Safe-and-Sustainable-by-Design Framework: (Re-)Designing the Advanced Materials Lifecycle
Abstract
:1. Introduction
2. Advanced Materials
3. Safe-and-Sustainable-by-Design
3.1. SSbD Background
3.2. SSbD vs. Current Practices
4. SSbD in Advanced Materials Ecosystem
4.1. SSbD (Re-)Design Phase: Principles, Actions, and Indicators
- What is the material under assessment (e.g., name, composition, numerical identifiers, molecular structure, properties)?
- 2.
- What is the final product or application associated with the material (e.g., product function, description, sector, value chain)?
- 3.
- What are the processes involving the material along the value chain of the product (e.g., is the material an intermediate, component, part of the final product) and what is the relation with possible exposure routes for people and the environment along its entire value chain?
- 4.
- What stakeholder groups are involved along the value chain of the material (e.g., direct contact during manufacture, upstream/downstream suppliers, users, indirectly affected actors)?
- 5.
- What conventional materials are substituted by the new material under assessment (same functionality for same product and use case) and how are sustainability and safety aspects expected to be affected by the substitution along the lifecycle?
- 6.
- What is the geographic range along the material’s life cycle (e.g., country/region of sourcing raw materials, production, use, EoL treatment)?
- 7.
- Which Sustainable Development Goals (SDGs) are expected to be affected along the lifecycle of the material?
- 8.
- What are the relevant regulatory frameworks, standards, and voluntary certification schemes or standards for the material and for other chemicals, resources, products, and processes along its value chain?
- 9.
- What are previously identified safety and sustainability impact hotspots for this material/sector/similar materials (in terms of production, composition, functionality)?
4.2. Value Chain, Logistics, and Stakeholders
4.3. SSbD and Advanced Materials and Challenges
5. Concluding Remarks and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Subramoney, S. Novel Nanocarbons—Structure, Properties, and Potential Applications. Adv. Mater. 1998, 10, 1157–1171. [Google Scholar] [CrossRef]
- Amooghin, A.E.; Mashhadikhan, S.; Sanaeepur, H.; Moghadassi, A.; Matsuura, T.; Ramakrishna, S. Substantial Breakthroughs on Function-Led Design of Advanced Materials Used in Mixed Matrix Membranes (MMMs): A New Horizon for Efficient CO2 Separation. Prog. Mater. Sci. 2019, 102, 222–295. [Google Scholar] [CrossRef]
- Suryanarayana, C. Mechanical Alloying and Milling. Prog. Mater. Sci. 2001, 46, 1–184. [Google Scholar] [CrossRef]
- Lakhdar, Y.; Tuck, C.; Binner, J.; Terry, A.; Goodridge, R. Additive Manufacturing of Advanced Ceramic Materials. Prog. Mater. Sci. 2020, 116, 100736. [Google Scholar] [CrossRef]
- Levchenko, I.; Bazaka, K.; Belmonte, T.; Keidar, M.; Xu, S. Advanced Materials for Next-Generation Spacecraft. Adv. Mater. 2018, 30, 1802201. [Google Scholar] [CrossRef]
- Directorate-General for Research and Innovation (European Commission). Communication on Advanced Materials for Industrial Leadership; Publications Office of the European Union: Luxembourg, 2024. [Google Scholar]
- Shamoon, A.; Haleem, A.; Bahl, S.; Javaid, M.; Prakash, C.; Budhhi, D. Understanding the Role of Advanced Materials for Energy Infrastructure and Transmission. Mater. Today Proc. 2022, 62, 4260–4266. [Google Scholar] [CrossRef]
- Yang, H.; Yang, L.; Yang, Z.; Shan, Y.; Gu, H.; Ma, J.; Zeng, X.; Tian, T.; Ma, S.; Wu, Z. Ultrasonic Detection Methods for Mechanical Characterization and Damage Diagnosis of Advanced Composite Materials: A Review. Compos. Struct. 2023, 324, 117554. [Google Scholar] [CrossRef]
- Precedence Research Advanced Materials Market Size to Hit USD 112.7 Bn By 2032. Available online: https://www.precedenceresearch.com/advanced-materials-market (accessed on 10 September 2024).
- European Commission. Communication from the Commission to the European Parliament, The Council, The European Economic and Social Committee and the Committee of the Regions Pathway to a Healthy Planet for All EU Action Plan: “Towards Zero Pollution for Air, Water and Soil”. 2021. Document 52021DC0400. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52021DC0400 (accessed on 18 October 2024).
- Ye, C.; Xu, S.; Li, H.; Shan, J.; Qiao, S. Developing Cathode Films for Practical All-Solid-State Lithium-Sulfur Batteries—Ye—Advanced Materials. Adv. Mater. 2024, 2407738. [Google Scholar] [CrossRef]
- Precedence Research Software Market Size to Reach USD 2248.33 Billion By 2034. Available online: https://www.precedenceresearch.com/software-market (accessed on 18 October 2024).
