Composting and Mechanical Biological Treatment for Reducing Greenhouse Gas Emissions in Bizerte, Tunisia
Abstract
:1. Introduction and Problem Statement
2. Background Information and Waste Characterization in Bizerte
2.1. Context of the Municipality of Bizerte
2.2. Waste Characterization in the Bizerte Municipality
3. Proposed Solutions for Bizerte Waste Management
3.1. Bizerte Green Waste Composting
3.1.1. Materials and Methods
Description of the Composting Plant
Composting Materials and Pile Design
Sampling and Compost Analysis
- Physical–chemical characterization
- Microbiological analysis
3.1.2. Results and Proprieties of the Produced Compost at the Bizerte Composting Plant
Physical and Chemical Characteristics of the Raw Materials
C/N Ratio
Temperature Evolution
Monitoring of End-Product Quality Indicators
- Heavy metal content vs. Tunisian compost standards
- Microbiological tests
- P and K contents of composted material
3.1.3. Financial Analysis
3.2. Mechanical Biological Treatment of Residual Waste in Bizerte
4. Greenhouse Gas Emissions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Trends in Solid Waste Management. Available online: https://datatopics.worldbank.org/what-a-waste/trends_in_solid_waste_management.html (accessed on 21 January 2022).
- Bhatia, R.K.; Sakhuja, D.; Mundhe, S.; Walia, A. Renewable Energy Products through Bioremediation of Wastewater. Sustainability 2020, 12, 7501. [Google Scholar] [CrossRef]
- Delarue, J.; Flipon, B.; Morizot, G.; Tiberghien, M. Développement durable de la gestion des ordures ménagères et financements carbone: Les conditions d’une mise en œuvre conjointe dans les pays en développe-ment. Environ. Ing. Dev. 2012, 22–27. [Google Scholar] [CrossRef]
- Imam, A.; Mohammed, B.; Wilson, D.C.; Cheeseman, C.R. Solid waste management in Abuja, Nigeria. Waste Manag. 2008, 28, 468–472. [Google Scholar] [CrossRef]
- Magazzino, C.; Mele, M.; Schneider, N. The relationship between municipal solid waste and greenhouse gas emissions: Evidence from Switzerland. Waste Manag. 2020, 113, 508–520. [Google Scholar] [CrossRef]
- Solid Waste Management in Tourist Destinations in Tunisia: Reality and Perspectives. Available online: https://www.donneesmondiales.com/afrique/tunisie/index.php#:~:text=Tunisie%20est%20un%20pays%20au,la%20taille%20de%20la%20France (accessed on 18 September 2023).
- Ben Amor, L.; Hammami, S. An Empirical Study on the Main Determinants of Recycling Plastic Waste in Tunisia. Recycling 2022, 7, 1. [Google Scholar] [CrossRef]
- Elections Municipales: Infographie des 350 Municipalités. Available online: https://www.webmanagercenter.com/2018/04/17/418718/elections-municipales-infographie-des-municipalites/ (accessed on 18 September 2023).
- Tunisia Population 2024 (Live). Available online: https://worldpopulationreview.com/countries/tunisia-population (accessed on 18 September 2023).
- Mahjoub, O.; Jemai, A.; Haddaoui, I. Waste Management in Tunisia—What Could the Past Bring to the Future? In The Economics of Water; Springer International Publishing: Cham, Switzerland, 2019; pp. 35–69. [Google Scholar]
- Ammar, S.B. Les Enjeux de la Caractérisation des Déchets Ménagers Pour le Choix des Traitements Adaptés Dans les Pays en Développement: Résultats de la Caractérisation Dans le Grand Tunis Mise au Point d’un Méthode Adaptée. Ph.D. Thesis, Lorraine Polytechnical Institute, National Higher School of Geology of Nancy, Vandœuvre-lès-Nancy, France, 2006; p. 328. [Google Scholar]
- Launch by United States, the European Union, and Partners of the Global Methane Pledge to Keep 1.5C Within Reach. Available online: https://ec.europa.eu/commission/presscorner/detail/en/statement_21_5766 (accessed on 18 September 2023).
