Spatio-Temporal Analysis of CO2 Emissions from Vehicles in Urban Areas: A Satellite Imagery Approach
Abstract
:1. Introduction
2. Methodology
2.1. Study Area
2.2. Data
2.3. Method
3. Results
3.1. Rate of Carbon Dioxide Emissions
3.2. Rate of Carbon Dioxide Emissions from Vehicles
4. Reducing Carbon Emissions Through Electric Vehicles, Public Transit, and Sustainable Mobility Solutions
5. Urban CO2 Emissions from Vehicles, Highlighting Patter, Trends, and Implications for Carbon Reduction Policies
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization (WHO). Air Pollution; WHO: Geneva, Switzerland, 2019. [Google Scholar]
- Rajput, P.; Prakash, J.; Sharma, D. High-Resolution Ambient Record of Aerosols over Delhi and Associated Typical Health Effects. In Airborne Particulate Matter; Springer Nature: Singapore, 2022; pp. 75–101. [Google Scholar] [CrossRef]
- Manisalidis, I.; Stavropoulou, E.; Stavropoulos, A.; Bezirtzoglou, E. Environmental and Health Impacts of Air Pollution: A Review. Front. Public Health 2020, 8, 505570. [Google Scholar] [CrossRef] [PubMed]
- Neale, R.E.; Barnes, P.W.; Robson, T.M.; Neale, P.J.; Williamson, C.E.; Zepp, R.G.; Wilson, S.R.; Madronich, S.; Andrady, A.L.; Heikkilä, A.M.; et al. Environmental effects of stratospheric ozone depletion, UV radiation, and interactions with climate change: UNEP Environmental Effects Assessment Panel. In Photochemical and Photobiological Sciences; Springer International Publishing: Berlin/Heidelberg, Germany, 2021. [Google Scholar] [CrossRef]
- Tan, C.H.; Ong, M.Y.; Nomanbhay, S.M.; Shamsuddin, A.H.; Show, P.L. The Influence of COVID-19 on Global CO2 Emissions and Climate Change: A Perspective from Malaysia. Sustainability 2021, 13, 8461. [Google Scholar] [CrossRef]
- Ridzuan, N.Q.M.; Maiddin, S.H.M. Road Development in Five Malaysian Plan, 1966–1990. J. Hist. Dep. 2024, 33, 70–87. [Google Scholar] [CrossRef]
- Sukor, N.S.A.; Airak, S.; Hassan, S.A. “More Than a Free Bus Ride”—Exploring Young Adults’ Perceptions of Free Bus Services Using a Qualitative Approach: A Case Study of Penang, Malaysia. Sustainability 2021, 13, 3294. [Google Scholar] [CrossRef]
- Nakhawa, H.A.; Thipse, S. Characterization of the Ultrafine and Nano Particle Emissions on Modified Indian Driving Cycle for Passenger Cars Operating on CNG Phase Wise Analysis. Adv. Eng. Forum 2015, 14, 86–96. [Google Scholar] [CrossRef]
- Khaniabadi, Y.O.; Goudarzi, G.; Daryanoosh, S.M.; Borgini, A.; Tittarelli, A.; De Marco, A. Exposure to PM10, NO2, and O3 and impacts on human health. Environ. Sci. Pollut. Res. 2017, 24, 2781–2789. [Google Scholar] [CrossRef]
- Olaniyan, T.; Jeebhay, M.; Röösli, M.; Naidoo, R.N.; Künzli, N.; de Hoogh, K.; Saucy, A.; Badpa, M.; Baatjies, R.; Parker, B.; et al. The association between ambient NO2 and PM2.5 with the respiratory health of school children residing in informal settlements: A prospective cohort study. Environ. Res. 2020, 186, 109606. [Google Scholar] [CrossRef]
- Chowdhury, M.I.; Rahman, S.M.; Abubakar, I.R.; Aina, Y.A.; Hasan, A.; Khondaker, A.N. A review of policies and initiatives for climate change mitigation and environmental sustainability in Bangladesh. Environ. Dev. Sustain. 2020, 23, 1133–1161. [Google Scholar] [CrossRef]
- Yu, D.; Zhou, X.; Qi, H.; Qian, F. Low-carbon city planning based on collaborative analysis of supply and demand scenarios. City Built Environ. 2023, 1, 7. [Google Scholar] [CrossRef]
- Schröder, M.; Cabral, P. Eco-friendly 3D-Routing: A GIS based 3D-Routing-Model to estimate and reduce CO2-emissions of distribution transports. Comput. Environ. Urban Syst. 2019, 73, 40–55. [Google Scholar] [CrossRef]
- Zhu, C.; Gao, D. A Research on the Factors Influencing Carbon Emission of Transportation Industry in “the Belt and Road Initiative” Countries Based on Panel Data. Energies 2019, 12, 2405. [Google Scholar] [CrossRef]
- Sukor, N.S.A.; Basri, N.K.; Hassan, S.A. Carbon Footprint Reduction in Transportation Activity by Emphasizing the Usage of Public Bus Services Among Adolescents. IOP Conf. Ser. Mater. Sci. Eng. 2017, 226, 012054. [Google Scholar] [CrossRef]
- CO2 Emissions from Cars: The Facts; Transport & Environment: Brussels, Belgium, 2018.
