Potential for Carbon Credits from Conservation Management: Price and Potential for Multi-Habitat Nature-Based Carbon Sequestration in Dorset, UK
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Selection
- Rempstone Estate, Purbeck Heath—Private Estate (491.66 ha).
- Studland, Purbeck Heath—Nature Reserve (308.18 ha).
- Slepe Heath, Purbeck Heath—Nature Reserve (90.22 ha).
- Wild Woodbury, Bere Regis—An old farm now managed as a rewilding site (157.69 ha).
- Chapel Gate, Christchurch—University Sport Facility (23.05 ha).
2.2. Data Collection
2.3. Sequestration Calculations
2.4. Cost Calculations
3. Results
3.1. Proposed Conservation Measures
3.1.1. Rempstone Estate Improvements
3.1.2. Studland Improvements
3.1.3. Slepe Heath Improvements
3.1.4. Wild Woodbury Improvements
3.1.5. Chapel Gate Improvements
3.2. Overall Changes in Sequestration
3.3. Cost of Conservation Measures
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fankhauser, S.; Smith, S.M.; Allen, M.; Axelsson, K.; Hale, T.; Hepburn, C.; Kendall, J.M.; Khosla, R.; Lezaun, J.; Mitchell-Larson, E.; et al. The meaning of net zero and how to get it right. Nat. Clim. Chang. 2021, 12, 15–21. [Google Scholar] [CrossRef]
- Hyams, K.; Fawcett, T. The ethics of carbon offsetting. Wiley Interdiscip. Rev. Clim. Chang. 2013, 4, 91–98. [Google Scholar] [CrossRef]
- Singh, G. Understanding Carbon Credits; Aditya Books: New Delhi, India, 2009. [Google Scholar]
- Rayer, Q.; Jenkins, S.; Walton, P. Defining Net-Zero and Climate Recommendations for Carbon Offsetting. In Business and Policy Solutions to Climate Change: From Mitigation to Adaptation; Springer: Berlin, Germany, 2022. [Google Scholar]
- Friedlingstein, P.; O’Sullivan, M.; Jones, M.W.; Andrew, R.M.; Hauck, J.; Olsen, A.; Peters, G.P.; Peters, W.; Pongratz, J.; Sitch, S.; et al. Global carbon budget. Earth Syst. Sci. Data 2020, 12, 3269–3340. [Google Scholar] [CrossRef]
- Calliari, E.; Staccione, A.; Mysiak, J. An assessment framework for climate-proof nature-based solutions. Sci. Total Environ. 2019, 656, 691–700. [Google Scholar] [CrossRef]
- Seddon, N.; Smith, A.; Smith, P.; Key, I.; Chausson, A.; Girardin, C.; House, J.; Srivastava, S.; Turner, B. Getting the message right on nature-based solutions to climate change. Glob. Change Biol. 2021, 27, 1518–1546. [Google Scholar] [CrossRef] [PubMed]
- Alonso, I.; Weston, K.; Gregg, R.; Morecroft, M. Carbon Storage by Habitat—Review of the Evidence of the Impacts of Management Decisions and Condition on Carbon Stores and Sources; NERR043; Natural England: York, UK, 2012. [Google Scholar]
- Gregg, R.; Elias, J.; Alonso, I.; Crosher, I.; Muto, P.; Morecroft, M. Carbon Storage and Sequestration by Habitat: A Review of the Evidence, 2nd ed.; NERR094; Natural England: York, UK, 2021. [Google Scholar]
- Amaral-Rogers, V. How Natural Climate Solutions Provide a Win for Both Biodiversity and Climate; RSPB: Sandy, UK, 2022; Available online: https://community.rspb.org.uk/ourwork/b/science/posts/how-natural-climate-solutions-provide-a-win-for-both-biodiversity-and-climate (accessed on 12 August 2022).