- Solving Tunisia’s Growing Waste Management Problem. Available online: https://www.mei.edu/publications/solving-tunisias-growing-waste-management-problem (accessed on 18 September 2023).
- TUNISIA. Arab States. Available online: https://climatepromise.undp.org/what-we-do/where-we-work/Tunisia (accessed on 18 September 2023).
- Tunisia Greenhouse Gas (GHG) Emissions 1990–2024. Available online: https://www.macrotrends.net/countries/TUN/tunisia/ghg-greenhouse-gas-emissions#:~:text=Tunisia%20greenhouse%20gas%20(ghg)%20emissions%20for%202020%20was%2040%2C883.00%2C,a%201.29%25%20increase%20from%202017 (accessed on 18 September 2023).
- Stratégie de Neutralité Carbone et de Résilience au Changement Climatique à L’horizon 2050, HEAT GmbH. Available online: https://www.environnement.gov.tn/mediatheque/bibliotheque-du-telechargement?tx_ameosfilemanager%5Baction%5D=download&tx_ameosfilemanager%5Bcontroller%5D=Explorer%5CFile&tx_ameosfilemanager%5Bfile%5D=682&cHash=16a761593bac43e5ef19700fad1ef745 (accessed on 8 March 2022).
- Smith, J.; Jones, A. ECO-LEF in Tunisia: A Case Study. 2021. Available online: https://prevent-waste.net/wp-content/uploads/2023/06/Tunisia.pdf (accessed on 30 December 2023).
- Bizerte. Available online: https://www.reseau-euromed.org/fr/ville-membre/bizerte/ (accessed on 24 August 2021).
- Bayard, R.; Benbelkacem, H.; Gourdon, R.; Buffière, P. Characterization of selected municipal solid waste components to estimate their biodegradability. J. Environ. Manag. 2018, 216, 4–12. [Google Scholar] [CrossRef]
- Bernat, K.; Wojnowska-Baryła, I.; Kamińska, A.; Zaborowska, M. Towards a circular economy for stabilized residual from organic municipal solid waste processed at an MBT installation—The potential of SR recycling and recovery. Desalination Water Treat. 2021, 244, 63–76. [Google Scholar] [CrossRef]
- Bernat, K.; Zaborowska, M.; Wojnowska-Baryła, I.; Samul, I. Insight into the composition of the stabilized residual from a full-scale mechanical-biological treatment (MBT) plant in terms of the potential recycling and recovery of its contaminants. Sustainability 2021, 13, 5432. [Google Scholar] [CrossRef]
- Bernat, K.; Kulikowska, D.; Wojnowska-Baryła, I.; Kamińska, A. Can the biological stage of a mechanical–biological treatment plant that is designed for mixed municipal solid waste be successfully utilized for effective composting of selectively collected biowaste? Waste Manag. 2022, 149, 291–301. [Google Scholar] [CrossRef]
- Hemidat, S.; Jaar, M.; Nassour, A.; Nelles, M. Monitoring of Composting Process Parameters: A Case Study in Jordan. Waste Biomass Valorization 2018, 9, 2257–2274. [Google Scholar] [CrossRef]
- López, M.; Soliva, M.; Martínez-Farré, F.X.; Bonmatí, A.; Huerta-Pujol, O. An assessment of the charac-teristics of yard trimmings and recirculated yard trimmings used in biowaste composting. Bioresour. Technol. 2010, 101, 1399–1405. Available online: https://www.sciencedirect.com/science/article/abs/pii/S0960852409012371 (accessed on 29 September 2023). [CrossRef] [PubMed]
- Wei, Y.; Wei, Z.; Cao, Z.; Zhao, Y.; Zhao, X.; Lu, Q.; Wang, X.; Zhang, X. A regulating method for the dis-tribution of phosphorus fractions based on environmental parameters related to the key phosphate-solubilizing bacteria during composting. Sci. Total Environ. 2016, 211, 610–617. Available online: https://www.sciencedirect.com/science/article/abs/pii/S0960852416304448?casa_token=KK2bOgEPIosAAAAA:NAZrslD6wwor4MCSlz0P1fXLp2K5-zaLoNH2QTNn12LNoPp_2ZOtqEL3SwxdNL-sbfRs3TgQmg (accessed on 29 September 2023).