- European Commission. Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions. 2019. Document 52019DC0640. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM%3A2019%3A640%3AFIN (accessed on 21 October 2024).
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions Strategy for Financing the Transition to a Sustainable Economy. 2021. Document 52021DC0390. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52021DC0390 (accessed on 21 October 2024).
- ECHA Chemicals Strategy for Sustainability—ECHA. Available online: https://echa.europa.eu/hot-topics/chemicals-strategy-for-sustainability (accessed on 21 October 2024).
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions a New Circular Economy Action Plan “For a Cleaner and More Competitive Europe”. 2020. Document 52020DC0098. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM%3A2020%3A98%3AFIN (accessed on 21 October 2024).
- European Commission: Directorate-General for Research and Innovation; Müller, J.; Potters, L. Future Technology for Prosperity—Horizon Scanning by Europe’s Technology Leaders. Publications Office, 2019. Available online: https://op.europa.eu/en/publication-detail/-/publication/ae785b63-dba9-11e9-9c4e-01aa75ed71a1 (accessed on 21 October 2024).
- Uchino, K. Advanced Piezoelectric Materials: Science and Technology. 2010. Available online: https://www.researchgate.net/publication/292296409_Advanced_piezoelectric_materials_Science_and_technology (accessed on 21 October 2024).
- Xia, G.; Fang, J.; Shou, D.; Wang, X. Phase Structure Deciphering for Pure Polymers with a Giant Piezoelectric Response. Prog. Mater. Sci. 2024, 146, 101340. [Google Scholar] [CrossRef]
- European Commission. Joint Research Centre. Safe and Sustainable by Design Chemicals and Materials: Framework for the Definition of Criteria and Evaluation Procedure for Chemicals and Materials; Publications Office of the European Union: Luxembourg, 2022. [Google Scholar]
- Mech, A.; Gottardo, S.; Amenta, V.; Amodio, A.; Belz, S.; Bøwadt, S.; Drbohlavová, J.; Farcal, L.; Jantunen, P.; Małyska, A.; et al. Safe- and Sustainable-by-Design: The Case of Smart Nanomaterials. A Perspective Based on a European Workshop. Regul. Toxicol. Pharmacol. 2022, 128, 105093. [Google Scholar] [CrossRef]
- Hristozov, D.; Zabeo, A.; Soeteman-Hernández, L.G.; Pizzol, L.; Stoycheva, S. Safe-and-Sustainable-by-Design Chemicals and Advanced Materials: A Paradigm Shift towards Prevention-Based Risk Governance Is Needed. RSC Sustain. 2023, 1, 838–846. [Google Scholar] [CrossRef]
- Monikh, F.A.; Peijnenburg, W.; Oomen, A.G.; Valsami-Jones, E.; Stone, V.; Kortet, R.; Akkanen, J.; Zhang, P.; Kekäläinen, J.; Sevcu, A.; et al. “Advanced Materials” and the Challenges on the Horizon for Testing Their (Eco)Toxicity and Assessing Their Hazard. Environ. Sci. Adv. 2023, 2, 162–170. [Google Scholar] [CrossRef]
- Timothy, M.; Benjamin, D.T. Igor Linkov Risk-Based and Prevention-Based Governance for Emerging Materials. Environ. Sci. Technol. 2016, 50, 6822–6824. [Google Scholar] [CrossRef]
- OECD. Advanced Materials: Working Description; OECD Series on the Safety of Manufactured Nanomaterials and other Advanced Materials; OECD Publishing: Paris, France, 2023. [Google Scholar] [CrossRef]
- Stoll, J. Advanced Materials—3rd Thematic Conference. Available online: https://www.umweltbundesamt.de/en/service/dates/advanced-materials-3rd-thematic-conference (accessed on 20 November 2024).
- Ali, A.; Mitra, A.; Aïssa, B. Metamaterials and Metasurfaces: A Review from the Perspectives of Materials, Mechanisms and Advanced Metadevices. Nanomaterials 2022, 12, 1027. [Google Scholar] [CrossRef] [PubMed]
- Gidiagba, J.O.; Daraojimba, C.; Ofonagoro, K.A.; Eyo-Udo, N.L.; Egbokhaebho, B.A.; Ogunjobi, O.A.; Banso, A.A. ECONOMIC IMPACTS AND INNOVATIONS IN MATERIALS SCIENCE: A HOLISTIC EXPLORATION OF NANOTECHNOLOGY AND ADVANCED MATERIALS. Eng. Sci. Technol. J. 2023, 4, 84–100. [Google Scholar] [CrossRef]
- Oberdörster, G.; Oberdörster, E.; Oberdörster, J. Nanotoxicology: An Emerging Discipline Evolving from Studies of Ultrafine Particles. Env. Health Perspect. 2005, 113, 823–839. [Google Scholar] [CrossRef]
- Hodson, L.; Methner, M.; Zumwalde, R.D. Approaches to Safe Nanotechnology: Managing the Health and Safety Concerns Associated with Engineered Nanomaterials. 2009. Available online: https://stacks.cdc.gov/view/cdc/5325 (accessed on 20 November 2024).