- Brand, C.; Dons, E.; Anaya-Boig, E.; Avila-Palencia, I.; Clark, A.; de Nazelle, A.; Gascon, M.; Gaupp-Berghausen, M.; Gerike, R.; Götschi, T.; et al. The climate change mitigation effects of daily active travel in cities. Transp. Res. Part D Transp. Environ. 2021, 93, 102764. [Google Scholar] [CrossRef]
- Heni, H.; Diop, S.A.; Renaud, J.; Coelho, L.C. Measuring fuel consumption in vehicle routing: New estimation models using supervised learning. Int. J. Prod. Res. 2021, 61, 114–130. [Google Scholar] [CrossRef]
- Mądziel, M. Vehicle Emission Models and Traffic Simulators: A Review. Energies 2023, 16, 3941. [Google Scholar] [CrossRef]
- Farren, N.J.; Davison, J.; Rose, R.A.; Wagner, R.L.; Carslaw, D.C. Underestimated Ammonia Emissions from Road Vehicles. Environ. Sci. Technol. 2020, 54, 15689–15697. [Google Scholar] [CrossRef]
- Singh, D.; Dahiya, M.; Kumar, R.; Nanda, C. Sensors and systems for air quality assessment monitoring and management: A review. J. Environ. Manag. 2021, 289, 112510. [Google Scholar] [CrossRef]
- Pan, G.; Xu, Y.; Ma, J. The potential of CO2 satellite monitoring for climate governance: A review. J. Environ. Manag. 2020, 277, 111423. [Google Scholar] [CrossRef]
- Maurya, N.K.; Pandey, P.C.; Sarkar, S.; Kumar, R.; Srivastava, P.K. Spatio-Temporal Monitoring of Atmospheric Pollutants Using Earth Observation Sentinel 5P TROPOMI Data: Impact of Stubble Burning a Case Study. ISPRS Int. J. Geo Inf. 2022, 11, 301. [Google Scholar] [CrossRef]
- European Space Agency. Sentinel 5P. Available online: https://Sentinel.Esa.Int/Web/Sentinel/Missions/Sentinel-5p (accessed on 13 November 2021).
