Effects of Combined Biochar and Chemical Fertilizer Application on Soil Fertility and Properties: A Two-Year Pot Experiment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Experimental Material
2.3. Experimental Design
2.4. Chemical Analyses for Soil and Plant
2.5. Statistical Analysis
3. Results
3.1. Effects of the Co-Application of Biochar and Chemical Fertilizer on Soil Properties
3.2. Effect of the Co-Application of Biochar and Chemical Fertilizer on Soil Fertility
3.3. Effect of the Co-Application of Biochar and Chemical Fertilizer on Chinese Cabbage Growth
3.4. Effect of the Co-Application of Biochar and Chemical Fertilizer on Chinese Cabbage Yield
3.5. Effect of the Co-Application of Biochar and Chemical Fertilizer on the Quality of Chinese Cabbage
4. Discussion
4.1. Effect of the Co-Application of Biochar and Chemical Fertilizer on Soil Properties
4.2. Effect of the Co-Application of Biochar and Chemical Fertilizer on Chinese Cabbage Growth
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jiang, Z.X.; Zheng, H.; Xing, B.S. Environmental life cycle assessment of wheat production using chemical fertilizer, manure compost, and biochar-amended manure compost strategies. Sci. Total Environ. 2021, 760, 143342. [Google Scholar] [CrossRef] [PubMed]
- Wheeler, T.; Von Braun, J. Climate change impacts on global food security. Science 2013, 341, 508–513. [Google Scholar] [CrossRef]
- Qi, Y.; Jiang, F.; Zhou, R.; Wu, Y.; Hou, X.; Li, J.; Lin, W.; Wu, Z. Effects of Reduced Nitrogen with Bio-Organic Fertilizer on Soil Properties, Yield and Quality of Non-Heading Chinese Cabbage. Agronomy 2021, 11, 2196. [Google Scholar] [CrossRef]
- Liang, X.; Wang, C.; Wang, H.; Qiu, X.; Ji, H.; Ju, H.; Wang, J. Synergistic effect on soil health from combined application of biogas slurry and biochar. Chemosphere 2023, 343, 140228. [Google Scholar] [CrossRef] [PubMed]
- Thakur, B.K.; Sharma, S.; Sharma, A.; Singh, K.K.; Pal, P.K. Integration of biochar with nitrogen in acidic soil: A strategy to sequester carbon and improve the yield of stevia via altering soil properties and nutrient recycling. J. Environ. Manag. 2023, 345, 118872. [Google Scholar] [CrossRef]
- Zhang, M.Y.; Muhammad, R.; Zhang, L.; Xia, H.; Cong, M.; Jiang, C.C. Investigating the effect of biochar and fertilizer on the composition and function of bacteria in red soil. Appl. Soil Ecol. 2019, 139, 107–116. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, J.; An, T.; Wei, D.; Chi, F.; Zhou, B. Effects of long-term fertilization on soil humic acid composition and structure in Black Soil. PLoS ONE 2017, 12, e0186918. [Google Scholar] [CrossRef]
- Huang, J.; Xu, C.C.; Ridoutt, B.G.; Wang, X.C.; Ren, P.A. Nitrogen and phosphorus losses and eutrophication potential associated with fertilizer application to cropland in China. J. Clean. Prod. 2017, 159, 171–179. [Google Scholar] [CrossRef]
- Zhou, T.; Chen, L.; Wang, W.; Xu, Y.; Zhang, W.; Zhang, H.; Liu, L.; Wang, Z.; Gu, J.; Yang, J. Effects of application of rapeseed cake as organic fertilizer on rice quality at high yield level. J. Sci. Food Agric. 2022, 102, 1832–1841. [Google Scholar] [CrossRef]