- Amenta, V.; Aschberger, K. Carbon Nanotubes: Potential Medical Applications and Safety Concerns. WIRE’s Nanomed. Nanobiotechnology 2014, 7, 371–386. [Google Scholar] [CrossRef]
- Glisovic, S.; Pesic, D.; Stojiljkovic, E.; Golubovic, T.; Krstic, D.; Prascevic, M.; Jankovic, Z. Emerging Technologies and Safety Concerns: A Condensed Review of Environmental Life Cycle Risks in the Nano-World. Int. J. Environ. Sci. Technol. 2017, 14, 2301–2320. [Google Scholar] [CrossRef]
- Berkner, S.; Schwirn, K.; Voelker, D. Nanopharmaceuticals: Tiny Challenges for the Environmental Risk Assessment of Pharmaceuticals. Environ. Toxicol. Chem. 2016, 35, 780–787. [Google Scholar] [CrossRef]
- Wu, F.; Zhou, Z.; Temizel-Sekeryan, S.; Ghamkhar, R.; Hicks, A.L. Assessing the Environmental Impact and Payback of Carbon Nanotube Supported CO2 Capture Technologies Using LCA Methodology. J. Clean. Prod. 2020, 270, 122465. [Google Scholar] [CrossRef]
- Schwirn, K.; Voelker, D.; Galert, W.; Quik, J.; Tietjen, L. Environmental Risk Assessment of Nanomaterials in the Light of New Obligations Under the REACH Regulation: Which Challenges Remain and How to Approach Them? Integr. Environ. Assess. Manag. 2020, 16, 706–717. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, M.D.; Dumontier, M.; Aalbersberg, I.J.; Appleton, G.; Axton, M.; Baak, A.; Blomberg, N.; Boiten, J.-W.; da Silva Santos, L.B.; Bourne, P.E.; et al. The FAIR Guiding Principles for Scientific Data Management and Stewardship. Sci. Data 2016, 3, 160018. [Google Scholar] [CrossRef] [PubMed]
- Berkner, S.; Schwirn, K.; Voelker, D. Too Advanced for Assessment? Advanced Materials, Nanomedicine and the Environment. Environ. Sci. Eur. 2022, 34, 71. [Google Scholar] [CrossRef] [PubMed]
- Jeliazkova, N.; Apostolova, M.D.; Andreoli, C.; Barone, F.; Barrick, A.; Battistelli, C.; Bossa, C.; Botea-Petcu, A.; Châtel, A.; De Angelis, I.; et al. Towards FAIR Nanosafety Data. Nat. Nanotechnol. 2021, 16, 644–654. [Google Scholar] [CrossRef]
- Shandilya, N.; de Simon, L.; Scholten, B.; Ligthart, T.; Dekkers, S.; van Someren, E.; Fransman, W. Application of Tiered Human Health and Environmental Risk Assessment to Develop Safe and Sustainable by Design Perovskite-Based Devices. J. Clean. Prod. 2024, 457, 142315. [Google Scholar] [CrossRef]
- Valavanidis, A. Artificial Intelligence (AI) Is Transforming Most Scientific Areas in Chemistry. Machine-Learning Tools Revolutionize Synthesis of Fine Chemicals, Antibiotics and Drugs. ResearchGate 2023, 1, 1–42. [Google Scholar]
- European Commission. Advanced Materials Research for Industrial Applications and Society. Available online: https://cordis.europa.eu/article/id/443403-advanced-materials-research-for-industrial-applications-and-society (accessed on 10 September 2024).
- Verdonck, F.A.; Souren, A.; van Asselt, M.B.; van Sprang, P.A.; Vanrolleghem, P.A. Improving Uncertainty Analysis in European Union Risk Assessment of Chemicals. Integr. Environ. Assess. Manag. 2007, 3, 333–343. [Google Scholar] [CrossRef]
- Norris, C.B.; Traverso, M.; Neugebauer, S.; Ekener, E.; Schaubroeck, T.; Garrido, S.R.; Berger, M.; Valdivia, S.; Lehmann, A.; Finkbeiner, M.; et al. Guidelines for Social Life Cycle Assessment of Products and Organizations 2020; UN Environment: Nairobi, Kenya, 2020; Available online: https://www.lifecycleinitiative.org/wp-content/uploads/2021/01/Guidelines-for-Social-Life-Cycle-Assessment-of-Products-and-Organizations-2020-22.1.21sml.pdf (accessed on 11 October 2024).