- Sagar, V.K.; Pathakoti, M.; Mahalakshmi, D.V.; Rajan, K.S.; Sesha Sai, M.V.R.; Hase, F.; Dubravica, D.; Sha, M.K. Ground-Based Remote Sensing of Total Columnar CO2, CH4, and CO Using EM27/SUN FTIR Spectrometer at a Suburban Location (Shadnagar) in India and Validation of Sentinel-5P/TROPOMI. IEEE Geosci. Remote. Sens. Lett. 2022, 19, 1005505. [Google Scholar] [CrossRef]
- Howari, F.M.; Ghrefat, H. Geographic information system: Spatial data structures, models, and case studies. In Pol-Lution Assessment for Sustainable Practices in Applied Sciences and Engineering; Elsevier: Amsterdam, The Netherlands, 2021; pp. 165–198. [Google Scholar] [CrossRef]
- Samany, N.N.; Liu, H.; Aghataher, R.; Bayat, M. Ten GIS-Based Solutions for Managing and Controlling COVID-19 Pandemic Outbreak. SN Comput. Sci. 2022, 3, 269. [Google Scholar] [CrossRef] [PubMed]
- Dehimi, S. The use of new techniques in spatial modeling and analysis of urban quality of life: Multiple-criteria decision analysis and GIS. Geoj. Tour. Geosites 2021, 35, 355–363. [Google Scholar] [CrossRef]
- Liu, Q.; Zhao, P.; Zhang, Y.; Zhang, Z.; Yang, J. Estimating the non-linear effects of urban built environment at residence and workplace on carbon dioxide emissions from commuting. Front. Public Health 2022, 10, 1077560. [Google Scholar] [CrossRef]
- Heripracoyo, S.; Imawan, F.Z.; Adikusumo, L.W. Design of the Mobile Application to Reduce the Carbon Track. IOP Conf. Ser. Earth Environ. Sci. 2024, 1324, 012005. [Google Scholar] [CrossRef]
- Zhang, P.; Yang, Z.; Ma, Q.; Huang, J.; Jia, J.; Li, H.; Liu, H. EAI Endorsed Transactions Study on the Influence of Land Use Change on Carbon Emissions Using System Modeling under the Framework of Dual Carbon Goals. EAI Endorsed Trans. Energy Web 2024, 11, 5717. [Google Scholar] [CrossRef]
- Kang, J.; Zhang, B.; Dang, A. A novel geospatial machine learning approach to quantify non-linear effects of land use/land cover change (LULCC) on carbon dynamics. Int. J. Appl. Earth Obs. Geoinf. 2024, 128, 103712. [Google Scholar] [CrossRef]
- Ma, J.; Xu, M.; Jiang, J. Mapping high-resolution urban road carbon and pollutant emissions using travel demand data. Energy 2022, 263, 126059. [Google Scholar] [CrossRef]
- Chan, T.N.; Choi, B.; Xu, J.; Cheng, R. Kernel Density Visualization for Big Geospatial Data: Algorithms and Applications. In Proceedings of the 24th IEEE International Conference on Mobile Data Management (MDM), Singapore, 3–6 July 2023; pp. 1–4. [Google Scholar] [CrossRef]
- Gelb, J.; Apparicio, P. Temporal Network Kernel Density Estimation. Geogr. Anal. 2023, 56, 62–78. [Google Scholar] [CrossRef]
- Zhang, G.; Xu, J.; Zhang, G.; Xu, J. Multi-GPU-Parallel and Tile-Based Kernel Density Estimation for Large-Scale Spatial Point Pattern Analysis. ISPRS Int. J. Geo Inf. 2023, 12, 31. [Google Scholar] [CrossRef]
- Shu, Y.; Lam, N.S. Spatial disaggregation of carbon dioxide emissions from road traffic based on multiple linear regression model. Atmos. Environ. 2011, 45, 634–640. [Google Scholar] [CrossRef]
- Qin, H.; Huang, Q.; Zhang, Z.; Lu, Y.; Li, M.; Xu, L.; Chen, Z. Carbon dioxide emission driving factors analysis and policy implications of Chinese cities: Combining geographically weighted regression with two-step cluster. Sci. Total. Environ. 2019, 684, 413–424. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Nie, J.; Cai, B.; Cao, L.; Wu, P.; Pang, L.; Wang, X. CO2 emissions patterns of 26 cities in the Yangtze River Delta in 2015: Evidence and implications. Environ. Pollut. 2019, 252, 1678–1686. [Google Scholar] [CrossRef] [PubMed]
- Tu, L.H.; Ha, P.T.; Tram, V.N.Q.; Thuy, N.N.; Phuong, D.N.D.; Nhat, T.T.; Loi, N.K. GIS Application in Environmental Management: A Review. VNU J. Sci. Earth Environ. Sci. 2023, 39, 4957. [Google Scholar] [CrossRef]
- Hunter, G.W.; Sagoe, G.; Vettorato, D.; Jiayu, D. Sustainability of Low Carbon City Initiatives in China: A Comprehensive Literature Review. Sustainability 2019, 11, 4342. [Google Scholar] [CrossRef]
- Zhu, Q.; Liu, Y.; Liu, M.; Zhang, S.; Chen, G.; Meng, H. Intelligent Planning and Research on Urban Traffic Congestion. Futur. Internet 2021, 13, 284. [Google Scholar] [CrossRef]
- Campisi, T.; Severino, A.; Al-Rashid, M.A.; Pau, G. The Development of the Smart Cities in the Connected and Autonomous Vehicles (CAVs) Era: From Mobility Patterns to Scaling in Cities. Infrastructures 2021, 6, 100. [Google Scholar] [CrossRef]
- Dewan Negeri Selangor. Mesyuarat Ketiga Penggal Kedua Dewan Negeri Selangor. Portal Rasmi Dewan Negeri Selangor. 2024. Available online: http://dewan.selangor.gov.my/question/tahap-usia-belia-dewasa/ (accessed on 13 August 2024).