- Gao, Y.; Sun, Y.; Song, W.; Jia, Y.; Li, A.; Wang, S. Intrinsic properties of biochar for electron transfer. Chem. Eng. J. 2023, 475, 146356. [Google Scholar] [CrossRef]
- Zhou, J.S.; Tang, C.X.; Kuzyakov, Y.; Vancov, T.; Fang, Y.Y.; Song, X.Z.; Zhou, X.H.; Jiang, Z.H.; Ge, T.D.; Xu, L.; et al. Biochar-based urea increases soil methane uptake in a subtropical forest. Geoderma 2024, 449, 116994. [Google Scholar] [CrossRef]
- Zhang, D.X.; Jie, H.B.; Zhang, W.J.; Yuan, Q.S.; Ma, Z.H.; Wu, H.Z.; Rao, W.; Liu, S.L.; Wang, D.C. Combined biochar and water-retaining agent application increased soil water retention capacity and maize seedling drought resistance in Fluvisols. Sci. Total Environ. 2024, 907, 167885. [Google Scholar] [CrossRef]
- Zhang, J.H.; Bai, Z.G.; Huang, J.; Hussain, S.; Zhao, F.T.; Zhu, C.Q.; Zhu, L.F.; Cao, X.C.; Jin, Q.Y. Biochar alleviated the salt stress of induced saline paddy soil and improved the biochemical characteristics of rice seedlings differing in salt tolerance. Soil Till. Res. 2019, 195, 104372. [Google Scholar] [CrossRef]
- Alkharabsheh, H.M.; Seleiman, M.F.; Battaglia, M.L.; Shami, A.; Jalal, R.S.; Alhammad, B.A.; Almutairi, K.F.; Al-Saif, A.M. Biochar and its broad impacts in soil quality and fertility, nutrient leaching and crop productivity: A review. Agronomy 2021, 11, 993. [Google Scholar] [CrossRef]
- Major, J.; Rondon, M.; Molina, D.; Riha, S.J.; Lehmann, J. Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol. Plant. Soil 2010, 333, 117–128. [Google Scholar] [CrossRef]
- Munda, S.; Bhaduri, D.; Mohanty, S.; Chatterjee, D.; Tripathi, R.; Shahid, M.; Kumar, U.; Bhattacharyya, P.; Kumar, A.; Adak, T.; et al. Dynamics of soil organic carbon mineralization and C fractions in paddy soil on application of rice husk biochar. Biomass Bioenergy 2018, 115, e17835. [Google Scholar] [CrossRef]
- Yu, M.J.; Meng, J.; Yu, L.; Su, W.Q.; Afzal, M.; Li, Y.; Brookes, P.C.; Redmile-Gordon, M.; Luo, Y.; Xu, J.M. Changes in nitrogen related functional genes along soil pH, C and nutrient gradients in the charosphere. Sci. Total Environ. 2019, 650, 626–632. [Google Scholar] [CrossRef]
- Hossain, M.Z.; Bahar, M.M.; Sarkar, B.; Donne, S.W.; Ok, Y.S.; Palansooriya, K.N.; Kirkham, M.B.; Chowdhury, S.; Bolan, N. Biochar and its importance on nutrient dynamics in soil and plant. Biochar 2020, 2, 379–420. [Google Scholar] [CrossRef]
- He, L.L.; Zhong, Z.K.; Yang, H.M. Effects on soil quality of biochar and straw amendment in conjunction with chemical fertilizers. J. Integr. Agric. 2017, 3, 704–712. (In Chinese) [Google Scholar] [CrossRef]
- An, N.; Zhang, L.; Liu, Y.; Shen, S.; Li, N.; Wu, Z.; Yang, J.; Han, W.; Han, X. Biochar application with reduced chemical fertilizers improves soil pore structure and rice productivity. Chemosphere 2022, 298, 134304. [Google Scholar] [CrossRef]
- Yu, X.; Liu, Y.; Zhang, M.; Ai, S.; Wang, R.; Zhu, L.; Zhang, H.; Li, T.; Zhu, Y.; Tu, C.; et al. Coupled effects of reduced chemical fertilization and biochar supplementation on availability and transformations of nitrogen and phosphorus in vegetable farmland soil: An in situ study in southern China. Agriculture 2021, 11, 979. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, Y.; Wei, Q.; Liu, L.; Gu, X.; Gou, J.; Wang, M. Chemical fertilizer reduction combined with biochar application ameliorates the biological property and fertilizer utilization of pod pepper. Agronomy 2023, 13, 1616. [Google Scholar] [CrossRef]