- Caldeira, C.; Farcal, R.; Garmendia Aguirre, I.; Mancini, L.; Tosches, D.; Amelio, A.; Rasmussen, K.; Rauscher, H.; Riego Sintes, J.; Sala, S. Safe and sustainable by Design Chemicals and Materials—Framework for the Definition of Criteria and Evaluation Procedure for Chemicals and Materials, EUR 31100 EN; Publications Office of the European Union: Luxembourg, 2022; ISBN 978-92-76-53280-4. JRC128591. [Google Scholar] [CrossRef]
- Sewell, F.; Alexander-White, C.; Brescia, S.; Currie, R.A.; Roberts, R.; Roper, C.; Vickers, C.; Westmoreland, C.; Kimber, I. New Approach Methodologies (NAMs): Identifying and Overcoming Hurdles to Accelerated Adoption. Toxicol. Res. 2024, 13, tfae044. [Google Scholar] [CrossRef]
- Pizzol, L.; Livieri, A.; Salieri, B.; Farcal, L.; Soeteman-Hernández, L.G.; Rauscher, H.; Zabeo, A.; Blosi, M.; Costa, A.L.; Peijnenburg, W.; et al. Screening Level Approach to Support Companies in Making Safe and Sustainable by Design Decisions at the Early Stages of Innovation. Clean. Environ. Syst. 2023, 10, 100132. [Google Scholar] [CrossRef]
- 4th Stakeholder Workshop on “Safe and Sustainable by Design”. Available online: https://research-and-innovation.ec.europa.eu/events/upcoming-events/4th-stakeholder-workshop-safe-and-sustainable-design-2023-12-06_en?utm_campaign=Chemistry%20Matters%20-%2024%20November%202023%20-%20staff&utm_medium=email&utm_source=Mailjet (accessed on 11 October 2024).
- Abbate, E.; Garmendia Aguirre, I.; Bracalente, G.; Mancini, L.; Tosches, D.; Rasmussen, K.; Bennett, M.J.; Rauscher, H.; Sala, S. Safe and Sustainable by Design Chemicals and Materials—Methodological Guidance; Publications Office of the European Union: Luxembourg, 2024; JRC138035. [Google Scholar] [CrossRef]
- European Commission. Safe and Sustainable by Design—European Commission. Available online: https://research-and-innovation.ec.europa.eu/research-area/industrial-research-and-innovation/chemicals-and-advanced-materials/safe-and-sustainable-design_en#workshops (accessed on 11 October 2024).
- ECHA News—Chesar. Available online: https://chesar.echa.europa.eu (accessed on 11 October 2024).
- Stoffenmanager Stoffenmanager Is the Knowledge-Based Platform Aimed at Reducing Exposure Risk to Hazardous Substances and Biological Agents in the Workplace. Available online: https://stoffenmanager.com/en/ (accessed on 11 October 2024).
- REACH Targeted Risk Assessment (TRA)—ECETOC. Available online: https://www.ecetoc.org/tools/tra-main/ (accessed on 11 October 2024).
- Parc. Available online: https://www.eu-parc.eu/ (accessed on 11 October 2024).
- Cassee, F.R.; Bleeker, E.A.J.; Durand, C.; Exner, T.; Falk, A.; Friedrichs, S.; Heunisch, E.; Himly, M.; Hofer, S.; Hofstätter, N.; et al. Roadmap towards Safe and Sustainable Advanced and Innovative Materials. (Outlook for 2024-2030). Comput. Struct. Biotechnol. J. 2024, 25, 105–126. [Google Scholar] [CrossRef]
- Gulumian, M.; Cassee, F.R. Safe by Design (SbD) and Nanotechnology: A Much-Discussed Topic with a Prudence? Part. Fibre Toxicol. 2021, 18, 32. [Google Scholar] [CrossRef] [PubMed]
- Karayannis, P.; Petrakli, F.; Gkika, A.; Koumoulos, E.P. 3D-Printed Lab-on-a-Chip Diagnostic Systems-Developing a Safe-by-Design Manufacturing Approach. Micromachines 2019, 10, 825. [Google Scholar] [CrossRef] [PubMed]
- Beaucham, C.; Hodson, L. General Safe Practices for Working with Engineered Nanomaterials in Research Laboratories; no. (NIOSH) 2012-147; Centers for Disease Control and Prevention DHHS Publication: Washington, DC, USA, 2012. Available online: https://www.cdc.gov/niosh/docs/2012-147/pdfs/2012-147.pdf (accessed on 11 October 2024).
- van der Waals, J.; Falk, A.; Fantke, P.; Filippousi, V.; Flipphi, R.; Mottet, D.; Trier, X. Safe-by-Design for Materials and Chemicals: Towards an Innovation Programme in Horizon Europe. 2019. Available online: https://zenodo.org/records/3254382 (accessed on 11 October 2024).
- ISO 14040:2006; Environmental Management—Life Cycle Assessment—Principles and Framework. International Organization for Standardization: Geneva, Switzerland, 2006; Edition 2. Available online: https://www.iso.org/standard/37456.html (accessed on 11 October 2024).
- ISO 14044:2006; Environmental Management—Life Cycle Assessment—Requirements and Guidelines. International Organization for Standardization: Geneva, Switzerland, 2006; Edition 1. Available online: https://www.iso.org/standard/38498.html (accessed on 11 October 2024).