- Municipality of Bizerte, The Municipal Cleaning and Waste Collection Department of Bizerte Municipality.
- Für Umwelt, L.; Geologie, F.S. Richtlinie zur Einheitlichen Abfallanalytik in Sachsen; Saxon State Chancellery: Dresden, Germany, 2014. [Google Scholar]
- Abfall, L. LAGA PN 98 Richtlinie für das Vorgehen bei Physikalischen, Chemischen und Biologischen Untersuchungen im Zusammenhang mit der Verwertung/Beseitigung von Abfällen; Ministerium für Umwelt und Forsten Rheinland-Pfalz: Mainz, Germany, 2019. [Google Scholar]
- XP X 30-413; Waste—Constitution of a Sample of Household and Similar Waste Contained in a Household Waste Skip. Afnor EDITIONS: La Plaine-Saint-Denis, France, 2006.
- XP X 30-408; Waste—Characterization of a Sample of Household and Similar Waste. Afnor EDITIONS: La Plaine-Saint-Denis, France, 1996.
- Mathlouthi, O. Municipality of Bizerte Sorting Analysis for Household Waste Characterization. 2023. [Google Scholar]
- Tunisie: Le Ministère de l’Environnement Interdit les Sacs en Plastique à Usage Unique dans les Boulangerie. Available online: https://www.aa.com.tr/fr/afrique/tunisie-le-minist%C3%A8re-de-lenvironnement-interdit-les-sacs-en-plastique-%C3%A0-usage-unique-dans-les-boulangeries/2854248 (accessed on 6 September 2023).
- Plastic Bag Factorys Workers Rally against Government Ban of Plastic Bags in Tunis. Available online: https://epaimages.com/search.pp?pictureid=11514708&title=Plastic-bag-factorys-workers-rally-against-government-ban-of-plastic-bags-in-Tunis (accessed on 5 September 2023).
- Consommation de Papier: 28 Millions D’hectares de Forêts Perdus Chaque Année dans le Monde. Available online: https://lapresse.tn/128879/consommation-de-papier-28-millions-dhectares-de-forets-perdus-chaque-annee-dans-le-monde/ (accessed on 7 September 2023).
- BN Umwelt. Bizerte Green Waste Composting Project Engineering Firm.
- NF U 44-101; Organic Products—Organic Amendments—Supports and Growing Media—Sampling. AFNOR: Paris, France, 1976.
- NF ISO 11261; Qualité Du Sol—Dosage De L’azote Total—Méthode de Kjeldahl Modifiée. AFNOR: Paris, France, 1995.
- NF EN 12176; Characterization of Sludge. Determination of PH-Value. AFNOR: Paris, France, 1998.
- ISO 14235; Soil Quality—Determination of Organic Carbon in Soil by Sulfochromic Oxidation. International Organization for Standardization: Geneva, Switzerland, 1998.
- NF EN ISO 11885; Qualité De L’eau—Dosage D’éléments Choisis Par Spectroscopie D’émission Optique Avec Plasma Induit Par Haute Fréquence (ICP-OES). AFNOR: Paris, France, 2009.
