] [CrossRef]
- Bellais, M.; Davidsson, K.; Liliedahl, T.; Sjöström, K.; Pettersson, J. Pyrolysis of large wood particles: A study of shrinkage importance in simulations. Fuel 2003, 82, 1541–1548. [Google Scholar] [CrossRef]
- Ratte, J.; Marias, F.; Vaxelaire, J.; Bernada, P. Mathematical modelling of slow pyrolysis of a particle of treated wood waste. J. Hazard. Mater. 2009, 170, 1023–1040. [Google Scholar] [CrossRef]
- Thi, V.; Khelifa, M.; El Ganaoui, M.; Rogaume, Y. Finite element modelling of the pyrolysis of wet wood subjected to fire. Fire Saf. J. 2016, 81, 85–96. [Google Scholar] [CrossRef]
- Grieco, E.; Baldi, G. Analysis and modelling of wood pyrolysis. Chem. Eng. Sci. 2011, 66, 650–660. [Google Scholar] [CrossRef]
- Chan, W.C.R.; Kelbon, M.; Krieger, B.B. Modelling and experimental verification of physical and chemical processes during pyrolysis of a large biomass particle. Fuel 1985, 64, 1505–1513. [Google Scholar] [CrossRef]
- Park, W.C.; Atreya, A.; Baum, H.R. Experimental and theoretical investigation of heat and mass transfer processes during wood pyrolysis. Combust. Flame 2010, 157, 481–494. [Google Scholar] [CrossRef]
- Okekunle, P.O.; Pattanotai, T.; Watanabe, H.; Okazaki, K. Numerical and Experimental Investigation of Intra-Particle Heat Transfer and Tar Decomposition during Pyrolysis of Wood Biomass. J. Therm. Sci. Technol. 2011, 6, 360–375. [Google Scholar] [CrossRef]
- Zeng, K.; Soria, J.; Gauthier, D.; Mazza, G.; Flamant, G. Modeling of beech wood pellet pyrolysis under concentrated solar radiation. Renew. Energy 2016, 99, 721–729. [Google Scholar] [CrossRef]
- Lanzetta, M.; Di Blasi, C. Pyrolysis kinetics of wheat and corn straw. J. Anal. Appl. Pyrolysis 1998, 44, 181–192. [Google Scholar] [CrossRef]
- Müller-Hagedorn, M.; Bockhorn, H.; Krebs, L.; Müller, U. A comparative kinetic study on the pyrolysis of three different wood species. J. Anal. Appl. Pyrolysis 2003, 68, 231–249. [Google Scholar] [CrossRef]
- Yuen, A.C.Y.; Chen, T.B.Y.; Yeoh, G.H.; Yang, W.; Cheung, S.C.P.; Cook, M.; Yu, B.; Chan, Q.N.; Yip, H.L. Establishing pyrolysis kinetics for the modelling of the flammability and burning characteristics of solid combustible materials. J. Fire Sci. 2018, 36, 494–517. [Google Scholar] [CrossRef]
- Tinney, E.R. The combustion of wooden dowels in heated air. Symp. (Int.) Combust. 1965, 10, 925–930. [Google Scholar] [CrossRef]
- Richter, F.; Rein, G. Heterogeneous kinetics of timber charring at the microscale. J. Anal. Appl. Pyrolysis 2019, 138, 1–9. [Google Scholar] [CrossRef]
- Richter, F.; Rein, G. A multiscale model of wood pyrolysis in fire to study the roles of chemistry and heat transfer at the mesoscale. Combust. Flame 2020, 216, 316–325. [Google Scholar] [CrossRef]
- Ábrego, J.; Plaza, D.; Luño, F.; Atienza-Martínez, M.; Gea, G. Pyrolysis of cashew nutshells: Characterization of products and energy balance. Energy 2018, 158, 72–80. [Google Scholar] [CrossRef]
- Gomez, C.; Velo, E.; Barontini, F.; Cozzani, V. Influence of Secondary Reactions on the Heat of Pyrolysis of Biomass. Ind. Eng. Chem. Res. 2009, 48, 10222–10233. [Google Scholar] [CrossRef]
- Daugaard, D.E.; Brown, R.C. Enthalpy for Pyrolysis for Several Types of Biomass. Energy Fuels 2003, 17, 934–939. [Google Scholar] [CrossRef]
- Jerzak, W.; Reinmöller, M.; Magdziarz, A. Estimation of the heat required for intermediate pyrolysis of biomass. Clean Technol. Environ. Policy 2022, 24, 3061–3075. [Google Scholar] [CrossRef]
- Chen, Q.; Yang, R.; Zhao, B.; Li, Y.; Wang, S.; Wu, H.; Zhuo, Y.; Chen, C. Investigation of heat of biomass pyrolysis and secondary reactions by simultaneous thermogravimetry and differential scanning calorimetry. Fuel 2014, 134, 467–476. [Google Scholar] [CrossRef]
- Basile, L.; Tugnoli, A.; Stramigioli, C.; Cozzani, V. Thermal effects during biomass pyrolysis. Thermochim. Acta 2016, 636, 63–70. [Google Scholar] [CrossRef]
- Rath, J.; Wolfinger, M.G.; Steiner, G.; Krammer, G.; Barontini, F.; Cozzani, V. Heat of wood pyrolysis. Fuel 2003, 82, 81–91. [Google Scholar] [CrossRef]
- Roberts, A. The heat of reaction during the pyrolysis of wood. Combust. Flame 1971, 17, 79–86. [Google Scholar] [CrossRef]
- Hosokai, S.; Matsuoka, K.; Kuramoto, K.; Suzuki, Y. Practical estimation of reaction heat during the pyrolysis of cedar wood. Fuel Process. Technol. 2016, 154, 156–162. [Google Scholar] [CrossRef]
- Ohliger, A.; Förster, M.; Kneer, R. Torrefaction of beechwood: A parametric study including heat of reaction and grindability. Fuel 2013, 104, 607–613. [Google Scholar] [CrossRef]
- Di Blasi, C. A Transient, Two-Dimensional Model of Biomass Pyrolysis. In Developments in Thermochemical Biomass Conversion; Springer: Berlin/Heidelberg, Germany, 1997; pp. 147–160. [Google Scholar] [CrossRef]
- Hagge, M.J. A Numerical Model for Biomass Pyrolysis; Iowa State University: Ames, IA, USA, 2005. [Google Scholar]
- Blondeau, J.; Jeanmart, H. Biomass pyrolysis at high temperatures: Prediction of gaseous species yields from an anisotropic particle. Biomass Bioenergy 2012, 41, 107–121. [Google Scholar] [CrossRef]