- Battiston, S.; Fiameni, S.; Fasolin, S.; Barison, S.; Armelao, L. Life Cycle Environmental Impact Assessment of Lab-Scale Preparation of Porous Alumina Pellets as Substrate for Hydrogen Separation Metal Layer-Based Membranes. Int. J. Life Cycle Assess. 2023, 28, 1117–1131. [Google Scholar] [CrossRef]
- Satta, M.; Passarini, F.; Cespi, D.; Ciacci, L. Advantages and Drawbacks of Life Cycle Assessment Application to the Pharmaceuticals: A Short Critical Literature Review. Env. Sci. Pollut. Res. 2024, 1–21. [Google Scholar] [CrossRef]
- Piccinno, F.; Hischier, R.; Seeger, S.; Som, C. From Laboratory to Industrial Scale: A Scale-up Framework for Chemical Processes in Life Cycle Assessment Studies. J. Clean. Prod. 2016, 135, 1085–1097. [Google Scholar] [CrossRef]
- Calow, P.; Biddinger, G.; Hennes, C.; King, H.; Markanya, A.; Mottram, R.; Roberts, P.; Salvito, D. Environmental Impact Assessment for Socio-Economic Analysis of Chemicals: Principles and Practice; European Centre for Ecotoxicology and Toxicology of Chemicals: Brussels, Belgium, 2012. [Google Scholar]
- Soeteman-Hernández, L.G.; Blanco, C.F.; Koese, M.; Sips, A.J.A.M.; Noorlander, C.W.; Peijnenburg, W.J.G.M. Life Cycle Thinking and Safe-and-Sustainable-by-Design Approaches for the Battery Innovation Landscape. iScience 2023, 26, 106060. [Google Scholar] [CrossRef]
- US Department of Labor OSHA Enforcement|Occupational Safety and Health Administration. Available online: https://www.osha.gov/enforcement (accessed on 20 November 2024).
- Becker, W.; Domínguez-Torreiro, M.; Neves, A.R.; Tacão Moura, C.; Saisana, M. Exploring the Link between Asia and Europe Connectivity and Sustainable Development. Res. Glob. 2021, 3, 100045. [Google Scholar] [CrossRef]
- Chan, C.H.; Sun, M.; Huang, B. Application of Machine Learning for Advanced Material Prediction and Design. EcoMat 2022, 4, e12194. [Google Scholar] [CrossRef]
- Chen, W.; Tian, X.; He, W.; Li, J.; Feng, Y.; Pan, G. Emerging Functional Materials Based on Chemically Designed Molecular Recognition. BMC Mater. 2020, 2, 1. [Google Scholar] [CrossRef]
- Hassan, Z.; Matt, Y.; Begum, S.; Tsotsalas, M.; Bräse, S. Assembly of Molecular Building Blocks into Integrated Complex Functional Molecular Systems: Structuring Matter Made to Order. Adv. Funct. Mater. 2020, 30, 1907625. [Google Scholar] [CrossRef]
- Cenci, M.P.; Scarazzato, T.; Munchen, D.D.; Dartora, P.C.; Veit, H.M.; Bernardes, A.M.; Dias, P.R. Eco-Friendly Electronics—A Comprehensive Review. Adv. Mater. Technol. 2022, 7, 2001263. [Google Scholar] [CrossRef]
- Verma, V.K.; Verma, S. Applications and Potential of Advanced Materials: An Overview. Mater. Today Proc. 2024, 5, 004. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, Q.; Dang, B.; Yang, Y.; Shao, T.; Li, H.; Hu, J.; Zeng, R.; He, J.; Wang, Q. A Scalable, High-Throughput, and Environmentally Benign Approach to Polymer Dielectrics Exhibiting Significantly Improved Capacitive Performance at High Temperatures. Adv. Mater. 2018, 30, 1805672. [Google Scholar] [CrossRef] [PubMed]
- Matyjaszewski, K. Advanced Materials by Atom Transfer Radical Polymerization. Adv. Mater. 2018, 30, 1706441. [Google Scholar] [CrossRef]
- Nguyen, P.Q.; Courchesne, N.-M.D.; Duraj-Thatte, A.; Praveschotinunt, P.; Joshi, N.S. Engineered Living Materials: Prospects and Challenges for Using Biological Systems to Direct the Assembly of Smart Materials. Adv. Mater. 2018, 30, 1704847. [Google Scholar] [CrossRef]
- 12 Principles of Green Chemistry. Available online: https://www.acs.org/greenchemistry/principles/12-principles-of-green-chemistry.html (accessed on 12 September 2024).
- Anastas, P.T.; Zimmerman, J.B. Design through the Twelve Principles of Green Engineering. Env. Sci. Tech. 2023, 37, 94A–101A. [Google Scholar] [CrossRef]
- Safety by Design (SbD). Available online: https://www.weforum.org/projects/safety-by-design-sbd/ (accessed on 12 September 2024).
- Benign by Design: Summary and Further Reading. ACS Green Chemistry Institute Pharmaceutical Roundtable. Available online: https://learning.acsgcipr.org/life-cycle-impacts-and-environmental-fate-of-pharmaceuticals/benign-by-design/benign-by-design-summary-and-further-reading/ (accessed on 11 October 2024).