- Parker, N.; Agyare, W.A.; Bessah, E.; Amegbletor, L. Biochar as a substitute for inorganic fertilizer: Effects on soil chemical properties and maize growth in Ghana. J. Plant Nutr. 2021, 44, 1539–1547. [Google Scholar] [CrossRef]
- Shi, W.; Bian, R.; Li, L.; Lian, W.; Liu, X.; Zheng, J.; Cheng, K.; Zhang, X.; Drosos, M.; Joseph, S.; et al. Assessing the impacts of biochar-blended urea on nitrogen use efficiency and soil retention in wheat production. GCB Bioenergy 2022, 14, 65–83. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Zhang, C.Z.; Liu, X.J.; Hong, X.Y. Dynamics of pesticide residues in the autumn Chinese cabbage (Brassica chinensis L.) grown in open fields. Pest Manag. Sci. 2006, 62, 350–355. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, D.; Wu, R.; Xu, Z.; Zhu, X.; Cai, Y.; Chen, R.; Zhu, C.; Barceló, D.; Zhang, H. Efficient degradation of Bisphenol A by Fe3+/Fe2+ cycle activating persulfate with the assistance of biochar-supported MoO2. Chem. Eng. J. 2023, 455, 140381. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, S.; Yan, X.; Gao, S.; Man, T.; Yang, Z.; Ren, L.; Wang, P. Preparation of liquid bacteria fertilizer with phosphate-solubilizing bacteria cultured by food wastewater and the promotion on the soil fertility and plants biomass. J. Clean. Prod. 2022, 370, 133328. [Google Scholar] [CrossRef]
- Jiang, Y.; Nie, W.J. Chemical properties in fruits of mulberry species from the Xinjiang province of China. Food Chem. 2015, 174, 460–466. [Google Scholar] [CrossRef] [PubMed]
- Buysse, J.; Merckx, R. An improved colorimetric method to quantify sugar content of plant tissue. J. Exp. Bot. 1993, 44, 1627–1629. [Google Scholar] [CrossRef]
- Ouyang, Z.; Tian, J.; Yan, X.; Shen, H. Effects of different concentrations of dissolved oxygen or temperatures on the growth, photosynthesis, yield and quality of lettuce. Agric. Water Manag. 2020, 228, 105896. [Google Scholar] [CrossRef]
- Shen, W.; Lin, X.; Gao, N.; Zhang, H.; Yin, R.; Shi, W.; Duan, Z. Land use intensification affects soil microbial populations, functional diversity and related suppressiveness of cucumber Fusarium wilt in China’s Yangtze River Delta. Plant. Soil 2008, 306, 117–127. [Google Scholar] [CrossRef]
- Wang, Q.; Ren, Y.; Meng, L.; Li, H.; Fu, H.; Wang, H. Simultaneous determination of total nitrogen and organic carbon in soil with an elemental analyzer. Chin. J. Anal. Lab. 2013, 32, 41–45. (In Chinese) [Google Scholar] [CrossRef]
- Tao, R.; Wakelin, S.A.; Liang, Y.; Chu, G. Response of ammonia-oxidizing archaea and bacteria in calcareous soil to mineral and organic fertilizer application and their relative contribution to nitrification. Soil Biol. Biochem. 2017, 114, 20–30. [Google Scholar] [CrossRef]
- Qiao, J.B.; Zhu, Y.J.; Jia, X.X.; Huang, L.M.; Shao, M.A. Vertical distribution of soil total nitrogen and soil total phosphorus in the critical zone on the Loess Plateau, China. Catena 2018, 166, 310–316. [Google Scholar] [CrossRef]