- Wickramaarachchi, W.; Narayana, M. Pyrolysis of single biomass particle using three-dimensional Computational Fluid Dynamics modelling. Renew. Energy 2020, 146, 1153–1165. [Google Scholar] [CrossRef]
- Papadikis, K.; Gu, S.; Bridgwater, A. CFD modelling of the fast pyrolysis of biomass in fluidised bed reactors. Part B Chem. Eng. Sci. 2009, 64, 1036–1045. [Google Scholar] [CrossRef]
- Yadav, V.K.; Shankar, R.; Kumar, V. Numerical simulation for the steam gasification of single char particle. Chem. Pap. 2020, 75, 863–872. [Google Scholar] [CrossRef]
- Guizani, C.; Escudero Sanz, F.; Salvador, S. Influence of temperature and particle size on the single and mixed atmosphere gasification of biomass char with H2O and CO2. Fuel Process. Technol. 2015, 134, 175–188. [Google Scholar] [CrossRef]
- Dasappa, S.; Paul, P.; Mukunda, H.; Shrinivasa, U. Wood-char gasification: Experiments and analysis on single particles and packed beds. Symp. (Int.) Combust. 1998, 27, 1335–1342. [Google Scholar] [CrossRef]
- Fan, C.; Zhao, Q.; Xu, J.; Jin, H. Modeling of Single Porous Char Particle Gasification in Supercritical Water. Transp. Porous Media 2021, 140, 851–867. [Google Scholar] [CrossRef]
- Ion, I.V.; Popescu, F.; Mahu, R.; Rusu, E. A Numerical Model of Biomass Combustion Physical and Chemical Processes. Energies 2021, 14, 1978. [Google Scholar] [CrossRef]
- Brillard, A.; Gilot, P.; Brilhac, J.F.; Tschamber, V. Numerical Simulation of the Combustion of a Coal Char Particle Spherically Shrinking in a Drop Tube Furnace. Appl. Sci. 2023, 13, 4729. [Google Scholar] [CrossRef]
- Ghabi, C.; Benticha, H.; Sassi, M. Two-Dimensional Computational Modeling and Simulation of Wood Particles Pyrolysis in a Fixed Bed Reactor. Combust. Sci. Technol. 2008, 180, 833–853. [Google Scholar] [CrossRef]
- Xue, Q.; Dalluge, D.; Heindel, T.; Fox, R.; Brown, R. Experimental validation and CFD modeling study of biomass fast pyrolysis in fluidized-bed reactors. Fuel 2012, 97, 757–769. [Google Scholar] [CrossRef]
- Chandolias, K.; Richards, T.; Taherzadeh, M.J. Combined gasification-fermentation process in waste biorefinery. In Waste Biorefinery; Elsevier: Amsterdam, The Netherlands, 2018; pp. 157–200. [Google Scholar] [CrossRef]
- Materazzi, M.; Lettieri, P.; Mazzei, L.; Taylor, R.; Chapman, C. Thermodynamic modelling and evaluation of a two-stage thermal process for waste gasification. Fuel 2013, 108, 356–369. [Google Scholar] [CrossRef]
- Carlos, L. High Temperature Air/Steam Gasification of Biomass in an Updraft Fixed Batch Type Gasifier. Ph.D Thesis, Royal Institute of Technology, Energy Furnace and Technology, Stockholm, Sweden, 2005. [Google Scholar]
- Helsen, L.; Bosmans, A. Waste-to-Energy through thermochemical processes: Matching waste with process. In Proceedings of the 1st International Academic Symposium on Enhanced Landfill Mining, Houthalen-Helchteren, Belgium, 4–6 October 2010; Haletra: Houthalen-Helchteren, Belgium, 2010; pp. 133–180. [Google Scholar]
- Kirnbauer, F.; Wilk, V.; Kitzler, H.; Kern, S.; Hofbauer, H. The positive effects of bed material coating on tar reduction in a dual fluidized bed gasifier. Fuel 2012, 95, 553–562. [Google Scholar] [CrossRef]
- Molino, A.; Chianese, S.; Musmarra, D. Biomass gasification technology: The state of the art overview. J. Energy Chem. 2016, 25, 10–25. [Google Scholar] [CrossRef]
- Molino, A.; Iovane, P.; Donatelli, A.; Braccio, G.; Chianese, S.; Musmarra, D. Steam gasification of refuse-derived fuel in a rotary kiln pilot plant: Experimental tests. Chem. Eng. Trans. 2013, 32, 337–442. [Google Scholar] [CrossRef]
- Chhiti, Y.; Peyrot, M.; Salvador, S. Soot formation and oxidation during bio-oil gasification: Experiments and modeling. J. Energy Chem. 2013, 22, 701–709. [Google Scholar] [CrossRef]
- Patra, T.K.; Sheth, P.N. Biomass gasification models for downdraft gasifier: A state-of-the-art review. Renew. Sustain. Energy Rev. 2015, 50, 583–593. [Google Scholar] [CrossRef]
- Ruiz, J.A.; Juárez, M.; Morales, M.; Muñoz, P.; Mendívil, M. Biomass gasification for electricity generation: Review of current technology barriers. Renew. Sustain. Energy Rev. 2013, 18, 174–183. [Google Scholar] [CrossRef]
- Susastriawan, A.; Saptoadi, H. Small-scale downdraft gasifiers for biomass gasification: A review. Renew. Sustain. Energy Rev. 2017, 76, 989–1003. [Google Scholar] [CrossRef]
- Puig-Arnavat, M.; Hernández, J.A.; Bruno, J.C.; Coronas, A. Artificial neural network models for biomass gasification in fluidized bed gasifiers. Biomass Bioenergy 2013, 49, 279–289. [Google Scholar] [CrossRef]
- Khlifi, S.; Lajili, M.; Perré, P.; Pozzobon, V. A Numerical Study of Turbulent Combustion of a Lignocellulosic Gas Mixture in an Updraft Fixed Bed Reactor. Sustainability 2022, 14, 16587. [Google Scholar] [CrossRef]
- Masmoudi, M.A.; Sahraoui, M.; Grioui, N.; Halouani, K. 2-D Modeling of thermo-kinetics coupled with heat and mass transfer in the reduction zone of a fixed bed downdraft biomass gasifier. Renew. Energy 2014, 66, 288–298. [Google Scholar] [CrossRef]