- AbdelSattar, A. Monitoring Air Pollution Using Satellite Data. In Proceedings of the International Conference on Indusrial Engineering and Operations Management, Riyadh, Saudi Arabia, 26–28 November 2019; pp. 772–780. [Google Scholar]
- Broquet, G.; Bréon, F.-M.; Renault, E.; Buchwitz, M.; Reuter, M.; Bovensmann, H.; Chevallier, F.; Wu, L.; Ciais, P. The potential of satellite spectro-imagery for monitoring CO2 emissions from large cities. Atmos. Meas. Tech. 2018, 11, 681–708. [Google Scholar] [CrossRef]
- van Geffen, J.; Eskes, H.; Compernolle, S.; Pinardi, G.; Verhoelst, T.; Lambert, J.-C.; Sneep, M.; ter Linden, M.; Ludewig, A.; Boersma, K.F.; et al. Sentinel-5P TROPOMI NO2 retrieval: Impact of version v2.2 improvements and comparisons with OMI and ground-based data. Atmos. Meas. Tech. 2022, 5, 2037–2060. [Google Scholar] [CrossRef]
- Song, X.-P.; Huang, W.; Hansen, M.C.; Potapov, P. An evaluation of Landsat, Sentinel-2, Sentinel-1 and MODIS data for crop type mapping. Sci. Remote Sens. 2021, 3, 100018. [Google Scholar] [CrossRef]
- Enkhjargal, O.; Tuyagerel, D.; Tovuudorj, R.; Khurelsukh, Z.; Sarangerel, E. Dispersion mapping of Carbon Monoxide (CO) derived Sentinel 5P and evaluation with LUR model during winter in Ulaanbaatar, Mongolia. Proc. Mong. Acad. Sci. 2024, 64, 3545. [Google Scholar] [CrossRef]
- Borsdorff, T.; de Brugh, J.A.; Pandey, S.; Hasekamp, O.; Aben, I.; Houweling, S.; Landgraf, J. Carbon monoxide air pollution on sub-city scales and along arterial roads detected by the Tropospheric Monitoring Instrument. Atmos. Chem. Phys. 2019, 19, 3579–3588. [Google Scholar] [CrossRef]
- Reuter, M.; Buchwitz, M.; Schneising, O.; Krautwurst, S.; O’Dell, C.W.; Richter, A.; Bovensmann, H.; Burrows, J.P. Towards monitoring localized CO2 emissions from space: Co-located regional CO2 and NO2 enhancements observed by the OCO-2 and S5P satellites. Atmos. Chem. Phys. 2019, 19, 9371–9383. [Google Scholar] [CrossRef]
- Omokpariola, D.O.; Nduka, J.N.; Omokpariola, P.L. Short-term trends of air quality and pollutant concentrations in Nigeria from 2018–2022 using tropospheric sentinel-5P and 3A/B satellite data. Discov. Appl. Sci. 2024, 6, 182. [Google Scholar] [CrossRef]
- Chimot, J.; Bosch, H.; Bovensmann, H.; Buchwitz, M.; Breon, F.-M.; Camy-Peyret, C.; Bacour, C.; Weele MVan Haan, J.D.; Veefkind, P. Requirement for CO2 Monitoring by Sentinel-Noveltis. 2012. Available online: https://www.iup.uni-bremen.de/sciamachy/NIR_NADIR_WFM_DOAS/NOV-3945-NT-11712_v1.1.pdf (accessed on 13 August 2024).