- Norbu, T.; Visvanathan, C.; Basnayake, B. Pretreatment of municipal solid waste prior to landfilling. Waste Manag. 2005, 25, 997–1003. [Google Scholar] [CrossRef]
- Gajalakshmi, S.; Abbasi, S.A. Solid waste management by composting: State of the art. Crit. Rev. Environ. Sci. Technol. 2008, 38, 311–400. [Google Scholar] [CrossRef]
- Guidoni, L.L.C.; Marques, R.V.; Moncks, R.B.; Botelho, F.T.; da Paz, M.F.; Corrêa, L.B.; Corrêa, É.K. Home composting using different ratios of bulking agent to food waste. J. Environ. Manag. 2018, 207, 141–150. [Google Scholar] [CrossRef]
- Adhikari, B.K.; Barrington, S.; Martinez, J.; King, S. Characterization of food waste and bulking agents for composting. Waste Manag. 2008, 28, 795–804. [Google Scholar] [CrossRef]
- Wang, H.; Wang, D.; Zhou, X. Analysis on the Trend of Water Quality in Haihe River Basin from 2005 to 2017. J. Geosci. Environ. Prot. 2012, 6, 1–7. [Google Scholar] [CrossRef]
- Mustin, M. Le Compost: Gestion de la Matière Organique; Editions François Dubusc Paris: Paris, France, 1987. [Google Scholar]
- Tuomela, M.; Vikman, M.; Hatakka, A.; Itävaara, M. Biodegradation of lignin in a compost environment: A review. Bioresour. Technol. 2000, 72, 169–183. [Google Scholar] [CrossRef]
- Chaher, N.E.H.; Hemidat, S.; Thabit, Q.; Chakchouk, M.; Nassour, A.; Hamdi, M.; Nelles, M. Potential of sustainable concept for handling organic waste in Tunisia. Sustainability 2020, 12, 8167. [Google Scholar] [CrossRef]
- Palaniveloo, K.; Amran, M.A.; Norhashim, N.A.; Mohamad-Fauzi, N.; Peng-Hui, F.; Hui-Wen, L.; Kai-Lin, Y.; Jiale, L.; Chian-Yee, M.G.; Jing-Yi, L.; et al. Food Waste Composting and Microbial Community Structure Profiling. Processes 2020, 8, 723. [Google Scholar] [CrossRef]
- Liu, N.; Zhou, J.; Han, L.; Ma, S.; Sun, X.; Huang, G. Role and multi-scale characterization of bamboo biochar during poultry manure aerobic composting. Bioresour. Technol. 2017, 241, 190–199. [Google Scholar] [CrossRef]
- Lin, L.; Xu, F.; Ge, X.; Li, Y. Chapter Four—Biological Treatment of Organic Materials for Energy and Nutrients Production—Anaerobic Digestion and Composting. In Advances in Bioenergy; Li, Y., Ge, X., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; Volume 4, pp. 121–181. [Google Scholar]
- Gobat, J.M.; Aragno, M.; Matthey, W. Le Sol Vivant: Bases de Pédologie, Biologie des Sols (The Living Soil: Soil Pedology and Soil Biology); PPUR Presses Polytechniques: Lausanne, Switzerland, 2010. [Google Scholar]
- Avadí, A.; Benoit, P.; Bravin, M.; Cournoyer, B.; Feder, F.; Galia, W.; Garnier, P.; Haudin, C.-S.; Legros, S.; Mamy, L.; et al. Trace contaminants in the environmental assessment of organic waste recycling in agriculture: Gaps between methods and knowledge. Adv. Agron. 2021, 174, 53–188. [Google Scholar]
- Tannouri, A.; Rizk, Z.; Daccache, M.; Ghanem, C.; Azzi, V.; Maroun, R.G.; Hobaika, Z.; Salameh, D. Study of Raw Material Pretreatment and the Microbiota Selection Effect on the Composting Process Efficiency. Agronomy 2023, 13, 2048. [Google Scholar] [CrossRef]
- Strauch, D. Occurrence of Microorganisms Pathogenic for Man and Animals in Source Separated Biowaste and Compost—Importance, Control, Limits, Epidemiology. In The Science of Composting; Bertoldi, M.D., Sequi, P., Lemmes, B., Pap, T., Eds.; Springer: Dordrecht, The Netherlands, 1996; pp. 224–232. [Google Scholar]
- Van der Wiel, B.Z.; Weijma, J.; van Middelaar, C.E.; Kleinke, M.; Buisman CJ, N.; Wichern, F. Restoring nutrient circularity in a nutrient-saturated area in Germany requires systemic change. Environ. Sci. Pollut. Res. 2021, 28, 209–226. [Google Scholar] [CrossRef]
- Golueke, C.G. Bacteriology of composting. Biocycle 1992, 33, 55–57. [Google Scholar]
- Bello, I.A.; Ismail, M.N.B. Solid Waste Management in Africa: A Review. Int. J. Waste Resour. 2016, 6, 2. [Google Scholar]
- Carrasco Maldonado, F. Pilot Testing, Simulation, and Scaling of an Oxyfuel Burner for Cement Kilns. Ph.D. Thesis, Fakultät Energie-Verfahrens- und Biotechnik, Universität Stuttgart, Stuttgart, Germany, 2021. [Google Scholar]
- Climate and Clean Air Coalition. Solid Waste Emissions Estimation Tool (SWEET) User Manual; Climate and Clean Air Coalition: Paris, France, 2018. [Google Scholar]
- Economie Verte|Valorisation des Déchets: L’industrie du Recyclage Mise en Veilleuse. Available online: https://lapresse.tn/166056/economie-verte-valorisation-des-dechets-lindustrie-du-recyclage-mise-en-veileuse/#:~:text=La%20quantit%C3%A9%20des%20d%C3%A9chets%20recycl%C3%A9s,contr%C3%B4l%C3%A9es%20%C3%A0%20travers%20le%20pays (accessed on 27 September 2023).