- Halappanavar, S.; Van Den Brule, S.; Nymark, P.; Gaté, L.; Seidel, C.; Valentino, S.; Zhernovkov, V.; Høgh Danielsen, P.; De Vizcaya, A.; Wolff, H.; et al. Adverse Outcome Pathways as a Tool for the Design of Testing Strategies to Support the Safety Assessment of Emerging Advanced Materials at the Nanoscale. Part. Fibre Toxicol. 2020, 17, 1–24. [Google Scholar] [CrossRef]
- Huynh, T.-P.; Sonar, P.; Haick, H. Advanced Materials for Use in Soft Self-Healing Devices. Adv. Mater. 2017, 29, 1604973. [Google Scholar] [CrossRef]
- Peter, J.; Meschter, E.; Opila, J.; Nathan, S. Jacobson Water Vapor–Mediated Volatilization of High-Temperature Materials. Annu. Rev. 2013, 43, 559–588. [Google Scholar]
- Levashov, E.A.; Mukasyan, A.S.; Rogachev, A.S.; Shtansky, D.V. Self-Propagating High-Temperature Synthesis of Advanced Materials and Coatings. Int. Mater. Rev. 2017, 62, 203–239. [Google Scholar] [CrossRef]
- Fauser, P.; Vorkamp, K. Jakob Strand Residual Additives in Marine Microplastics and Their Risk Assessment—A Critical Review. Sci. Direct 2022, 177, 113467. [Google Scholar]
- Andreozzi, R.; Di Somma, I.; Pollio, A.; Pinto, G.; Sanchirico, R. Toxicity of Unwanted Intermediates and Products Formed during Accidental Thermal Decomposition of Chemicals. J. Hazard. Mater. 2008, 150, 433–437. [Google Scholar] [CrossRef] [PubMed]
- Guan, Q.; Yang, H.; Han, Z.; Ling, Z.; Yu, S. An All-Natural Bioinspired Structural Material for Plastic Replacement. Nat. Commun. 2020, 11, 5401. [Google Scholar] [CrossRef] [PubMed]
- Weiss, M.; Haufe, J.; Carus, M.; Brandão, M.; Bringezu, S.; Hermann, B.; Patel, M.K. A Review of the Environmental Impacts of Biobased Materials. J. Ind. Technol. 2012, 16, S169–S181. [Google Scholar] [CrossRef]
- Zimmermann, L.; Dombrowski, A.; Völker, C.; Wagner, M. Are Bioplastics and Plant-Based Materials Safer than Conventional Plastics? In Vitro Toxicity and Chemical Composition. Environ. Int. 2020, 145, 106066. [Google Scholar] [CrossRef]
- Koh, L.M.; Khor, S.M. Current State and Future Prospects of Sensors for Evaluating Polymer Biodegradability and Sensors Made from Biodegradable Polymers: A Review. Anal. Chim. Acta 2022, 1217, 339989. [Google Scholar] [CrossRef]
- Lee, W.H.; Cha, G.D.; Kim, D.-H. Flexible and Biodegradable Electronic Implants for Diagnosis and Treatment of Brain Diseases. Curr. Opin. Biotechnol. 2021, 72, 13–21. [Google Scholar] [CrossRef]
- Biodegradable Polymeric Materials in Degradable Electronic Devices|ACS Central Science. Available online: https://pubs.acs.org/doi/10.1021/acscentsci.7b00595 (accessed on 11 October 2024).
- Petchprakai, S.; Thomassey, S.; Zeng, X. A Strategic Location Decision-Making Approach for Multi-Tier Supply Chain Sustainability. Sustainability 2020, 12, 8340. [Google Scholar] [CrossRef]
- Maantay, J. Mapping Environmental Injustices: Pitfalls and Potential of Geographic Information Systems in Assessing Environmental Health and Equity. Environ. Health Perspect. 2002, 110, 161–171. [Google Scholar] [CrossRef]
- Anvari, S.; Turkay, M. The Facility Location Problem from the Perspective of Triple Bottom Line Accounting of Sustainability. Int. J. Prod. Res. 2017, 55, 6266–6287. [Google Scholar] [CrossRef]
- Bednarski, L.; Roscoe, S.; Martin, C. Schleper Geopolitical Disruptions in Global Supply Chains: A State-of-the-Art Literature Review. Prod. Plan. Control 2023, 1–27. [Google Scholar] [CrossRef]
- Qin, M.; Su, C.-W.; Umar, M.; Lobonţ, O.-R.; Manta, A.G. Are Climate and Geopolitics the Challenges to Sustainable Development? Novel Evidence from the Global Supply Chain. Econ. Anal. Policy 2023, 77, 748–763. [Google Scholar] [CrossRef]
- Teng, L. EML Webinar Overview: Advanced Materials toward a Sustainable Future—Mechanics Design. Extrem. Mech. Lett. 2021, 42, 101107. [Google Scholar] [CrossRef]
- Nemčeková, K.; Labuda, J. Advanced Materials-Integrated Electrochemical Sensors as Promising Medical Diagnostics Tools: A Review. Mater. Sci. Eng. C 2021, 120, 111751. [Google Scholar] [CrossRef] [PubMed]
- THE 17 GOALS|Sustainable Development. Available online: https://sdgs.un.org/goals (accessed on 11 October 2024).