- Li, X.; Grace, J.; Watkinson, A.; Lim, C.; Ergüdenler, A. Equilibrium modeling of gasification: A free energy minimization approach and its application to a circulating fluidized bed coal gasifier. Fuel 2001, 80, 195–207. [Google Scholar] [CrossRef]
- Giltrap, D.; McKibbin, R.; Barnes, G. A steady state model of gas-char reactions in a downdraft biomass gasifier. Sol. Energy 2003, 74, 85–91. [Google Scholar] [CrossRef]
- Pradhan, P.; Arora, A.; Mahajani, S.M. A semi-empirical approach towards predicting producer gas composition in biomass gasification. Bioresour. Technol. 2019, 272, 535–544. [Google Scholar] [CrossRef]
- Melgar, A.; Pérez, J.F.; Laget, H.; Horillo, A. Thermochemical equilibrium modelling of a gasifying process. Energy Convers. Manag. 2007, 48, 59–67. [Google Scholar] [CrossRef]
- Tavares, R.; Monteiro, E.; Tabet, F.; Rouboa, A. Numerical investigation of optimum operating conditions for syngas and hydrogen production from biomass gasification using Aspen Plus. Renew. Energy 2020, 146, 1309–1314. [Google Scholar] [CrossRef]
- Aydin, E.S.; Yucel, O.; Sadikoglu, H. Development of a semi-empirical equilibrium model for downdraft gasification systems. Energy 2017, 130, 86–98. [Google Scholar] [CrossRef]
- Gambarotta, A.; Morini, M.; Zubani, A. A non-stoichiometric equilibrium model for the simulation of the biomass gasification process. Appl. Energy 2018, 227, 119–127. [Google Scholar] [CrossRef]
- Wang, Y.; Kinoshita, C. Kinetic model of biomass gasification. Sol. Energy 1993, 51, 19–25. [Google Scholar] [CrossRef]
- Babu, B.; Sheth, P.N. Modeling and simulation of reduction zone of downdraft biomass gasifier: Effect of char reactivity factor. Energy Convers. Manag. 2006, 47, 2602–2611. [Google Scholar] [CrossRef]
- Gao, N.; Li, A. Modeling and simulation of combined pyrolysis and reduction zone for a downdraft biomass gasifier. Energy Convers. Manag. 2008, 49, 3483–3490. [Google Scholar] [CrossRef]
- Sharma, A.K. Modeling and simulation of a downdraft biomass gasifier 1. Model development and validation. Energy Convers. Manag. 2011, 52, 1386–1396. [Google Scholar] [CrossRef]
- Babu, B.; Chaurasia, A. Pyrolysis of biomass: Improved models for simultaneous kinetics and transport of heat, mass and momentum. Energy Convers. Manag. 2004, 45, 1297–1327. [Google Scholar] [CrossRef]
- Syred, N.; Kurniawan, K.; Griffiths, T.; Gralton, T.; Ray, R. Development of fragmentation models for solid fuel combustion and gasification as subroutines for inclusion in CFD codes. Fuel 2007, 86, 2221–2231. [Google Scholar] [CrossRef]
- Budhathoki, R. Three zone modeling of Downdraft biomass Gasification: Equilibrium and finite Kinetic Approach. Master’s Thesis, Department of Chemistry, University of Jyväskylä, Jyväskylä, Finland, 2013. [Google Scholar]
- Yu, L.; Lu, J.; Zhang, X.; Zhang, S. Numerical simulation of the bubbling fluidized bed coal gasification by the kinetic theory of granular flow (KTGF). Fuel 2007, 86, 722–734. [Google Scholar] [CrossRef]
- Janajreh, I.; Al Shrah, M. Numerical and experimental investigation of downdraft gasification of wood chips. Energy Convers. Manag. 2013, 65, 783–792. [Google Scholar] [CrossRef]
- Lv, P.; Yuan, Z.; Ma, L.; Wu, C.; Chen, Y.; Zhu, J. Hydrogen-rich gas production from biomass air and oxygen/steam gasification in a downdraft gasifier. Renew. Energy 2007, 32, 2173–2185. [Google Scholar] [CrossRef]
- Jahromi, R.; Rezaei, M.; Samadi, S.H.; Jahromi, H. Biomass gasification in a downdraft fixed-bed gasifier: Optimization of operating conditions. Chem. Eng. Sci. 2021, 231, 116249. [Google Scholar] [CrossRef]
- Salem, A.M.; Paul, M.C. CFD modelling of spatiotemporal evolution of detailed tar species in a downdraft gasifier. Biomass Bioenergy 2023, 168, 106656. [Google Scholar] [CrossRef]
- Pandey, B.; Prajapati, Y.K.; Sheth, P.N. CFD analysis of the downdraft gasifier using species-transport and discrete phase model. Fuel 2022, 328, 125302. [Google Scholar] [CrossRef]
- Ghorbani, S.; Atashkari, K.; Borji, M. Three-stage model-based evaluation of a downdraft biomass gasifier. Renew. Energy 2022, 194, 734–745. [Google Scholar] [CrossRef]
- Kuttin, K.W.; Leghari, A.; Yu, H.; Xia, Z.; Ding, L.; Yu, G. Carbon dioxide-steam reforming gasification of carbonized biomass pellet for high syngas yield and TAR reduction through CFD modeling. Chem. Eng. Sci. 2024, 287, 119716. [Google Scholar] [CrossRef]
- Salem, A.M.; Abd Elbar, A.R. The feasibility and performance of using producer gas as a gasifying medium. Energy 2023, 283, 129226. [Google Scholar] [CrossRef]
- Von Berg, L.; Anca-Couce, A.; Hochenauer, C.; Scharler, R. Multi-scale modelling of a fluidized bed biomass gasifier of industrial size (1 MW) using a detailed particle model coupled to CFD: Proof of feasibility and advantages over simplified approaches. Energy Convers. Manag. 2023, 286, 117070. [Google Scholar] [CrossRef]
