Changes to the Transport Behaviour of Inhabitants of a Large City Due the Pandemic
Abstract
:1. Introduction
2. The Impact of the Pandemic on Urban Transport Behaviour and Mobility
3. Description of the Research Areas
4. Data and Methods
4.1. Data from Surveys
4.2. Load on the Urban Road Network
4.3. Public Transport Provision and Its Uptake
- the total number of ticket validations on all public transport vehicles at hourly intervals for the second week of October in each year between 2019 and 2022,
- the number of ticket validations per tram and bus for the second week of October in each year between 2019 and 2022,
- the number of ticket validations by passengers (either beginning a journey or continuing their journey by punching another ticket) registered by the system in the vicinity of a given tram or bus stop for the second week of October in each year between 2019 and 2022.
5. Results and Discussion
5.1. Load on the Urban Road Network
5.2. Public Transport Provision and Its Uptake
5.3. Analyses of the Questionnaires
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ali, I. The COVID-19 Pandemic: Making Sense of Rumor and Fear. Med. Anthropol. 2020, 39, 376–379. [Google Scholar] [CrossRef] [PubMed]
- Nouvellet, P.; Bhatia, S.; Cori, A.; Ainslie, K.E.C.; Baguelin, M.; Bhatt, S.; Boonyasiri, A.; Brazeau, N.F.; Cattarino, L.; Cooper, L.V.; et al. Reduction in Mobility and COVID-19 Transmission. Nat. Commun. 2021, 12, 1090. [Google Scholar] [CrossRef] [PubMed]
- Baig, A.S.; Butt, H.A.; Haroon, O.; Rizvi, S.A.R. Deaths, Panic, Lockdowns and US Equity Markets: The Case of COVID-19 Pandemic. Financ. Res. Lett. 2021, 38, 101701. [Google Scholar] [CrossRef] [PubMed]
- Przybylowski, A.; Stelmak, S.; Suchanek, M. Mobility Behaviour in View of the Impact of the COVID-19 Pandemic—Public Transport Users in Gdansk Case Study. Sustainability 2021, 13, 364. [Google Scholar] [CrossRef]
- Smolarski, M. Restrictions on Regional Passenger Transport during Epidemiological Threat (COVID-19)—An Example of the Lower Silesian Voivodship in Poland. Pr. Kom. Geogr. Komun. PTG 2020, 23, 56–61. [Google Scholar] [CrossRef]
- Shamshiripour, A.; Rahimi, E.; Shabanpour, R.; Mohammadian, A. How Is COVID-19 Reshaping Activity-Travel Behavior? Evidence from a Comprehensive Survey in Chicago. Transp. Res. Interdiscip. Perspect. 2020, 7, 100216. [Google Scholar] [CrossRef] [PubMed]
- Budd, L.; Ison, S. Responsible Transport: A Post-COVID Agenda for Transport Policy and Practice. Transp. Res. Interdiscip. Perspect. 2020, 6, 100151. [Google Scholar] [CrossRef]
- Combs, T.S.; Pardo, C.F. Shifting Streets COVID-19 Mobility Data: Findings from a Global Dataset and a Research Agenda for Transport Planning and Policy. Transp. Res. Interdiscip. Perspect. 2021, 9, 100322. [Google Scholar] [CrossRef]
- Hsiehchen, D.; Espinoza, M.; Slovic, P. Political Partisanship and Mobility Restriction during the COVID-19 Pandemic. Public Health 2020, 187, 111–114. [Google Scholar] [CrossRef]
- Oszter, V. COVID-19 Impacts on Passenger Rail Transport in Hungary, Slovenia, Croatia, Serbia and Romania. Pr. Kom. Geogr. Komun. PTG 2020, 23, 7–13. [Google Scholar] [CrossRef]
- Jenelius, E.; Cebecauer, M. Impacts of COVID-19 on Public Transport Ridership in Sweden: Analysis of Ticket Validations, Sales and Passenger Counts. Transp. Res. Interdiscip. Perspect. 2020, 8, 100242. [Google Scholar] [CrossRef] [PubMed]
- Morawska, L.; Tang, J.W.; Bahnfleth, W.; Bluyssen, P.M.; Boerstra, A.; Buonanno, G.; Cao, J.; Dancer, S.; Floto, A.; Franchimon, F.; et al. How Can Airborne Transmission of COVID-19 Indoors Be Minimised? Environ. Int. 2020, 142, 105832. [Google Scholar] [CrossRef] [PubMed]
- Musselwhite, C.; Avineri, E.; Susilo, Y. Editorial JTH 16—The Coronavirus Disease COVID-19 and Implications for Transport and Health. J. Transp. Health 2020, 16, 100853. [Google Scholar] [CrossRef] [PubMed]