- Brönneke, J.B.; Müller, J.; Mouratis, K.; Hagen, J.; Stern, A.D. Regulatory, Legal, and Market Aspects of Smart Wearables for Cardiac Monitoring. Sensors 2021, 21, 4937. [Google Scholar] [CrossRef] [PubMed]
- European Parliament; The Council of the European Union. Regulation (EC) No 66/2010 of the European Parliament and of the Council of 25 November 2009 on the EU Ecolabel (Text with EEA Relevance). 2017. Document 32010R0066. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32010R0066 (accessed on 11 October 2024).
- The European Commission. Commission Decision (EU) 2020/1804 of 27 November 2020 Establishing the EU Ecolabel Criteria for Electronic Displays (Notified under Document C(2020) 8156) (Text with EEA Relevance). 2020. Document 32020D1804. Available online: https://eur-lex.europa.eu/eli/dec/2020/1804/oj (accessed on 11 October 2024).
- Medina, A.R.; Hansen, S.F.; Macias, F.J.R.; Baun, A. A Design-Phase Environmental Safe-and-Sustainable-by-Design Categorization Tool for the Development and Innovation of Nano-Enabled Advanced Materials (AdMaCat). Environ. Sci. Nano 2024, 11, 3761–3773. [Google Scholar] [CrossRef]
- Di Battista, V.; Ribalta, C.; Vilsmeier, K.; Singh, D.; Demokritou, P.; Günther, E.; Jensen, K.A.; Dekkers, S.; Adam, V.; Wohlleben, W. A Screening Approach to the Safe-and-Sustainable-by-Design Development of Advanced Insulation Materials. Small 2024, 20, 2311155. [Google Scholar] [CrossRef]
- Peijnenburg, W.; Oomen, A.; Soeteman-Hernández, L.; Groenewold, M.; Sips, A.; Noorlander, C.; Kettelarij, J.; Bleeker, E. Identification of emerging safety and sustainability issues of advanced materials: Proposal for a systematic approach. NanoImpact 2021, 23, 100342. [Google Scholar] [CrossRef]
- Gressler, S.; Part, F.; Scherhaufer, S.; Obersteiner, G.; Huber-Humer, M. Advanced Materials for Emerging Photovoltaic Systems—Environmental Hotspots in the Production and End-of-Life Phase of Organic, Dye-Sensitized, Perovskite, and Quantum Dots Solar Cells. Sustain. Mater. Technol. 2022, 34, e00501. [Google Scholar] [CrossRef]
- Smith, L.; Ibn-Mohammed, T.; Koh, L.; Reaney, I.M. Reaney Life Cycle Assessment of Functional Materials and Devices: Opportunities, Challenges, and Current and Future Trends. J. Am. Ceram. Soc. 2019, 102, 7037–7064. [Google Scholar] [CrossRef]
- Teow, Y.; Asharani, P.V.; Hande, M.P.; Valiyaveettil, S. Health impact and safety of engineered nanomaterials. Chem. Commun. 2011, 47, 7025–7038. [Google Scholar] [CrossRef] [PubMed]
- Sousa, S.P.B.; Peixoto, T.; Santos, R.M.; Lopes, A.; Paiva, M.d.C.; Marques, A.T. Health and Safety Concerns Related to CNT and Graphene Products, and Related Composites. J. Compos. Sci. 2020, 4, 106. [Google Scholar] [CrossRef]
- Okogwu, C.; Adeyinka, M.; Odulaja, B.; Eyo-Udo, N.; Daraojimba, C.; Banso, A. EXPLORING THE INTEGRATION OF SUSTAINABLE MATERIALS IN SUPPLY CHAIN MANAGEMENT FOR ENVIRONMENTAL IMPACT. Eng. Sci. Technol. J. 2023, 4, 49–65. [Google Scholar] [CrossRef]
- Hassan, Q.; Algburi, S.; Sameen, A.Z.; Salman, H.M.; Jaszczur, M. A Review of Hybrid Renewable Energy Systems: Solar and Wind-Powered Solutions: Challenges, Opportunities, and Policy Implications. Results Eng. 2023, 20, 101621. [Google Scholar] [CrossRef]
- Olajiga, O.K.; Obiuto, N.C.; Adebayo, R.A.; Festus, I.C. Advanced Materials for Wind Energy: Reviewing Innovations and Challenges in the USA. Int. J. Adv. Eng. Res. Sci. 2024, 6, 454–465. [Google Scholar]
- Abualigah, L.; Hanandeh, E.S.; Abu Zitar, R.; Thanh, C.-L.; Khatir, S.; Gandomi, A.H. Revolutionizing Sustainable Supply Chain Management: A Review of Metaheuristics. Eng. Appl. Artif. Intell. 2023, 126, 106839. [Google Scholar] [CrossRef]
- Fareed, A.G.; De Felice, F.; Forcina, A.; Petrillo, A. Role and Applications of Advanced Digital Technologies in Achieving Sustainability in Multimodal Logistics Operations: A Systematic Literature Review. Sustain. Futures 2024, 8, 100278. [Google Scholar] [CrossRef]
- Cremonesi, A.; Grobert, N.; Gumbsch, P.; Piketty, L.; Montelius, L.; Vandeputte, K.; Vérilhac, I. MATERIALS 2030 MANIFESTO. Systemic Approach of Advanced Materials for Prosperity—A 2030 Perspective; OECD. 2019. Available online: https://www.ami2030.eu/wp-content/uploads/2022/06/advanced-materials-2030-manifesto-Published-on-7-Feb-2022.pdf (accessed on 11 October 2024).