- Singh, V.; Nemalipuri, P.; Vitankar, V.; Das, H.C. Multifluid computational fluid dynamics simulation for sawdust gasification inside an industrial scale fluidized bed gasifier. Mater. Today Proc. 2023, in press. [Google Scholar] [CrossRef]
- Tokmurzin, D.; Nam, J.Y.; Park, S.J.; Yoon, S.J.; Mun, T.Y.; Yoon, S.M.; Moon, J.H.; Lee, J.G.; Lee, D.H.; Ra, H.W.; et al. Three-Dimensional CFD simulation of waste plastic (SRF) gasification in a bubbling fluidized bed with detailed kinetic chemical model. Energy Convers. Manag. 2022, 267, 115925. [Google Scholar] [CrossRef]
- Zhang, H.; Okuyama, K.; Higuchi, S.; Soon, G.; Lisak, G.; Law, A.W.K. CFD-DEM simulations of municipal solid waste gasification in a pilot-scale direct-melting furnace. Waste Manag. 2023, 162, 43–54. [Google Scholar] [CrossRef]
- Arshad, M.Y.; Jaffer, H.; Tahir, M.W.; Mehmood, A.; Saeed, A. Maximizing hydrogen-rich syngas production from rubber wood biomass in an updraft fluidized bed gasifier: An advanced 3D simulation study. J. Taiwan Inst. Chem. Eng. 2024, 156, 105365. [Google Scholar] [CrossRef]
- Sun, H.; Bao, G.; Liu, H.; Hu, J.; Wang, H. Particle-scale simulation of air-blown gasification of biomass materials in bubbling fluidized bed reactor. Renew. Energy 2024, 220, 119682. [Google Scholar] [CrossRef]
- Trninić, M.; Stojiljković, D.; Manić, N.; Skreiberg, Ø.; Wang, L.; Jovović, A. A mathematical model of biomass downdraft gasification with an integrated pyrolysis model. Fuel 2020, 265, 116867. [Google Scholar] [CrossRef]
- Fan, C.; Jin, H. A zero-dimensional model of porous char gasification in supercritical water: Experiments and mathematical modeling. Chem. Eng. J. 2022, 440, 135954. [Google Scholar] [CrossRef]
- Uppal, A.A.; Bhatti, A.I.; Aamir, E.; Samar, R.; Khan, S.A. Control oriented modeling and optimization of one dimensional packed bed model of underground coal gasification. J. Process Control 2014, 24, 269–277. [Google Scholar] [CrossRef]
- Donskoy, I.G.; Shamansky, V.A.; Kozlov, A.N.; Svishchev, D.A. Coal gasification process simulations using combined kinetic-thermodynamic models in one-dimensional approximation. Combust. Theory Model. 2017, 21, 529–559. [Google Scholar] [CrossRef]
- Estrada, C.A.; Melgar, A.; Pérez, J.F. Performance prediction of a decentralized power plant (120 kWe) using a multi-particle model of a downdraft biomass gasification process. Energy Convers. Manag. 2019, 181, 258–271. [Google Scholar] [CrossRef]
- Erić, A.; Cvetinović, D.; Milutinović, N.; Škobalj, P.; Bakić, V. Combined parametric modelling of biomass devolatilisation process. Renew. Energy 2022, 193, 13–22. [Google Scholar] [CrossRef]
- Marzoughi, T.; Samimi, F.; Rahimpour, M.R. Kinetic Modeling of Biomass Gasification in the Reduction Zone Using Various Gasification Agents. Chem. Eng. Technol. 2022, 45, 620–630. [Google Scholar] [CrossRef]
- ANSYS FLUENT 12.0 Theory Guide, Discrete Phase. Available online: https://www.afs.enea.it/project/neptunius/docs/fluent/html/th/node238.htm (accessed on 30 September 2024).
- Mezhericher, M.; Brosh, T.; Levy, A. Modeling of Particle Pneumatic Conveying Using DEM and DPM Methods. Part. Sci. Technol. 2011, 29, 197–208. [Google Scholar] [CrossRef]
- Ansys Rocky, Particle Dynamics Simulation Software. Available online: https://www.ansys.com/products/fluids/ansys-rocky (accessed on 30 September 2024).
- Ma, H.; Xia, X.; Zhou, L.; Xu, C.; Liu, Z.; Song, T.; Zou, G.; Liu, Y.; Huang, Z.; Liao, X.; et al. A Comparative Study of the Performance of Different Particle Models in Simulating Particle Charging and Burden Distribution in a Blast Furnace within the DEM Framework. Energies 2023, 16, 3890. [Google Scholar] [CrossRef]
- Li, H.; Qi, T.; Zhang, Y. Effect of Furnace Structure on Burden Distribution and Gas Flow in Sinter Vertical Cooling Furnace. Appl. Sci. 2023, 13, 11268. [Google Scholar] [CrossRef]
- Gao, Y.; Chan, C.K. CFD-DEM simulation of raceway size and mechanical characteristics of industrial scale blast furnace. Pol. J. Chem. Tech. 2023, 25, 71–78. [Google Scholar] [CrossRef]
- Wang, M.; Jia, T.; Song, X.; Yin, L.; Chen, D.; Qian, K. CFD–DEM Simulation of Heat Transfer and Reaction Characteristics of Pyrolysis Process of MSW Heated by High-Temperature Flue Gas. Processes 2024, 12, 390. [Google Scholar] [CrossRef]
- MFiX, Open Source Multiphase Flow Modeling for Real-World Applications. Available online: https://mfix.netl.doe.gov/products/mfix/ (accessed on 30 March 2024).
- Rosser, J.G.; Okosun, T.; Ugarte, O.J.; Zhou, C.Q. Investigation of Jamming Phenomenon in a Direct Reduction Furnace Pellet Feed System Using the Discrete Element Method. Dynamics 2023, 3, 711–736. [Google Scholar] [CrossRef]
- Peters, B.; Besseron, X.; Estupinan, A.; Hoffmann, F.; Michael, M.; Mahmoudi, A. Enhanced Thermal Process Engineering by the Extended Discrete Element Method (XDEM). Univ. J. Eng. Sc. 2013, 1, 139–145. [Google Scholar] [CrossRef]
- OpenFOAM. OpenFOAM Documentation. Available online: http://www.openfoam.com (accessed on 30 December 2014).