- Tilman, D.; Downing, J. Biodiversity and stability in grasslands. Nature 1994, 367, 363–365. [Google Scholar] [CrossRef]
- Isbell, F.; Craven, D.; Connolly, J.; Loreau, M.; Schmid, B.; Beierkuhnlein, C.; Bezemer, T.M.; Bonin, C.; Bruelheide, H.; De Luca, E.; et al. Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature 2015, 526, 574–577. [Google Scholar] [CrossRef] [PubMed]
- Buotte, P.; Law, B.; Ripple, W.; Berner, L. Carbon sequestration and biodiversity co-benefits of preserving forests in the western United States. Ecol. Appl. 2019, 30, e02039. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Kuchma, O.; Krutovsky, K. Mixed-species versus monocultures in plantation forestry: Development, benefits, ecosystem services and perspectives for the future. Glob. Ecol. Conserv. 2018, 15, e00419. [Google Scholar] [CrossRef]
- Anderson, P. Carbon and Ecosystems: Restoration and Creation to Capture Carbon; Chartered Institute of Ecologists and Environmental Managers (CIEEM): Romsey, UK, 2021. [Google Scholar]
- Seddon, N.; Chausson, A.; Berry, P.; Girardin, C.; Smith, A.; Turner, B. Understanding the value and limits of nature-based solutions to climate change and other global challenges. Philos. Trans. R. Soc. B Biol. Sci. 2020, 375, 20190120. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, R.J.; Auld, M.H.; Le Duc, M.G.; Robert, M.H. Ecosystem stability and resilience: A review of their relevance for the conservation management of lowland heaths. Perspect. Plant Ecol. Evol. Syst. 2000, 3, 142–160. [Google Scholar] [CrossRef]
- Bibby, C.J. Conservation of the Dartford Warbler on English Lowland heaths: A review. Biol. Conserv. 1978, 13, 299–307. [Google Scholar] [CrossRef]
- Burns, F.; Mordue, S.; al Fulaij, N.; Boersch-Supan, P.H.; Boswell, J.; Boyd, R.J.; Bradfer-Lawrence, T.; de Ornellas, P.; de Palma, A.; de Zylva, P.; et al. State of Nature 2023, the State of Nature Partnership. Available online: www.stateofnature.org.uk (accessed on 30 October 2023).
- Stafford, R.; Chamberlain, B.; Clavey, L.; Gillingham, P.; McKain, S.; Morecroft, M.D.; Morrison-Bell, C.; Watts, O. Nature-Based Solutions for Climate Change in the UK; British Ecological Society: London, UK, 2022. [Google Scholar]
- Bailey, J.J.; Cunningham, C.A.; Griffin, D.C.; Hoppit, G.; Metcalfe, C.A.; Schéré, C.M.; Travers, T.J.P.; Turner, R.K.; Hill, J.K.; Sinnadurai, P.; et al. Protected Areas and Nature Recovery. Achieving the Goal to Protect 30% of UK Land and Seas for Nature by 2030; British Ecological Society: London, UK, 2022. [Google Scholar]
- Preston, C.D.; Pearman, D.; Dines, T.D. New Atlas of the British & Irish Flora; Oxford University Press: Oxford, UK, 2002. [Google Scholar]
- Loth, A.F.; Newton, A.C. Rewilding as a restoration strategy for lowland agricultural landscapes: Stakeholder-assisted multi-criteria analysis in Dorset, UK. J. Nat. Conserv. 2018, 46, 110–120. [Google Scholar] [CrossRef]
- Lake District National Park Authority, ca. Farming and Carbon [online]. Lake District National Park. 2022. Available online: https://www.lakedistrict.gov.uk/caringfor/farming/farming-and-carbon (accessed on 19 August 2022).
- Department for Business, Energy; Industrial Strategy; Department for Energy Security; Net Zero. Valuation of Greenhouse Gas Emissions: For Policy Appraisal and Evaluation; BEIS: London, UK, 2021. Available online: https://www.gov.uk/government/publications/valuing-greenhouse-gas-emissions-in-policy-appraisal/valuation-of-greenhouse-gas-emissions-for-policy-appraisal-and-evaluation (accessed on 15 January 2024).
- Greenfield, P. Revealed: More than 90% of Rainforest Carbon Offsets by Biggest Certifier Are Worthless, Analysis Shows. The Guardian. 18th January 2023. 2023. Available online: https://www.theguardian.com/environment/2023/jan/18/revealed-forest-carbon-offsets-biggest-provider-worthless-verra-aoe (accessed on 30 October 2023).