- Almeida, T.F.; Carvalho, J.K.; Reid, E.; Martins, A.P.; Bissani, C.A.; Bortoluzzi, E.C.; Brunetto, G.; Anghinoni, I.; Carvalho, P.C.D.; Tiecher, T. Forms and balance of soil potassium from a long-term integrated crop-livestock system in a subtropical Oxisol. Soil Tillage. Res. 2021, 207, 104864. [Google Scholar] [CrossRef]
- Rayment, G.E.; Lyons, D.J. New, Comprehensive Soil Chemical Methods Book for Australasia; Taylor & Francis: Abingdon, UK, 2012; pp. 412–418. [Google Scholar] [CrossRef]
- Bao, S.D. Analysis Method of Soil and Agricultural Chemistry; China Agricultural Press: Beijing, China, 2000; pp. 25–108. [Google Scholar]
- Abedin, J. Enhancing Soils of Labrador through Application of Biochar, Fishmeal, and Chemical Fertilizer. Agron. J. 2018, 110, 2576–2586. [Google Scholar] [CrossRef]
- Xie, W.Y.; Yuan, S.T.; Xu, M.G.; Yang, X.P.; Shen, Q.R.; Zhang, W.W.; Su, J.Q.; Zhao, F.J. Long-term effects of manure and chemical fertilizers on soil antibiotic resistome. Soil Biol. Biochem. 2018, 122, 111–119. [Google Scholar] [CrossRef]
- Jin, X.; Cai, J.; Yang, S.; Li, S.; Shao, X.; Fu, C.; Li, C.; Deng, Y.; Huang, J.; Ruan, Y. Partial substitution of chemical fertilizer with organic fertilizer and slow-release fertilizer benefits soil microbial diversity and pineapple fruit yield in the tropics. Appl. Soil Ecol. 2023, 189, 104974. [Google Scholar] [CrossRef]
- Meena, H.M.; Sharma, R.; Sankhyan, N.; Sepehya, S. Effect of continuous application of fertilizers, farmyard manure and lime on soil fertility and productivity of the maize-wheat system in an acid alfisol. Commun. Soil Sci. Plant Anal. 2017, 48, 1552–1563. [Google Scholar] [CrossRef]
- Chintala, R.; Schumacher, T.E.; Kumar, S.; Malo, D.D.; Rice, J.A.; Bleakley, B.; Chilom, G.; Clay, D.E.; Julson, J.L.; Papiernik, S.K.; et al. Molecular characterization of biochars and their influence on microbiological properties of soil. J. Hazard. Mater. 2014, 279, 244–256. [Google Scholar] [CrossRef]
- Xie, Y.; Wang, H.; Chen, Y.; Guo, Y.; Wang, C.; Cui, H.; Xue, J. Water retention and hydraulic properties of a natural soil subjected to microplastic contaminations and leachate exposures. Sci. Total Environ. 2023, 901, 166502. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.; Xie, D.; Ni, J.; Chen, F.; Ni, C.; Shao, J.; Zhu, D.; Wang, S.; Lei, P.; Zhao, G. Characteristics and influencing factors of chemical fertilizer and pesticide applications by farmers in hilly and mountainous areas of Southwest, China. Ecol. Indic. 2022, 143, 109346. [Google Scholar] [CrossRef]
- Chen, M.; Ran, H.; Sommer, S.G.; Liu, Y.; Wang, G.; Zhu, K. The spatiotemporal heterogeneity of fertosphere hotspots impacted by biochar addition and the implications for NH3 and N2O emissions. Chemosphere 2024, 355, 141769. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Li, X.; Ren, Y. Analysis of the simultaneous adsorption mechanism of ammonium and phosphate on magnesium-modified biochar and the slow release effect of fertiliser. Biochar 2022, 4, 25. [Google Scholar] [CrossRef]