- Estupinan Donoso, A.A.; Peters, B. XDEM Used for Predicting Tungsten-Oxide Reduction. In Proceedings of the Computer Aided Process Engineering (CAPE) Forum 2015, Paderborn, Germany, 27–29 April 2015. [Google Scholar]
- Mahmoudi, A.H.; Hoffmann, F.; Peters, B. Semi-resolved modeling of heat-up, drying and pyrolysis of biomass solid particles as a new feature in XDEM. Appl. Therm. Eng. 2016, 93, 1091–1104. [Google Scholar] [CrossRef]
- Peters, B.; Baniasadi, M.; Baniasadi, M.; Besseron, X.; Donoso, A.E.; Mohseni, M.; Pozzetti, G. XDEM multi-physics and multi-scale simulation technology: Review of DEM–CFD coupling, methodology and engineering applications. Particuology 2019, 44, 176–193. [Google Scholar] [CrossRef]
- Baniasadi, M.; Baniasadi, M.; Peters, B. Coupled CFD-DEM with heat and mass transfer to investigate the melting of a granular packed bed. Chem. Eng. Sci. 2018, 178, 36–45. [Google Scholar] [CrossRef]
- McBride, B.J.; Zehe, M.J.; Gordon, S. NASA Glenn Coefficients for Calculating Thermodynamic Properties of Individual Species; National Aeronautics and Space Administration Glenn Research Center: Cleveland, OH, USA, 2002. [Google Scholar]
- Aminnia, N.; Esputanian Donoso, A.A.; Peters, B. A DEM-coupled OpenFoam solver for multiphysics simulation of additive manufacturing process: Development and validation. In Proceedings of the 8th European Congress on Computational Methods in Applied Sciences and Engineering ECCOMAS Congress, Oslo, Norway, 5–9 June 2022. [Google Scholar]
- Aminnia, N.; Adhav, P.; Darlik, F.; Mashhood, M.; Saraei, S.H.; Besseron, X.; Peters, B. Three-dimensional CFD-DEM simulation of raceway transport phenomena in a blast furnace. Fuel 2023, 334, 126574. [Google Scholar] [CrossRef]
- Ascher, S.; Watson, I.; You, S. Machine learning methods for modelling the gasification and pyrolysis of biomass and waste. Renew. Sustain. Energy Rev. 2021, 155, 111902. [Google Scholar] [CrossRef]
- Adibimanesh, B.; Polesek-Karczewska, S.; Bagherzadeh, F.; Szczuko, P.; Shafighfard, T. Energy consumption optimization in wastewater treatment plants: Machine learning for monitoring incineration of sewage sludge. Sustain. Energy Technol. Assessments 2023, 56, 103040. [Google Scholar] [CrossRef]
- Baruah, D.; Baruah, D.; Hazarika, M. Artificial neural network based modeling of biomass gasification in fixed bed downdraft gasifiers. Biomass Bioenergy 2017, 98, 264–271. [Google Scholar] [CrossRef]
- Serrano, D.; Golpour, I.; Sánchez-Delgado, S. Predicting the effect of bed materials in bubbling fluidized bed gasification using artificial neural networks (ANNs) modeling approach. Fuel 2020, 266, 117021. [Google Scholar] [CrossRef]
- Safarian, S.; Saryazdi, S.M.E.; Unnthorsson, R.; Richter, C. Artificial neural network integrated with thermodynamic equilibrium modeling of downdraft biomass gasification-power production plant. Energy 2020, 213, 118800. [Google Scholar] [CrossRef]
- Zhu, X.; Li, Y.; Wang, X. Machine learning prediction of biochar yield and carbon contents in biochar based on biomass characteristics and pyrolysis conditions. Bioresour. Technol. 2019, 288, 121527. [Google Scholar] [CrossRef]
- Cheng, F.; Luo, H.; Colosi, L.M. Slow pyrolysis as a platform for negative emissions technology: An integration of machine learning models, life cycle assessment, and economic analysis. Energy Convers. Manag. 2020, 223, 113258. [Google Scholar] [CrossRef]
- Tang, Q.; Chen, Y.; Yang, H.; Liu, M.; Xiao, H.; Wu, Z.; Chen, H.; Naqvi, S.R. Prediction of bio-oil yield and hydrogen contents based on machine learning method: Effect of biomass compositions and pyrolysis conditions. Energy Fuels 2020, 34, 11050–11060. [Google Scholar] [CrossRef]
- Elmaz, F.; Yücel, Ö.; Mutlu, A.Y. Predictive modeling of biomass gasification with machine learning-based regression methods. Energy 2020, 191, 116541. [Google Scholar] [CrossRef]
- Gu, C.; Wang, X.; Song, Q.; Li, H.; Qiao, Y. Prediction of gas-liquid-solid product distribution after solid waste pyrolysis process based on artificial neural network model. Int. J. Energy Res. 2021, 45, 13786–13800. [Google Scholar] [CrossRef]
- Mutlu, A.Y.; Yucel, O. An artificial intelligence based approach to predicting syngas composition for downdraft biomass gasification. Energy 2018, 165, 895–901. [Google Scholar] [CrossRef]
- Yucel, O.; Aydin, E.S.; Sadikoglu, H. Comparison of the different artificial neural networks in prediction of biomass gasification products. Int. J. Energy Res. 2019, 43, 5992–6003. [Google Scholar] [CrossRef]
- Sezer, S.; Kartal, F.; Özveren, U. Prediction of chemical exergy of syngas from downdraft gasifier by means of machine learning. Therm. Sci. Eng. Prog. 2021, 26, 101031. [Google Scholar] [CrossRef]
- Fang, Y.; Ma, L.; Yao, Z.; Li, W.; You, S. Process optimization of biomass gasification with a Monte Carlo approach and random forest algorithm. Energy Convers. Manag. 2022, 264, 115734. [Google Scholar] [CrossRef]
- Aguado, R.; Casteleiro-Roca, J.L.; Vera, D.; Calvo-Rolle, J.L. A hybrid intelligent model to predict the hydrogen concentration in the producer gas from a downdraft gasifier. Int. J. Hydrogen Energy 2022, 47, 20755–20770. [Google Scholar] [CrossRef]
- Samadi, S.H.; Ghobadian, B.; Nosrati, M.; Rezaei, M. Investigation of factors affecting performance of a downdraft fixed bed gasifier using optimized MLP neural networks approach. Fuel 2023, 333, 126249. [Google Scholar] [CrossRef]
- Pandey, D.S.; Das, S.; Pan, I.; Leahy, J.J.; Kwapinski, W. Artificial neural network based modelling approach for municipal solid waste gasification in a fluidized bed reactor. Waste Manag. 2016, 58, 202–213. [Google Scholar] [CrossRef]
- George, J.; Arun, P.; Muraleedharan, C. Assessment of producer gas composition in air gasification of biomass using artificial neural network model. Int. J. Hydrogen Energy 2018, 43, 9558–9568. [Google Scholar] [CrossRef]
- Serrano, D.; Castelló, D. Tar prediction in bubbling fluidized bed gasification through artificial neural networks. Chem. Eng. J. 2020, 402, 126229. [Google Scholar] [CrossRef]
- Sezer, S.; Özveren, U. Investigation of syngas exergy value and hydrogen concentration in syngas from biomass gasification in a bubbling fluidized bed gasifier by using machine learning. Int. J. Hydrog. Energy 2021, 46, 20377–20396. [Google Scholar] [CrossRef]
- Kardani, N.; Zhou, A.; Nazem, M.; Lin, X. Modelling of municipal solid waste gasification using an optimised ensemble soft computing model. Fuel 2021, 289, 119903. [Google Scholar] [CrossRef]