- West, T.A.P.; Wunder, S.; O’Sills, E.; Borner, J.; Rifai, S.W.; Neidermeier, A.N.; Kontoleon, A. Action needed to make carbon offsets from forest conservation work for climate change mitigation. Science 2023, 381, 873–877. [Google Scholar] [CrossRef] [PubMed]
- Navarro, R. Correction to: Climate Finance and Neo-Colonialism: Exposing Hidden Dynamics. In The Political Economy of Climate Finance: Lessons from International Development; Cash, C., Swatuk, L.A., Eds.; International Political Economy Series; Palgrave Macmillan: London, UK, 2023. [Google Scholar]
- Rodemeier, M. Willingness to Pay for Carbon Mitigation: Field Evidence from the Market for Carbon Offsets; IZA Discussion Papers, No. 15939; Institute of Labor Economics (IZA): Bonn, Germany, 2023. [Google Scholar]
- Sokolnicki, J.R.; Woodhatch, A.L.; Stafford, R. Assessing Environmentally Effective Post-COVID Green Recovery Plans for Reducing Social and Economic Inequality. Anthr. Sci. 2022, 1, 375–383. [Google Scholar] [CrossRef]
- Blickley, J.L.; Deiner, K.; Garbach, K.; Lacher, I.; Meek, M.H.; Porensky, L.M.; Wilkerson, M.L.; Winford, E.M.; Schwartz, M.W. Graduate Student’s Guide to Necessary Skills for Nonacademic Conservation Careers. Conserv. Biol. 2013, 27, 24–34. [Google Scholar] [CrossRef]
- Kragh, G.; Stafford, R.; Curtin, S.; Diaz, A. Environmental volunteer well-being: Managers’ perception and actual well-being of volunteers. F1000Research 2016, 5, 2679. [Google Scholar] [CrossRef] [PubMed]
- Intergovernmental Panel on Climate Change. Summary for Policymakers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- International Carbon Reduction and Offsetting Accreditation. ICROA Code of Best Practice Version 2.1. Geneva: ICROA. 2023. Available online: https://icroa.org/icroa-code-of-best-practice/ (accessed on 30 October 2023).
- Bull, J.W.; Taylor, I.; Biggs, E.; Grub, H.M.; Yearley, T.; Waters, H.; Milner-Gulland, E.J. Analysis: The biodiversity footprint of the University of Oxford. Nature 2022, 604, 420–424. [Google Scholar] [CrossRef] [PubMed]
- Land Research Associates. Court Farm Soil Map and Key-MAP 2 Soil Types; Land Research Associates: Derby, UK, 2021. [Google Scholar]
- Palmer, M.; Simms, C. Soil Survey Report-Court Farm; 1893/2; Land Research Associate: Derby, UK, 2021. [Google Scholar]
Habitat | Sub-Habitat | Carbon Flux Rate (t CO2e ha−1 yr −1) [Range] | Confidence | Source |
---|---|---|---|---|
Woodland * | 30 yr Mixed Native Broadleaved Woodland | −14.5 [−2.5 to −25.5] | Medium | Gregg et al. (2021) [9] |
100 yr Mixed Native Broadleaved Woodland | −7 [−2 to −13] | Medium | Gregg et al. (2021) [9] | |
30 yr Oak Woodland | −15 [−1 to −18] | Unknown | Gregg et al. (2021) [9] | |
Conifer Plantation (Commercial Forest) | −12.5 [−5 to −20] | Low | Anderson (2021) [15] | |
Scrub/Bracken | Scrub | 0—Soil only | Unknown | Gregg et al. (2021) [9] |
Bracken | 0—Soil only | Unknown | Gregg et al. (2021) [9] | |
Heathland ** | Lowland Heath—Maintained: Burning, grazing, scrub clearance | −0.07 | Low | Alonso et al. (2012) [8] |
Lowland Heath—Restored: Scrub removed | +2.56 | Low | Alonso et al. (2012) [8] | |
Lowland Heath—Restored: Trees removed | +4.46 | Low | Alonso et al. (2012) [8] | |
Semi-Natural Grassland *** | Acid Grassland (Molinia caerulea swards: Low-level grazing) | −0.5 | Low | Gregg et al. (2021) [9] |
Acid Grassland (Molinia caerulea swards: Ungrazed) | −0.53 | Low | Gregg et al. (2021) [9] | |
Calcareous Grassland | −0.24 | Low | The Lake District National Park Authority (ca. 2022) [24] | |