- Wang, Y.; Munger, J.W.; Xu, S.; McElroy, M.B.; Hao, J.; Nielsen, C.P.; Ma, H. CO2 and its correlation with CO at a rural site near Beijing: Implications for combustion efficiency in China. Atmos. Chem. Phys. 2010, 10, 8881–8897. [Google Scholar] [CrossRef]
- Niu, Z.; Zhou, W.; Feng, X.; Feng, T.; Wu, S.; Cheng, P.; Lu, X.; Du, H.; Xiong, X.; Fu, Y. Atmospheric fossil fuel CO2 traced by 14CO2 and air quality index pollutant observations in Beijing and Xiamen, China. Environ. Sci. Pollut. Res. 2018, 25, 17109–17117. [Google Scholar] [CrossRef] [PubMed]
- FlexBook Portal. Ratio CO vs. COCK-12 Foundation 2022. 2019. Available online: https://flexbooks.ck12.org/cbook/ck-12-chemistry-flexbook-2.0/section/4.3/primary/lesson/law-of-multiple-proportions-chem/ (accessed on 27 January 2022).
- Zeng, T.; Fu, W.B. The ratio CO/CO2 of oxidation on a burning carbon surface. Combust. Flame J. 1996, 107, 197–210. [Google Scholar] [CrossRef]
- National Entrance Eligibility Test (NEET) Portal. CO vs CO2. 2021. Available online: https://Byjus.Com/Neet/Difference-between-Carbon-Dioxide-and-Carbon-Monoxide/ (accessed on 13 August 2021).
- Schneising, O.; Buchwitz, M.; Reuter, M.; Weimer, M.; Bovensmann, H.; Burrows, J.P.; Bösch, H. Towards a sector-specific CO/CO2 emission ratio: Satellite-based observations of CO release from steel production in Germany. Atmos. Chem. Phys. 2024, 24, 7609–7621. [Google Scholar] [CrossRef]
- Andrade, B.F.; Buchwitz, M.; Reuter, M.; Bovensmann, H.; Richter, A.; Boesch, H.; Burrows, J.P. A method for estimating localized CO2 emissions from co-located satellite XCO2 and NO2 images. Atmos. Meas. Tech. 2024, 17, 1145–1173. [Google Scholar] [CrossRef]
- Leguijt, G.; Maasakkers, J.D.; van der Gon, H.A.C.D.; Segers, A.J.; Borsdorff, T.; Aben, I. Quantification of carbon monoxide emissions from African cities using TROPOMI. Atmos. Chem. Phys. 2023, 23, 8899–8919. [Google Scholar] [CrossRef]
- Bíl, M.; Andrášik, R.; Janoška, Z. Identification of hazardous road locations of traffic accidents by means of kernel density estimation and cluster significance evaluation. Accid. Anal. Prev. 2013, 55, 265–273. [Google Scholar] [CrossRef]
- Portal The Star. Malaysia Offered Help to Fight Indonesia Forest Fires, Says Dr M. 2019. Available online: https://www.thestar.com.my/news/nation/2019/09/19/malaysia-offered-help-to-fight-indonesia-forest-fires-says-dr-m (accessed on 11 July 2024).
- Fachrie, M. Indonesia’s Forest Fire and Haze Pollution: An Analysis of Human Security. Malays. J. Int. Relat. 2020, 8, 104–117. [Google Scholar] [CrossRef]
- Datta, A.; Krishnamoorti, R. Understanding the Greenhouse Gas Impact of Deforestation Fires in Indonesia and Brazil in 2019 and 2020. Front. Clim. 2022, 4, 799632. [Google Scholar] [CrossRef]
- Charusombat, P. ASEAN Cooperation on Transboundary Haze Pollution: The Perspective of Institutional Incremental Change. J. Environ. Inf. Sci. 2022, 2, 1–12. [Google Scholar] [CrossRef]
- ASEAN Secretariat. Roadmap on ASEAN Cooperation Towards Transboundary Haze Pollution Control with Means of Implementation. 2022. Available online: https://www.researchgate.net/publication/362454611_ASEAN_Agreement_on_Transboundary_Haze_Pollution_Management_in_Mainland_Southeast_Asia (accessed on 13 November 2024).