- Fu, Y.; Wang, S.; Xu, X.; Zhao, Y.; Dong, L.; Chen, Z. Particle flow characteristics in a gas-solid separation fluidized bed based on machine learning. Fuel 2022, 314, 123039. [Google Scholar] [CrossRef]
- Kartal, F.; Özveren, U. The dimensional design of a laboratory-scale fluidized bed gasifier using machine learning based on a kinetic method. Energy Convers. Manag. 2022, 269, 116183. [Google Scholar] [CrossRef]
- Kim, J.Y.; Kim, D.; Li, Z.J.; Dariva, C.; Cao, Y.; Ellis, N. Predicting and optimizing syngas production from fluidized bed biomass gasifiers: A machine learning approach. Energy 2023, 263, 125900. [Google Scholar] [CrossRef]
- Kim, J.Y.; Shin, U.H.; Kim, K. Predicting biomass composition and operating conditions in fluidized bed biomass gasifiers: An automated machine learning approach combined with cooperative game theory. Energy 2023, 280, 128138. [Google Scholar] [CrossRef]
- Pandey, D.S.; Raza, H.; Bhattacharyya, S. Development of explainable AI-based predictive models for bubbling fluidised bed gasification process. Fuel 2023, 351, 128971. [Google Scholar] [CrossRef]
- Cahanap, D.R.; Mohammadpour, J.; Jalalifar, S.; Mehrjoo, H.; Norouzi-Apourvari, S.; Salehi, F. Prediction of three-phase product yield of biomass pyrolysis using artificial intelligence-based models. J. Anal. Appl. Pyrolysis 2023, 172, 106015. [Google Scholar] [CrossRef]
- Ascher, S.; Sloan, W.; Watson, I.; You, S. A comprehensive artificial neural network model for gasification process prediction. Appl. Energy 2022, 320, 119289. [Google Scholar] [CrossRef]
- Ascher, S.; Wang, X.; Watson, I.; Sloan, W.; You, S. Interpretable machine learning to model biomass and waste gasification. Bioresour. Technol. 2022, 364, 128062. [Google Scholar] [CrossRef]
Constant | Value | Sample | Ref. |
---|---|---|---|
cellulose | [72] | ||
cellulose | [73] | ||
beechwood | [74] | ||
pine wood | [75] | ||
150 | |||
corn | [76] | ||
spruce wood | [76] | ||
poplar wood | [76] | ||
sunflower | [76] | ||
straw | [76] | ||
eucalyptus | [76] | ||
pine wood | [77] | ||
106 |
Heat of Pyrolysis, kJ/kg | Sample | Ref. |
---|---|---|
beech | [94] | |
poplar | [97] | |
pine, bark | [97] | |
poplar | [98] | |
spruce | [99] | |
beech | [99] | |
wood | [100] | |
cedar | [101] | |
beech | [102] | |
1473 | pine | [52] |
Ref. and Model | Process Conditions | Sample | Sample Geometry | Sample Properties | Source Terms | Kinetic Model |
---|---|---|---|---|---|---|
Kardaś et al. (2021), [48], 1D, transient | temperature rising from 300 K to 900 K (rates of 1–50 K/min) | pine wood | single particles (spherical), sizes of 1 mm, 2 mm, 5 mm, 10 mm | source term describing gas released from the sample volume | two different kinetic constant sets adopted, comparison with the predictions of a simple kinetic model for a single Arrhenius reaction | |
DiBlasi (1997) [103], 2D, transient | initial particle temperature 300 K; furnace temperature constant (900 K) or increased from 500 K to 900 K with a rate of 10 K/s | wood | single particle, square samples sizes between 5 mm to 4 cm | [W/m K] [W/m K] | , chemical heat effects, mass transfer between the sample and its surroundings | solid active solid active solid char + gas active solid tar |
Hagge (2005) [104], 2D, transient, unstructured grid, particle shrinking | external temperature 800 °C, 1100 °C, 1400 °C | wood | single particle, 3.175 mm × 25.4 mm | , heat of formation of pyrolysis products, vaporization of water | wood tar wood light gas wood char tar light gas tar char | |
Blondeau and Jeanmart (2012), [105], 2D, transient particle shrinking, porous medium | Neumann boundary conditions (radiation and convection heat transfer included) | beech wood | single particles sizes ranging between 0.1–2 mm | mass and heat source term included | complex primary and secondary reactions described by Arrhenius equation and relevant kinetic constants | |
Wickramaarachchi and Narayana (2020), [106], 3D, CFDs, transient, two-phase | surrounding gas (N2) temperature rise from 300 K to 1300 K | wood | 2 single particles, cylindrical ø9.5 mm × 9.5 mm ø9.5 mm × 38 mm | heat and mass transfer between phases, external heat exchange | Arrhenius equation for i-th component: | |
Papadikis et al. (2009), [107], 3D, transient fluidized bed; particle shrinking; multiphase commercial software | nitrogen flow at the bottom of the reactor (); temperature: 700–800 K | wood | cylindrical fluidized bed reactor ø4 cm × 26 cm, 2 spherical particles of 0.5 mm diameter injected at the center of the sand bed | mass source, calculated by commercial software | wood gas wood tar wood char tar gas tar char |
Ref. and Model | Process Conditions | Sample | Sample Geometry | Sample Properties | Source Terms | Kinetic Model |
---|---|---|---|---|---|---|
Karczewska and Kardaś (2015), [39], 1D, transient fixed bed drying | process temperature: initial: 273 K final: 873 K | wood | cylindrical reactor (diameter of 0.104 m) | + or or | gas mass source term: Z–pyrolysis progress | simple kinetic model Arrhenius equation: L/s |
Ghabi et al. (2008), [114], 2D, transient fixed bed | igniter temperature rising from 303 K to 800 K; side wall at 903 K | wood | cylindrical reactor ø15 cm × 15 cm, spherical 3 mm particles | mass transfer effects | solid char + gas + tar tar light gas + char | |
Xue et al. (2012), [115], 2D and 3D, transient fixed bed, drying | fuel feeding rate: 100 g/h temperature: 500 °C | cellulose, oak wood | cylindrical reactor, ø38.1 mm × 340 mm | both cellulose and oak wood are distinguished by the physical properties specified in the model and detailed in other works | chemical reaction source terms | cellulose, hemicellulose, lignin active material active material tar vapor active material char tar vapor gas char gas |
Type of Gasifier | Model, Software | Feedstock | Processes | Kinetic Modeling | Consideration | Year/Ref. |
---|---|---|---|---|---|---|
Updraft | 2D, Eulerian–Lagrangian, Fluent | Palm kernel shell | Drying, pyrolysis, reduction, oxidation | Two distinct chemical reaction methodologies applied: homogeneous reactions characterized using the Eddy-dissipation/finite rate model of heterogeneous reactions represented through the diffusion surface model. | Drag forces and heterogeneous chemical reactions facilitated the transfer of momentum, mass, and energy between solids and gaseous components. | 2024/[151] |
Downdraft | 2D, Eulerian–Lagrangian, Fluent | Wood chips, rubber wood | Drying, pyrolysis, combustion, gasification. | Single kinetic rate model for particle devolatilization assuming first-order kinetics. | The volatiles are composed of gases (CO, CO2, CH4,H2), and other higher HC components (i.e., tar) were not included. Char reactions use volumetric and multiple surface reactions, encompassing all kinetic rate reactions. | 2023/[152] |