- European Commission: Directorate-General for Research and Innovation, Communication on advanced materials for industrial leadership, Publications Office of the European Union. 2024. Available online: https://op.europa.eu/en/publication-detail/-/publication/e96cbe01-d9e5-11ee-b9d9-01aa75ed71a1 (accessed on 11 October 2024).
- European Commission Advanced Materials. Available online: https://single-market-economy.ec.europa.eu/industry/advanced-manufacturing/advanced-materials_en (accessed on 10 October 2024).
- ISO 45001:2018; Occupational Health and Safety Management Systems—Requirements with Guidance for Use. International Organization for Standardization: Geneva, Switzerland, 2018; Edition 1. Available online: https://www.iso.org/standard/63787.html (accessed on 10 October 2024).
- Subramanian, V.; Guinée, J. Implementing Safe by Design in Product Development Through Combining Risk Assessment and Life Cycle Assessment; University Leiden, Institute for Environmental Sciences Department of Industrial Ecology: Leiden, The Netherlands, 2021. [Google Scholar]
- Leso, V.; Rydberg, T.; Halling, M.; Karakitsios, S.; Nikiforou, F.; Karakoltzidis, A.; Sarigiannis, D.A.; Iavicoli, I. Safety and Sustainability by Design: An Explorative Survey on Concepts’ Knowledge and Application. Environ. Sci. Policy 2024, 162, 103909. [Google Scholar] [CrossRef]
- Angello, N.H.; Friday, D.M.; Hwang, C.; Yi, S.; Cheng, A.H.; Torres-Flores, T.C.; Jira, E.R.; Wang, W.; Aspuru-Guzik, A.; Burke, M.D.; et al. Closed-Loop Transfer Enables Artificial Intelligence to Yield Chemical Knowledge. Nature 2024, 633, 351–358. [Google Scholar] [CrossRef]
- Ananikov, V.P. Top 20 Influential AI-Based Technologies in Chemistry. Artif. Intell. Chem. 2024, 2, 100075. [Google Scholar] [CrossRef]
- Damilos, S.; Saliakas, S.; Karasavvas, D.; Koumoulos, E.P. An Overview of Tools and Challenges for Safety Evaluation and Exposure Assessment in Industry 4.0. Appl. Sci. 2024, 14, 4207. [Google Scholar] [CrossRef]
- Hagen, J.; Büth, L.; Haupt, J.; Cerdas, F.; Herrmann, C. Live LCA in Learning Factories: Real Time Assessment of Product Life Cycles Environmental Impacts. Procedia Manuf. 2020, 45, 128–133. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kostapanou, A.; Chatzipanagiotou, K.-R.; Damilos, S.; Petrakli, F.; Koumoulos, E.P. Safe-and-Sustainable-by-Design Framework: (Re-)Designing the Advanced Materials Lifecycle. Sustainability 2024, 16, 10439. https://doi.org/10.3390/su162310439
Kostapanou A, Chatzipanagiotou K-R, Damilos S, Petrakli F, Koumoulos EP. Safe-and-Sustainable-by-Design Framework: (Re-)Designing the Advanced Materials Lifecycle. Sustainability. 2024; 16(23):10439. https://doi.org/10.3390/su162310439
Chicago/Turabian StyleKostapanou, Adamantia, Konstantina-Roxani Chatzipanagiotou, Spyridon Damilos, Foteini Petrakli, and Elias P. Koumoulos. 2024. "Safe-and-Sustainable-by-Design Framework: (Re-)Designing the Advanced Materials Lifecycle" Sustainability 16, no. 23: 10439. https://doi.org/10.3390/su162310439
APA StyleKostapanou, A., Chatzipanagiotou, K.-R., Damilos, S., Petrakli, F., & Koumoulos, E. P. (2024). Safe-and-Sustainable-by-Design Framework: (Re-)Designing the Advanced Materials Lifecycle. Sustainability, 16(23), 10439. https://doi.org/10.3390/su162310439