- IPCC (Intergovernmental Panel on Climate Change). Changes in Atmospheric Constituents and in Radiative Forcing. Table 2.14. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Bond, T.C.; Sun, H. Can reducing black carbon emissions counteract global Warming? Environ. Sci. Technol. 2005, 39, 5921–5926. [Google Scholar] [CrossRef] [PubMed]
- Paul, J.W.; Wagner-Riddle, C.; Thompson, A.; Fleming, R.; MacAlpine, M. Composting as a Strategy to Reduce Greenhouse Gas Emissions. Clim. Change 2001, 2, 3–5. [Google Scholar]
- Methane: A Crucial Opportunity in the Climate Fight. Available online: https://www.edf.org/climate/methane-crucial-opportunity-climate-fight (accessed on 29 September 2023).
- Myhre, G.; Shindell, D.; Bréon, F.M.; Collins, W.; Fuglestvedt, J.; Huang, J. Anthropogenic and Natural Radiative Forcing. In Climate Change 2013: The Physical Science Basis Contribution of Working Group 1 to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Shindell, T.; Faluvegi, G.; Koch, D.M.; Schmidt, G.A.; Unger, N.; Bauer, S.E. Improved attribution of climate forcing to emissions. Science 2009, 326, 716–718. [Google Scholar] [CrossRef]
- Importance of Methane. Available online: https://www.epa.gov/gmi/importance-methane (accessed on 28 September 2023).
- Available online: https://www.ornikar.com/code/cours/ecologie/carburant/carburant-moins-polluant (accessed on 29 September 2023).
District | Population |
---|---|
Medina | 22.2% |
Ain Mariem | 40.5% |
Hached | 17.8% |
Zarzouna | 17.8% |
Louata | 1.7% |
Parameter | Method | Reference |
---|---|---|
Total Kjeldahl nitrogen (TKN) | Kjeldahl method using Kjeldahl Gerhardt Vapodest | NF ISO 11261 [37] |
pH | NF EN 12176 March 1998 [38] | |
Temperature | Thermocouple with probe | |
Total organic carbon (TOC) | Colorimetric method | ISO 14235 [39] |
C/N ratio | Expressed as ratio of (TOC/TKN) % | |
Mineral composition (Na2O, K2O, CaO, MgO, and P2O5) and heavy metals (Cu, Zn, Fe, and Mn) | Inductively coupled plasma atomic emission spectroscopy (ICP-AES) PERKIN ELMER 3300 RL | NF EN ISO 11885 [40] |
Parameters | C1 | C2 | C3 |
---|---|---|---|
TS (%) | 75.1 | 6.25 | 42.84 |
pH | 6 | 5.2 | 5 |
Temperature (°C) | 20.9 | 25 | 19 |
Organic carbon (%C·TS) | 75.1 | 14 | 42.84 |
Total Kjeldahl nitrogen (NTK) (%N·TS) | 2.5 | 0.56 | 1.02 |
C/N ratio | 30.04 | 25 | 42 |
Calcium (%Ca·TS) | 8.32 | 6.09 | 5.075 |
Potassium (%K·TS) | 0.565 | 0.165 | 0.232 |
Phosphorus (P) (%P·TS) | 0.211 | 0.312 | 0.132 |
Sodium (Na) (%Na·TS) | 0.125 | 0.201 | 0.95 |
Iron (mg·kg−1·TS) | 2.56 × 103 | 1.24 × 103 | 1.56 × 103 |