- Ni, P.; Wang, S.; Liu, B.; Sun, H. Effects of Organic Manure and Biochar-Based Fertilizer Application on Soil Water and Salt Transport in Brackish Water Irrigated Soil Profile. J. Soil Sci. Plant Nutr. 2023, 23, 3120–3136. [Google Scholar] [CrossRef]
- Gwenzi, W.; Nyambishi, T.; Chaukura, N.; Mapope, N. Synthesis and nutrient release patterns of a biochar-based N–P–K slow-release fertilizer. Int. J. Environ. Sci. Technol. 2018, 15, 405–414. [Google Scholar] [CrossRef]
- Zhang, S.; Li, Y.; Singh, B.P.; Wang, H.; Cai, X.; Chen, J.; Qin, H.; Li, Y.; Chang, S.X. Contrasting short-term responses of soil heterotrophic and autotrophic respiration to biochar-based and chemical fertilizers in a subtropical Moso bamboo plantation. Appl. Soil Ecol. 2021, 157, 103758. [Google Scholar] [CrossRef]
- Zhao, X.; Elcin, E.; He, L.; Vithanage, M.; Zhang, X.; Wang, J.; Wang, S.; Deng, Y.; Niazi, N.K.; Shaheen, S.M. Using biochar for the treatment of continuous cropping obstacle of herbal remedies: A review. Appl. Soil Ecol. 2023, 198, 105127. [Google Scholar] [CrossRef]
- Zhao, Y.; Lin, S.; Liu, Y.; Li, G.; Wang, J.; Butterbach-Bahl, K. Application of mixed straw and biochar meets plant demand of carbon dioxide and increases soil carbon storage in sunken solar greenhouse vegetable production. Soil Use Manag. 2020, 36, 439–448. [Google Scholar] [CrossRef]
- Ali, A.; Guo, D.; Jeyasundar, P.G.S.A.; Li, Y.; Xiao, R.; Du, J.; Li, R.; Zhang, Z. Application of wood biochar in polluted soils stabilized the toxic metals and enhanced wheat (Triticum aestivum) growth and soil enzymatic activity. Ecotox. Environ. Saf. 2019, 184, 109635. [Google Scholar] [CrossRef]
- Zhang, H.; Qian, W.; Wu, L.; Yu, S.; Wei, R.; Chen, W.; Ni, J. Spectral characteristics of dissolved organic carbon (DOC) derived from biomass pyrolysis: Biochar-derived DOC versus smoke-derived DOC, and their differences from natural DOC. Chemosphere 2022, 302, 134869. [Google Scholar] [CrossRef] [PubMed]
- El-Shinawy, M.; Abd-Elmoniem, E.; Abou-Hadid, A. The use of organic manure for lettuce plants grown under NFT conditions. In Proceedings of the International Symposium Greenhouse Management for Better Yield & Quality in Mild Winter Climates, Antalya, Turkey, 3–5 November 1997; pp. 315–318. [Google Scholar]
- Citak, S.; Sonmez, S. Influence of Organic and Conventional Growing Conditions on the Nutrient Contents of White Head Cabbage (Brassica oleracea var. capitata) during Two Successive Seasons. J. Agric. Food Chem. 2010, 58, 1788–1793. [Google Scholar] [CrossRef]
- Ding, Y.; Liu, Y.G.; Liu, S.B.; Li, Z.W.; Tan, X.F.; Huang, X.X.; Zeng, G.M.; Zhou, L.; Zheng, B.H. Biochar to improve soil fertility. A review. Agron. Sustain. Dev. 2016, 36, 36. [Google Scholar] [CrossRef]
- Li, H.; Yang, L.; Mao, Q.; Zhou, H.; Guo, P.; Agathokleous, E.; Wang, S. Modified biochar enhances soil fertility and nutrient uptake and yield of rice in mercury-contaminated soil. Environ. Technol. 2023, 32, 103435. [Google Scholar] [CrossRef]
- Preza Fontes, G.; Greer, K.D.; Pittelkow, C.M. Does biochar improve nitrogen use efficiency in maize? GCB. Bioenergy 2024, 16, e13122. [Google Scholar] [CrossRef]