Neutral Grassland | 0 | Low | Gregg et al. (2021) [9] | |
Undisturbed semi-natural grassland under long-term management | 0 | Low | Gregg et al. (2021) [9] | |
Farmland | Arable/Cultivated Land | +0.29 | Low | Gregg et al. (2021) [9] |
Improved Grassland | −0.36 [−1.28 to +0.92] | Low | Gregg et al. (2021) [9] | |
Semi-Natural Peat Habitats | Fens on Deep Peat (Near Natural Fen) | −0.93 | Medium | Gregg et al. (2021) [9] |
Floodplains | Floodplain | −3.365 [−2.13 to −4.19] | Low | Gregg et al. (2021) [9] |
Coastal | Sand Dunes | −2.18 [−2.13 to −2.68] | Low | Gregg et al. (2021) [9] |
Salt Marsh | −5.19 [−2.35 to −8.04] | Low | Gregg et al. (2021) [9] | |
Lake | Mesotrophic Lake | −7.1 [−0.46 to −23.6] | Low | Gregg et al. (2021) [9] |
Parameter and Units | Value |
---|---|
Time frame considered for offsetting (years) | 5 |
Basic wage (GBP) | 20 |
Skilled wage (GBP) | 40 |
Cost of Trees (GBP/Ha) | 649 |
Grassland seed (GBP/Ha) | 189 |
Cost of land (GBP/Ha) | 9000 |
Tree planting (number per hour) | 12 |
Price of tree (GBP) | 0.59 |
Tree density (per Ha) | 1100 |
Grassland seeding (hours per hectare) | 1 |
Cost of heathland creation (GBP/Ha) | 370 |
Labour for heathland creation (hours per Ha) | 50 |
Site | Chapel Gate | Wild Woodberry | Wild Woodberry | Slepe Heath | Rempstone | Studland |
---|---|---|---|---|---|---|
Description of work | Plant/extend broadleaf woodland | Convert arable land to grassland | Plant/extend broadleaf woodland | Restore and maintain heathland | Restore and maintain heathland | Sand dune conversion |
Total area | 1.3 | 94.7 | 15.6 | 27.1 | 93.2 | 4.7 |
Total sequestration of intervention (t CO2e.y−1) | 18.95 | 123.45 | 233.77 | 122.76 | 422.21 | 10.34 |
Yearly maintenance cost proportion | 0.1 | 0.1 | 0.1 | 0.2 | 0.2 | 0.1 |
Base cost of work (GBP) | 590.59 | 12,534.10 | 7077.99 | 12,032.40 | 41,385.24 | 1227.66 |
Base cost of work (GBP.tCO2e−1) | 31.17 | 101.53 | 30.28 | 98.02 | 98.02 | 118.73 |
Hours of labour | 131.1 | 94.7 | 1571.0 | 1626.0 | 5592.6 | 260.7 |
Cost of labour (GBP) | 2621.67 | 1894.80 | 31,419.67 | 32,520.00 | 111,852.00 | 5214.00 |
Cost of labour (GBP.tCO2e−1) | 27.67 | 3.07 | 26.88 | 52.98 | 52.98 | 100.85 |
Land costs (GBP) | 11,700 | 852,660 | 140,220 | 243,900 | 838,890 | 42,660 |
Land costs (GBP.tCO2e−1) | 123.48 | 1381.39 | 119.96 | 397.36 | 397.38 | 825.15 |
Available grants | 30,411.54 | 5799.40 | 31,225.35 | 1417.26 | ||
Base cost of work with grants (GBP.tCO2e−1) | 31.17 | −144.82 | 30.28 | 50.77 | 24.06 | −18.34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jones, E.-A.; Paige, L.; Smith, A.; Worth, A.; Betts, L.; Stafford, R. Potential for Carbon Credits from Conservation Management: Price and Potential for Multi-Habitat Nature-Based Carbon Sequestration in Dorset, UK. Sustainability 2024, 16, 1268. https://doi.org/10.3390/su16031268
Jones E-A, Paige L, Smith A, Worth A, Betts L, Stafford R. Potential for Carbon Credits from Conservation Management: Price and Potential for Multi-Habitat Nature-Based Carbon Sequestration in Dorset, UK. Sustainability. 2024; 16(3):1268. https://doi.org/10.3390/su16031268
Chicago/Turabian StyleJones, Ellie-Anne, Lisa Paige, Albany Smith, Annabelle Worth, Lois Betts, and Richard Stafford. 2024. "Potential for Carbon Credits from Conservation Management: Price and Potential for Multi-Habitat Nature-Based Carbon Sequestration in Dorset, UK" Sustainability 16, no. 3: 1268. https://doi.org/10.3390/su16031268