- Suharjo, B.H. Research of Indonesian GHG Emission Assessment from Forest and Land Fires. J. Trop. Silvic. 2022, 13, 14–22. [Google Scholar]
- Le Quéré, C.; Jackson, R.B.; Jones, M.W.; Smith, A.J.P.; Abernethy, S.; Andrew, R.M.; De-Gol, A.J.; Willis, D.R.; Shan, Y.; Canadell, J.G.; et al. Temporary reduction in daily global CO2 emissions during the COVID-19 forced confinement. Nat. Clim. Chang. 2020, 10, 647–653. [Google Scholar] [CrossRef]
- Cail, S.; Criqui, P. Carbon dioxide emissions by the four largest world emitters: Past performance and future scenarios for China, USA. Europe and India. EAERE Mag. 2021, 11, 15–23. [Google Scholar]
- Jackson, R.B.; Friedlingstein, P.; Le Quéré, C.; Abernethy, S.; Andrew, R.M.; Canadell, J.G.; Ciais, P.; Davis, S.J.; Deng, Z.; Liu, Z.; et al. Global fossil carbon emissions rebound near pre-COVID-19 levels. Environ. Res. Lett. 2022, 17, 031001. [Google Scholar] [CrossRef]
- Ahmed, K.; Stern, D.I. China’s carbon emissions trend after the pandemic. Environ. Chall. 2023, 13, 100787. [Google Scholar] [CrossRef]
- Long, Y.; Yoshida, Y.; Li, Y.; Gasparatos, A. Spatial-temporal variation of CO2 emissions from private vehicle use in Japan. Environ. Res. Lett. 2022, 17, 014042. [Google Scholar] [CrossRef]
- Abbood, K.; Meszaros, F. Carbon Footprint Analysis of the Freight Transport Sector Using a Multi-Region Input–Output Model (MRIO) from 2000 to 2014: Evidence from Industrial Countries. Sustainability 2023, 15, 7787. [Google Scholar] [CrossRef]
- Sohail, M.T.; Ullah, S.; Majeed, M.T.; Usman, A. Pakistan management of green transportation and environmental pollution: A nonlinear ARDL analysis. Environ. Sci. Pollut. Res. 2021, 28, 29046–29055. [Google Scholar] [CrossRef] [PubMed]
- Georgatzi, V.V.; Stamboulis, Y.; Vetsikas, A. Examining the determinants of CO2 emissions caused by the transport sector: Empirical evidence from 12 European countries. Econ. Anal. Policy 2019, 65, 11–20. [Google Scholar] [CrossRef]
- Koçak, S.; Banday, T.P.; Awan, A. Is the environmental Kuznets curve valid for transport sector in Pakistan? New evidence for non-renewable energy and urbanization using the QARDL approach. Environ. Sci. Pollut. Res. 2023, 31, 46194–46206. [Google Scholar] [CrossRef] [PubMed]
- Kriswandanu, A.R.; Muhtadi, M.A.; Suprayitno, E.; Ahmaniyah, A.; Wardita, Y. Effects of Urbanization, Transport Infrastructure, Air Quality, and Health Outcomes on the Quality of Life of Jakarta City Population. J. Geosains West Sci. 2023, 1, 54–63. [Google Scholar] [CrossRef]
- Xiaoqi, T.; Leon-Garcia, A. Autonomous Mobility and Energy Service Management in Future Smart Cities: An Overview. In Proceedings of the 4th International Conference on Universal Village (UV), Boston, MA, USA, 21–24 October 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Chen, Y.; Gu, Y.; Huang, Z.; Zhao, T.; Guo, L. An Urban Bus Network Generation Algorithm Based on Particle Swarm Optimization and Force Field Properties. J. Adv. Transp. 2022, 2022, 6369217. [Google Scholar] [CrossRef]
- Yusoff, I.; Ng, B.-K.; Azizan, S.A. Towards sustainable transport policy framework: A rail-based transit system in Klang Valley, Malaysia. PLoS ONE 2021, 16, e0248519. [Google Scholar] [CrossRef]
- Chen, W.; Wu, X.; Xiao, Z. Impact of Built Environment on Carbon Emissions from Cross-District Mobility: A Social Network Analysis Based on Private Vehicle Trajectory Big Data. Sustainability 2023, 15, 10930. [Google Scholar] [CrossRef]