- He, L.; Shan, J.; Zhao, X.; Wang, S.; Yan, X. Variable responses of nitrification and denitrification in a paddy soil to long-term biochar amendment and short-term biochar addition. Chemosphere 2019, 234, 558–567. [Google Scholar] [CrossRef]
- Li, H.; Meng, J.; Liu, Z.; Lan, Y.; Yang, X.; Huang, Y.; He, T.; Chen, W. Effects of biochar on N2O emission in denitrification pathway from paddy soil: A drying incubation study. Sci. Total Environ. 2021, 787, 147591. [Google Scholar] [CrossRef]
- Yin, Y.; Gu, M.; Zhang, W.; Yang, C.; Li, H.; Wang, X.; Chen, R. Relationships between different types of biochar and N2O emissions during composting based on roles of nosZ-carrying denitrifying bacterial communities enriched on compost and biochar particles. Bioresour. Technol. 2024, 394, 130214. [Google Scholar] [CrossRef]
- Yang, L.; Wu, Y.; Wang, Y.; An, W.; Jin, J.; Sun, K.; Wang, X. Effects of biochar addition on the abundance, speciation, availability, and leaching loss of soil phosphorus. Sci. Total Environ. 2021, 758, 143657. [Google Scholar] [CrossRef]
- Laird, D.; Fleming, P.; Wang, B.; Horton, R.; Karlen, D. Biochar impact on nutrient leaching from a Midwestern agricultural soil. Geoderma 2010, 158, 436–442. [Google Scholar] [CrossRef]
- Trazzi, P.; Leahy, J.J.; Hayes, M.H.; Kwapinski, W. Adsorption and desorption of phosphate on biochars. J. Environ. 2016, 4, 37–46. [Google Scholar] [CrossRef]
- Zhao, L.; Xu, W.; Guan, H.; Wang, K.; Xiang, P.; Wei, F.; Yang, S.; Miao, C.; Ma, L.Q. Biochar increases Panax notoginseng’s survival under continuous cropping by improving soil properties and microbial diversity. Sci. Total Environ. 2022, 850, 157990. [Google Scholar] [CrossRef] [PubMed]
- Yuan, M.; Zhu, X.; Sun, H.; Song, J.; Li, C.; Shen, Y.; Li, S. The addition of biochar and nitrogen alters the microbial community and their cooccurrence network by affecting soil properties. Chemosphere 2023, 312, 137101. [Google Scholar] [CrossRef] [PubMed]
- Gu, W.; Wang, Y.; Feng, Z.; Wu, D.; Zhang, H.; Yuan, H.; Sun, Y.; Xiu, L.; Chen, W.; Zhang, W. Long-Term Effects of Biochar Application with Reduced Chemical Fertilizer on Paddy Soil Properties and japonica Rice Production System. Front. Environ. Sci. 2022, 10, 902752. [Google Scholar] [CrossRef]
- Chathurika, J.A.S.; Kumaragamage, D.; Zvomuya, F.; Akinremi, O.O.; Flaten, D.N.; Indraratne, S.P.; Dandeniya, W.S. Woodchip biochar with or without synthetic fertilizers affects soil properties and available phosphorus in two alkaline, chernozemic soils. Can. J. Soil Sci. 2016, 96, 472–484. [Google Scholar] [CrossRef]
- Rasul, M.; Cho, J.; Shin, H.S.; Hur, J. Biochar-induced priming effects in soil via modifying the status of soil organic matter and microflora: A review. Sci. Total Environ. 2022, 805, 150304. [Google Scholar] [CrossRef]
- Li, W.; Wang, C. Progress in mechanisms of plant tolerance to ammonium toxicity. J. Huazhong Agric. Univ. 2022, 41, 152–159. (In Chinese) [Google Scholar] [CrossRef]
- Ji, S.; Liu, Z.; Liu, B.; Wang, Y.; Wang, J. The effect of Trichoderma biofertilizer on the quality of flowering Chinese cabbage and the soil environment. Sci. Hortic. 2020, 262, 109069. [Google Scholar] [CrossRef]