Thermal dual fluidized bed | Multi-scale, Eulerian–Lagrangian, Fluent | Beech wood | Drying, pyrolysis, combustion, gasification. | Kinetic theory of granular flow (KTGF) for particle collisions. A single-step global reaction scheme employed for pyrolysis. Char gasification addressed through heterogeneous reactions with H2O and CO2 | Two particle models (Progressive Conversion Model (PCM) and the Uniform Conversion Model (UCM)) were coupled to the CFD simulation. PCM features radial discretization within the particle, unlike UCM, which cannot describe internal gradients. | 2023/[153] |
Fluidized bed | 2D, Eulerian–Eulerian, Fluent | Sawdust, coal | Combustion, gasification. | Homogeneous chemical
reaction model with user-defined heterogeneous reaction kinetics. | Three phases, comprising a mixture of gas, sawdust (fuel particles), and sand (bed material), were taken into account. | 2023/[154] |
Bubbling Fluidized bed | 3D, Eulerian–Eulerian, Fluent | Waste plastics | Combustion, Gasification. | The chemical reaction submodel was expanded to enhance hydrocarbon–oxygen, hydrocarbon–steam, and tar cracking reactions. | Plastic pyrolysis generates substantial yields of C1–C3 hydrocarbons. Phenol and naphthalene are presumed to constitute tar. The model was constructed employing the MP-PIC methodology. | 2022/[155] |
Direct-melting | 3D, Eulerian–Lagragian, Fluent | Municipal solid waste | Drying, pyrolysis, reduction, oxidation | Surface reactions: combustion on a surface and breaking down of particles. Reactions in the gas phase: breaking down tar, converting water and gas, and burning syngas. | The density and heat capacity of waste and charcoal particles were dynamically modeled considering various states, compositions, and temperatures. Additionally, a basic ash melting model was developed to monitor the ultimate fate of waste particles. | 2023/[156] |
Fluidized bed | 3D, Eulerian–Eulerian, Fluent | Rubber wood | Pyrolysis, reduction, oxidation | The decomposition of volatile matter analyzed using the volatile break-up method. The stoichiometric coefficients for the resulting substances were determined based on their mole fractions and molecular weights. | The model presumes conditions of constancy, adiabaticity, uniform gas-phase kinetics, and the behavior of an ideal fluid. The model aimed to optimize the positioning and orientation of the fuel inlet to maximize the syngas content in the gas outlet. | 2024/[157] |
Bubbling Fluidized bed | 3D, Eulerian–Lagrangian, OpenFOAM | Raw bioamss | Drying, pyrolysis, gasification. | The devolatilization components are determined using equilibrium equations, excluding tars. Simultaneous heterogeneous char–gas reactions, and homogeneous reactions in gaseous phase. | The reactive MP-PIC model in OpenFOAM to investigate biomass air gasification, considering particle-scale behaviors and initial bed temperature effects. This model extends the standard MPPICFoam solver with submodels for chemical reactions and heat transfer, facilitating simulation of dense reactive gas–solid flow. | 2024/[158] |
Type of Model | Processes | Governing Equations | Targets | Consideration | Year/Ref. |
---|---|---|---|---|---|
0D, Steady | Drying, pyrolysis, gasification | Overall mass balance and mass balance of different elements (C, H, O, N), equilibrium constants, energy balances | Prediction of the yields of gas, charcoal, and tar produced during gasification. Assess the impact of key input factors such as moisture content and air/fuel ratio. | Particles leaving the gasifier are set to consist only of carbon. The maximum tar content was limited. Biomass-bound nitrogen is converted into diatomic nitrogen. | 2020/[159] |
Mass balances: Energy (pyrolysis): Energy (gasification): | |||||
0D, Unsteady | Coal pyrolysis, char consumption | Mass balance is ensured through individual kinetic difference equations for each species. The rate constant for the reaction is represented by the Arrhenius equation. | Prediction of the gasification transition from Zone I to Zone II/III regimes concerning the rise in temperature and particle size. | Char consumption is driven by the interplay of reaction kinetics and mass transfer, causing uneven internal reaction, and a subsequent decrease in particle size and apparent density. The heterogeneous reactions occur on both pore and char core surfaces. | 2022/[160] |
Particle size: Particle density: Energy: | |||||
1D, Unsteady | Drying, pyrolysis, reduction, oxidation | The mass and energy balance in the solid phase. Gas phase mass balance due to chemical reactions and superficial gas velocity. Gas phase energy balance Darcy’s law applies to gas phase momentum balance. Equation of state and gas-phase velocity. | Prediction of time and space profiles for critical parameters, including solid temperature, exit gas composition, etc. Design a controller to regulate the exit gas mixture’s heating value by adjusting injected gas flow rates. | Model of syngas consists of eight gas species and two solid species: coal and char. Nine chemical reactions describe the chemical kinetics of the process. | 2014/[161] |
Solid phase mass: Solid phase energy: Gas phase mass: Gas phase energy: Gas phase velocity: | |||||
1D, Steady | Drying, pyrolysis, gasification | One-stage kinetic equation for pyrolysis. Three kinetic equations for the reactions of char and ash residual Equilibrium thermodynamic model for chemical reactions. | Develop a model based on the concept of the physico-chemical system, enabling the integration of various mathematical models (kinetic and thermodynamic) in the computational process. | The alteration in fuel particle size occurs solely through chemical reactions, not due to mechanical destruction. The changes in the emissivity factor of coal during conversion are assumed to follow a linear pattern. Irreversibility of reactions and the impracticality of assuming slight changes in reactive surface area during gasification | 2017/[162] |
1D, Steady | Drying, pyrolysis, combustion, gasification | Conservative equations for mass and energy (gas, solid). Using Ergun equation to calculate the pressure drop. kinetic mechanism considered to simulate the conversion of biomass. | Char production and producer gas flow. The effect of moisture content on gasifier performance. | Discrete particle size distribution employed. Mass transfer by diffusion along the gasifier is negligible compared to mass transfer by convection. | 2019/[163] |