Manganese (mg·kg−1·TS) | 96 | 120 | 150.3 |
Parameters | C1 | C2 | C3 | NT 10.44 |
---|---|---|---|---|
Zinc (Zn) (mg·kg−1·TS) | 114 | 98.2 | 62 | 600 |
Copper (Cu) (mg·kg−1·TS) | 30 | 96 | 53.26 | 300 |
Lead (mg·kg−1·TS) | 52.7 | 32.7 | 32 | 180 |
Cadmium (mg·kg−1·TS) | 0.388 | 0.198 | 1.02 | 3 |
Nickel (mg·kg−1·TS) | 6.57 | 3.57 | 9.2 | 60 |
Arsenic (mg·kg−1·TS) | 4.63 | 2.63 | 3.12 | 18 |
Chromium (mg·kg−1·TS) | 17.5 | 20.3 | 12.9 | 120 |
Parameter | C1 | C2 | C3 | NFU 44-051 |
---|---|---|---|---|
Total coliforms | 2.3102 | 4.26102 | 9.121 | <102 g/TS |
Fecal coliforms | 92 | 105 | 5.31 | <102 g/TS |
E. Coli UFC/g | 36 | 45 | 1.021 | <102 g/TS |
Fecal spectrococci UFC/g | 1.1102 | 5.1302 | 1.0610 | <102 g/TS |
Salmonella | Absent | Absent | Absent | Absent |
Parameter | C1 | C2 | C3 | NT10.44 |
---|---|---|---|---|
K%TS | 0.648 | 0.103 | 0.213 | <102 g/TS |
P% TS | 0.184 | 0.295 | 0.103 | <102 g/TS |
Designation | Cost [TND] |
---|---|
Investment costs for civil engineering (net) Preparation and design Building and construction Outdoor installations | 988,000 TND |
Investment costs: material/equipment (net) Equipment: Backhoe loader Rotary drum screen Crusher Steel construction crusher Other equipment Conveyor belt Office equipment | 507,000 TND |
Operating and utility costs Personnel/year Utilities/year | 80 TND/T 23,400 TND 13,439 TND |
Parameter | Cost |
---|---|
Investment Costs | 1,495,000 |
Projected Revenue | 192,000 TND/Year |
Total Production Costs | 38,400 TND/Year |
ROI | 10% |
Payback Period | 9.7 years |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mathlouthi, O.; Trabelsi Ayadi, M.; Ghorbel Abid, I.; Nassour, A. Composting and Mechanical Biological Treatment for Reducing Greenhouse Gas Emissions in Bizerte, Tunisia. Sustainability 2024, 16, 694. https://doi.org/10.3390/su16020694
Mathlouthi O, Trabelsi Ayadi M, Ghorbel Abid I, Nassour A. Composting and Mechanical Biological Treatment for Reducing Greenhouse Gas Emissions in Bizerte, Tunisia. Sustainability. 2024; 16(2):694. https://doi.org/10.3390/su16020694
Chicago/Turabian StyleMathlouthi, Oumaima, Malika Trabelsi Ayadi, Ibtissem Ghorbel Abid, and Abdallah Nassour. 2024. "Composting and Mechanical Biological Treatment for Reducing Greenhouse Gas Emissions in Bizerte, Tunisia" Sustainability 16, no. 2: 694. https://doi.org/10.3390/su16020694
APA StyleMathlouthi, O., Trabelsi Ayadi, M., Ghorbel Abid, I., & Nassour, A. (2024). Composting and Mechanical Biological Treatment for Reducing Greenhouse Gas Emissions in Bizerte, Tunisia. Sustainability, 16(2), 694. https://doi.org/10.3390/su16020694