- Qu, Z.M.; Qi, X.C.; Wang, J.; Chen, Q.; Li, C.I. Effects of nitrogen application rate and topdressing times on yield and quality of Chinese cabbage and soil nitrogen dynamics. Environ. Pollut. Bioavailability 2019, 31, 1–8. [Google Scholar] [CrossRef]
- Ding, S.S.; LI, Y.T.; Yuan, L.; Zhao, B.Q.; Lin, Z.A.; Yang, X.D.; LI, J.; Zhang, J.J. Effects of sugar alcohols and amino acids on growth, quality and calcium nutrition of Chinese cabbage. J. Plant Nutr. 2016, 22, 744–751. (In Chinese) [Google Scholar] [CrossRef]
- Fontecilla-Camps, J.C. Primordial bioenergy sources: The two facets of adenosine triphosphate. J. Inorg. Biochem. 2021, 216, 111347. [Google Scholar] [CrossRef]
- Malhotra, H.; Vandana; Sharma, S.; Pandey, R. Phosphorus Nutrition: Plant Growth in Response to Deficiency and Excess. In Plant Nutrients and Abiotic Stress Tolerance, 2nd ed.; Mirza, H., Hirosuke, O., Eds.; Springer Nature Singapore Pte Ltd.: Singapore, 2018; pp. 171–190. [Google Scholar] [CrossRef]
- Tariq, A.; Zeng, F.; Graciano, C.; Ullah, A.; Sadia, S.; Ahmed, Z.; Murtaza, G.; Ismoilov, K.; Zhang, Z. Regulation of metabolites by nutrients in plants. In Plant Ionomics: Sensing, Signaling, and Regulation; Singh, V.P., Siddiqui, M.H., Eds.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2023; pp. 1–18. [Google Scholar] [CrossRef]
- Bian, R.; Joseph, S.; Shi, W.; Li, L.; Taherymoosavi, S.; Pan, G. Biochar DOM for plant promotion but not residual biochar for metal immobilization depended on pyrolysis temperature. Sci. Total Environ. 2019, 662, 571–580. [Google Scholar] [CrossRef] [PubMed]
- Zeeshan, M.; Ahmad, W.; Hussain, F.; Ahamd, W.; Numan, M.; Shah, M.; Ahmad, I. Phytostabalization of the heavy metals in the soil with biochar applications, the impact on chlorophyll, carotene, soil fertility and tomato crop yield. J. Clean. Prod. 2020, 255, 120318. [Google Scholar] [CrossRef]
- Khajavi-Shojaei, S.; Moezzi, A.; Norouzi Masir, M.; Taghavi, M. Synthesis modified biochar-based slow-release nitrogen fertilizer increases nitrogen use efficiency and corn (Zea mays L.) growth. Biomass Conv. Biorefinery 2023, 13, 593–601. [Google Scholar] [CrossRef]
- Lou, Y.; Joseph, S.; Li, L.; Graber, E.R.; Liu, X.; Pan, G. Water extract from straw biochar used for plant growth promotion: An initial test. BioResources 2016, 11, 249–266. [Google Scholar] [CrossRef]
pH | DOC (mg·kg−1) | Total N (mg·kg−1) | Total P (mg·kg−1) | Total K (g·kg−1) | Available K (mg·kg−1) | Available P (mg·kg−1) | Ammonium N (mg·kg−1) | Nitrate N (mg·kg−1) |
---|---|---|---|---|---|---|---|---|
6.82 | 4.1 | 171.27 | 610.67 | 11.24 | 67.73 | 17.16 | 3.79 | 2.6 |
Treatments | First Year | Second Year | ||||||
---|---|---|---|---|---|---|---|---|
29 d | 36 d | 43 d | 50 d | 29 d | 36 d | 43 d | 50 d | |
CK1 | 5.75 ± 0.50 a | 6.25 ± 0.66 b | 6.33 ± 0.14 c | 6.00 ± 1.15 c | 3.13 ± 0.31 b | 4.00 ± 0.23 c | 4.89 ± 0.23 g | 5.13 ± 0.00 c |
CF1 | 5.42 ± 0.14 a | 6.42 ± 0.29 ab | 7.25 ± 0.25 bc | 7.08 ± 1.61 c | 3.52 ± 0.42 b | 4.20 ± 0.40 c | 5.12 ± 0.40 f | 6.23 ± 0.50 bc |
BCF1 | 5.75 ± 0.25 a | 6.67 ± 0.14 ab | 7.67 ± 0.38 ab | 9.83 ± 1.42 b | 4.73 ± 0.31 a | 5.87 ± 0.42 ab | 6.87 ± 0.42 e | 8.55 ± 0.5 b |