- Sanchez, E.R.; Raghavan, S.; Wu, C. Data-Driven Traffic Reconstruction and Kernel Methods for Identifying Stop-and-Go Congestion. In Proceedings of the Tackling Climate Change with Machine Learning: Workshop at NeurIPS, and Computational Sustainability, New Orleans, LA, USA, 15 December 2023. [Google Scholar] [CrossRef]
- Komnos, D.; Nur, J.; Tansini, A.; Ktistakis, M.A.; Suarez, J.; Krause, J.; Fontaras, G. The Evolution of Conventional Vehicles’ Efficiency for Meeting Carbon Neutrality Ambition. In Proceedings of the CO2 Reduction for Transportation Systems Conference, Turin, Italy, 12–13 June 2024; pp. 1–10. [Google Scholar] [CrossRef]
- Liu, X.; Al-Qadi, I.L. Mechanistic Excess Fuel Consumption of a 3D Passenger Vehicle on Rough Pavements. J. Transp. Eng. Part B Pavements 2023, 149, 04022065. [Google Scholar] [CrossRef]
- Plati, C.; Pomoni, M.; Drainakis, A.; Loizos, A. Integrating roughness data to assess greenhouse gas emissions within pavement management decision-making. In Proceedings of the 7th International Conferenceon Road and Rail Infrastructure, Pula, Croatia, 11–15 May 2022; pp. 427–433. [Google Scholar] [CrossRef]
- Khahro, S.H.; Kumar, D.; Siddiqui, F.H.; Ali, T.H.; Raza, M.S.; Khoso, A.R. Optimizing Energy Use, Cost and Carbon Emission through Building Information Modelling and a Sustainability Approach: A Case-Study of a Hospital Building. Sustainability 2021, 13, 3675. [Google Scholar] [CrossRef]
- Raza, M.S.; Khahro, S.H.; Memon, S.A.; Ali, T.H.; Memon, N.A. Global trends in research on carbon footprint of buildings during 1971–2021: A bibliometric investigation. Environ. Sci. Pollut. Res. 2021, 28, 63227–63236. [Google Scholar] [CrossRef]
CO | Characterization | CO2 |
---|---|---|
CO is a combination of carbon atom (one) and oxygen atom (one); it is toxic and is produced when there is incomplete combustion of coal, fossil fuels, etc. | Definition | CO2 is also a combination of carbon atom (one) and oxygen atom (two); it is produced by animals and humans in the process of breathing, and is also obtained by the complete combustion of fossil fuels, coal, etc. |
28 g/mol | Molecular Mass | 44 g/mol |
Covalent bond and coordinate bond referred to as triple covalent bond | Type of Bond | Covalent bond |
Does not naturally occur in the atmosphere | Occurrence | Naturally occurs in the atmosphere |
It is a flammable gas, causes fatal toxicity, and has an impact on the central nervous system, lungs, and blood | Criteria | It is a non-flammable gas, rarely poisonous, and has an impact on the respiratory system |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yaacob, N.F.F.; Yazid, M.R.M.; Abdul Maulud, K.N.; Khahro, S.H.; Javed, Y. Spatio-Temporal Analysis of CO2 Emissions from Vehicles in Urban Areas: A Satellite Imagery Approach. Sustainability 2024, 16, 10765. https://doi.org/10.3390/su162310765
Yaacob NFF, Yazid MRM, Abdul Maulud KN, Khahro SH, Javed Y. Spatio-Temporal Analysis of CO2 Emissions from Vehicles in Urban Areas: A Satellite Imagery Approach. Sustainability. 2024; 16(23):10765. https://doi.org/10.3390/su162310765
Chicago/Turabian StyleYaacob, Nur Fatma Fadilah, Muhamad Razuhanafi Mat Yazid, Khairul Nizam Abdul Maulud, Shabir Hussain Khahro, and Yasir Javed. 2024. "Spatio-Temporal Analysis of CO2 Emissions from Vehicles in Urban Areas: A Satellite Imagery Approach" Sustainability 16, no. 23: 10765. https://doi.org/10.3390/su162310765
APA StyleYaacob, N. F. F., Yazid, M. R. M., Abdul Maulud, K. N., Khahro, S. H., & Javed, Y. (2024). Spatio-Temporal Analysis of CO2 Emissions from Vehicles in Urban Areas: A Satellite Imagery Approach. Sustainability, 16(23), 10765. https://doi.org/10.3390/su162310765