Solid mass source term: Solid energy source term: Gas mass source term: Gas energy source term: Pressure drop: | |||||
1D, Steady | Devolatilization | Mass and energy balances for the components. | Exact composition of the devolatilization products, including tar as a condensed product. Impact of temperature variations on the equilibrium composition of released volatiles. | Presuming the distribution of individual input elements to generate specific types of products. Tar is represented by the chemical formula C6H6,2O,2. | 2022/[164] |
1D, Steady | Reduction | Nine coupled first-order ordinary differential equations with the system variables (molar concentration of x gas species), p (pressure), v (velocity), and T (temperature). The ideal gas law is used to describe the gases. | The influences of the gasifying agent to biomass ratio, the gasification temperature, and the moisture content on the product gas composition | Tar, sulfur, and ammonia are taken to be negligible in the equilibrium reaction. All sub-processes, i.e., pyrolysis, oxidation, tar cracking, and reforming, have been completed. | 2022/[165] |
Mass balance: Energy balance: Velocity: Pressure drop: |
Type of Gasifier | Data Record/ Collection Method | Feedstock | ML Model | Target Variables | Metrics R2/RMSE | Comment | Year/Ref. |
---|---|---|---|---|---|---|---|
Downdraft | 63/LR 1 | Herbaceous and woody biomass | ANN | CO, CH4, and | 0.98/- | Reduction in temperature significantly influenced CO and H2 prediction. | 2017/[186] |
Downdraft | 5273/Experiments | Woody biomass | SVM and RF | Gas composition and HHV | -/0.34 | Utilizing temperature distribution in AI-based methods enables effective prediction of gasification products. | 2018/[194] |
Downdraft | 3831/Experiments | pinecone and wood pellet | ANN | Gas composition | 0.99/- | The prediction of syngas composition is more influenced by temperature distribution than the feedstock parameters. | 2019/[195] |
Downdraft | 1032/Aspen Plus | Woody, animal, herbaceous biomass | ANN | Output power | 0.99/- | An Artificial Neural Network (ANN) model combined with a thermodynamic equilibrium approach. | 2020/[188] |
Downdraft | 32,025/Aspen | Biomass | ANN | Chemical exergy of the syngas | 0.99/- | Higher temperatures resulted in improved chemical exergy value, while increasing steam to fuel ratio decreased it. | 2021/[196] |
Downdraft | 2000/Kinetic model | Biomass | Monte Carlo RF | Syngas’ yield | 0.99/- | The Monte Carlo simulation approach, gasification kinetic modeling, and the random forest algorithm were combined. | 2022/[197] |
Downdraft | 26,839/Experiments | Olive pellet | ANN, SVM | Hydrogen content in producer gas | MAPE = 0.134 | The novel model acts as a virtual sensor, replacing the need for a physical hydrogen concentration sensor. | 2022/[198] |
Downdraft | 3605/- | Wood pellets and chips | MLP with ANN | Gas composition and LHV | 0.95/0.83 | MLP with Levenberg–Marquardt, 47–57 neurons in hidden layer, tansig activation, showed reasonable predictability. | 2023/[199] |
Fluidized bed | 67/Experiments | MSW | ANN | LHV, LHVp, Syngas yield | 0.98/- | MISO and MIMO ANN use yielded valuable insights for equilibrium modeling. | 2016/[200] |
Fluidized bed | 70/Experiments | Herbaceous and woody biomass | ANN | Gas composition and gas yield | -/0.842 | Including tar and char yield as factors can enhance the predictive abilities of the model. | 2018/[201] |
Bubbling Fluidized bed | 203/Experiments | Biomass, SS, MSW, plastic | ANN | Gas composition and gas yield | 0.94/- | The models have the capability to simulate the composition of gas for specific biomasses under operating conditions | 2020/[187] |
Bubbling Fluidized bed | 120/Experiments | Woody biomass and silica sand | ANN | Tar generation | 0.97/- | The model utilizes highly heterogeneous data to predict tar generation in gasification processes. | 2020/[202] |
Bubbling Fluidized bed | 60/Aspen Plus | Biomass | ANN | Mole fraction and exergy value of syngas | 0.99/- | Syngas’ hydrogen content and exergy value were analyzed during the process conditions. | 2021/[203] |
Bubbling Fluidized bed | 67/LR | MSW | OEM | LHV, LHVp Syngas yield | 0.99/- | An optimized ensemble model (OEM) is proposed for modeling of MSW gasification | 2021/[204] |
Fluidized bed | 270/Experiments | Solid particles | ANN | complex spatial characteristics | - | ML approach excelled over theory in accuracy and comprehensiveness. | 2022/[205] |
Fluidized bed | 25,8816/Aspen Plus | Bioamss | ANN | Gas composition thermal value | 0.99/- | Heterogeneous reactions played a vital role in shaping syngas properties. | 2022/[206] |
Fluidized bed | 336/LR | Biomass | RF, SVM, ANN | Gas products, LHV Char and tar yields | 0.95/- | RF-MCF method preferred for higher H2/CO ratio and superior LHV. | 2023/[207] |
Fluidized bed | 336/LR | Biomass | Auto ML shape algorithm | Gas composition LHV, Char yield | 0.67/- | CatBoost and WeightedEnsemble_L2 algorithms demonstrated the highest accuracy | 2023/[208] |
Bubbling Fluidized bed | 222/LR | Biomass | GBLR, MLP 2, RR | Gas composition and gas yield | -/0.059 | The GB algorithm outperformed other regression-based models | 2023/[209] |
Fluidized bed | 155/LR | Biomass | XGB, RF, SVR, ANN | Yield | - | Optimization of biomass pyrolysis by integrating a novel parameter (H/D) | 2023/[210] |
All type | 312/LR | Biomass, sludge MSW | ANN | Syngas composition, yield and efficiency | R2 = 0.931 | An innovative model for diverse feedstocks, gasifying agents, and reactor options. | 2022/[211,212] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Polesek-Karczewska, S.; Hercel, P.; Adibimanesh, B.; Wardach-Świȩcicka, I. Towards Sustainable Biomass Conversion Technologies: A Review of Mathematical Modeling Approaches. Sustainability 2024, 16, 8719. https://doi.org/10.3390/su16198719
Polesek-Karczewska S, Hercel P, Adibimanesh B, Wardach-Świȩcicka I. Towards Sustainable Biomass Conversion Technologies: A Review of Mathematical Modeling Approaches. Sustainability. 2024; 16(19):8719. https://doi.org/10.3390/su16198719
Chicago/Turabian StylePolesek-Karczewska, Sylwia, Paulina Hercel, Behrouz Adibimanesh, and Izabela Wardach-Świȩcicka. 2024. "Towards Sustainable Biomass Conversion Technologies: A Review of Mathematical Modeling Approaches" Sustainability 16, no. 19: 8719. https://doi.org/10.3390/su16198719
APA StylePolesek-Karczewska, S., Hercel, P., Adibimanesh, B., & Wardach-Świȩcicka, I. (2024). Towards Sustainable Biomass Conversion Technologies: A Review of Mathematical Modeling Approaches. Sustainability, 16(19), 8719. https://doi.org/10.3390/su16198719