BCF2 | 5.83 ± 0.14 a | 6.50 ± 0.00 ab | 7.50 ± 0.00 ab | 9.25 ± 0.43 b | 4.67 ± 0.31 a | 6.20 ± 0.00 a | 8.13 ± 0.12 c | 8.01 ± 0.00 b |
BCF3 | 5.33 ± 0.38 a | 6.42 ± 0.38 ab | 7.17 ± 0.88 bc | 9.17 ± 0.88 b | 4.47 ± 0.42 a | 5.77 ± 0.31 b | 7.53 ± 0.50 d | 7.90 ± 0.31 b |
BCF4 | 6.00 ± 0.43 a | 7.00 ± 0.00 ab | 8.50 ± 0.25 a | 11.5 ± 0.25 a | 5.00 ± 0.20 a | 6.20 ± 0.20 a | 8.67 ± 0.31 b | 10.00 ± 0.20 a |
BCF5 | 6.17 ± 0.63 a | 7.25 ± 0.66 a | 8.17 ± 0.88 ab | 11.08 ± 1.01 a | 4.67 ± 0.64 a | 6.00 ± 0.00 a | 8.60 ± 0.20 b | 9.60 ± 0.40 ab |
BCF6 | 5.75 ± 0.66 a | 6.75 ± 0.66 ab | 7.83 ± 0.63 ab | 11.25 ± 1.32 a | 5.13 ± 0.31 a | 6.33 ± 0.58 a | 9.20 ± 0.40 a | 9.87 ± 0.81 ab |
Treatments | First Year | Second Year | ||||||
---|---|---|---|---|---|---|---|---|
29 d | 36 d | 43 d | 50 d | 29 d | 36 d | 43 d | 50 d | |
CK1 | 5.75 ± 0.50 a | 6.25 ± 0.66 b | 6.33 ± 0.14 c | 6.00 ± 1.15 c | 3.13 ± 0.31 b | 4.00 ± 0.23 c | 4.89 ± 0.23 g | 5.13 ± 0.00 c |
CF1 | 5.42 ± 0.14 a | 6.42 ± 0.29 ab | 7.25 ± 0.25 bc | 7.08 ± 1.61 c | 3.52 ± 0.42 b | 4.20 ± 0.40 c | 5.12 ± 0.40 f | 6.23 ± 0.50 bc |
BCF1 | 5.75 ± 0.25 a | 6.67 ± 0.14 ab | 7.67 ± 0.38 ab | 9.83 ± 1.42 b | 4.73 ± 0.31 a | 5.87 ± 0.42 ab | 6.87 ± 0.42 e | 8.55 ± 0.5 b |
BCF2 | 5.83 ± 0.14 a | 6.50 ± 0.00 ab | 7.50 ± 0.00 ab | 9.25 ± 0.43 b | 4.67 ± 0.31 a | 6.20 ± 0.00 a | 8.13 ± 0.12 c | 8.01 ± 0.00 b |
BCF3 | 5.33 ± 0.38 a | 6.42 ± 0.38 ab | 7.17 ± 0.88 bc | 9.17 ± 0.88 b | 4.47 ± 0.42 a | 5.77 ± 0.31 b | 7.53 ± 0.50 d | 7.90 ± 0.31 b |
BCF4 | 6.00 ± 0.43 a | 7.00 ± 0.00 ab | 8.50 ± 0.25 a | 11.5 ± 0.25 a | 5.00 ± 0.20 a | 6.20 ± 0.20 a | 8.67 ± 0.31 b | 10.00 ± 0.20 a |
BCF5 | 6.17 ± 0.63 a | 7.25 ± 0.66 a | 8.17 ± 0.88 ab | 11.08 ± 1.01 a | 4.67 ± 0.64 a | 6.00 ± 0.00 a | 8.60 ± 0.20 b | 9.60 ± 0.40 ab |
BCF6 | 5.75 ± 0.66 a | 6.75 ± 0.66 ab | 7.83 ± 0.63 ab | 11.25 ± 1.32 a | 5.13 ± 0.31 a | 6.33 ± 0.58 a | 9.20 ± 0.40 a | 9.87 ± 0.81 ab |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, X.; He, L.; Geng, K.; Zhang, H.; Wang, J.; Gan, T.; Mao, X.; Zhang, X. Effects of Combined Biochar and Chemical Fertilizer Application on Soil Fertility and Properties: A Two-Year Pot Experiment. Sustainability 2024, 16, 8780. https://doi.org/10.3390/su16208780
Zhao X, He L, Geng K, Zhang H, Wang J, Gan T, Mao X, Zhang X. Effects of Combined Biochar and Chemical Fertilizer Application on Soil Fertility and Properties: A Two-Year Pot Experiment. Sustainability. 2024; 16(20):8780. https://doi.org/10.3390/su16208780
Chicago/Turabian StyleZhao, Xinyu, Lizhi He, Kun Geng, Haiyan Zhang, Jie Wang, Tao Gan, Xiali Mao, and Xiaokai Zhang. 2024. "Effects of Combined Biochar and Chemical Fertilizer Application on Soil Fertility and Properties: A Two-Year Pot Experiment" Sustainability 16, no. 20: 8780. https://doi.org/10.3390/su16208780
APA StyleZhao, X., He, L., Geng, K., Zhang, H., Wang, J., Gan, T., Mao, X., & Zhang, X. (2024). Effects of Combined Biochar and Chemical Fertilizer Application on Soil Fertility and Properties: A Two-Year Pot Experiment. Sustainability, 16(20), 8780. https://doi.org/10.3390/su16208780