- De Haas, M.; Faber, R.; Hamersma, M. How COVID-19 and the Dutch ‘Intelligent Lockdown’ Change Activities, Work and Travel Behaviour: Evidence from Longitudinal Data in the Netherlands. Transp. Res. Interdiscip. Perspect. 2020, 6, 100150. [Google Scholar] [CrossRef] [PubMed]
- Beck, M.J.; Hensher, D.A. Insights into the Impact of COVID-19 on Household Travel and Activities in Australia—The Early Days under Restrictions. Transp. Policy 2020, 96, 76–93. [Google Scholar] [CrossRef]
- Świtała, M. Wpływ Pandemii COVID-19 Na Codzienną Mobilność Mieszkańców Warszawy. Gospod. Mater. Logistyka 2021, 9, 19–31. [Google Scholar] [CrossRef]
- Borkowski, P.; Jażdżewska-Gutta, M.; Szmelter-Jarosz, A. Lockdowned: Everyday Mobility Changes in Response to COVID-19. J. Transp. Geogr. 2021, 90, 102906. [Google Scholar] [CrossRef]
- Jones, C.; Philippon, T.; Venkateswaran, V. Optimal Mitigation Policies in a Pandemic: Social Distancing and Working from Home. Rev. Financ. Stud. 2021, 34, 5188–5223. [Google Scholar] [CrossRef]
- Yilmazkuday, H. COVID-19 Spread and Inter-County Travel: Daily Evidence from the U.S. Transp. Res. Interdiscip. Perspect. 2020, 8, 100244. [Google Scholar] [CrossRef]
- Mogaji, E.; Adekunle, I.; Aririguzoh, S.; Oginni, A. Dealing with Impact of COVID-19 on Transportation in a Developing Country: Insights and Policy Recommendations. Transp. Policy 2022, 116, 304–314. [Google Scholar] [CrossRef]
- Kaur, H.; Garg, S.; Joshi, H.; Ayaz, S.; Sharma, S.; Bhandari, M. A Review: Epidemics and Pandemics in Human History. Int. J. Pharma Res. Health Sci. 2020, 8, 3139–3142. [Google Scholar] [CrossRef]
- Heiler, G.; Reisch, T.; Hurt, J.; Forghani, M.; Omani, A.; Hanbury, A.; Karimipour, F. Country-Wide Mobility Changes Observed Using Mobile Phone Data During COVID-19 Pandemic. In Proceedings of the 2020 IEEE International Conference on Big Data (Big Data), Atlanta, GA, USA, 10–13 December 2020; pp. 3123–3132. [Google Scholar]
- Fernando, R.; Wang, H.; Zhang, Y.; Prakash, M.; Debnath, A. The Effects of Travel Containment Measures within COVID-19. In Proceedings of the 2020 24th International Conference Information Visualisation (IV), Melbourne, Australia, 7–11 September 2020; pp. 403–408. [Google Scholar]
- Delso, J.; Martín, B.; Ortega, E. A New Procedure Using Network Analysis and Kernel Density Estimations to Evaluate the Effect of Urban Configurations on Pedestrian Mobility. The Case Study of Vitoria–Gasteiz. J. Transp. Geogr. 2018, 67, 61–72. [Google Scholar] [CrossRef]
- Mohan, D.; Tiwari, G. Mobility, environment and safety in megacities. IATSS Res. 2000, 24, 39–46. [Google Scholar] [CrossRef]
- Bruns, A.; Matthes, G. Moving into and within Cities—Interactions of Residential Change and the Travel Behavior and Implications for Integrated Land Use and Transport Planning Strategies. Travel. Behav. Soc. 2019, 17, 46–61. [Google Scholar] [CrossRef]
- De Vos, J.; Ettema, D.; Witlox, F. Changing Travel Behaviour and Attitudes following a Residential Relocation. J. Transp. Geogr. 2018, 73, 131–147. [Google Scholar] [CrossRef]
- Cao, J.; Ermagun, A. Influences of LRT on Travel Behaviour: A Retrospective Study on Movers in Minneapolis. Urban Stud. 2017, 54, 2504–2520. [Google Scholar] [CrossRef]
- Stevens, M.R. Does Compact Development Make People Drive Less? J. Am. Plan. Assoc. 2017, 83, 7–18. [Google Scholar] [CrossRef]
- Wang, D.; Lin, T. Built Environment, Travel Behavior, and Residential Self-Selection: A Study Based on Panel Data from Beijing, China. Transportation 2019, 46, 51–74. [Google Scholar] [CrossRef]
- Xiao, G.; Chen, L.; Chen, X.; Jiang, C.; Ni, A.; Zhang, C.; Zong, F. A Hybrid Visualization Model for Knowledge Mapping: Scientometrics, SAOM, and SAO. IEEE Trans. Intell. Transp. Syst. 2024; 1–14, Early Access. [Google Scholar] [CrossRef]
- Olayode, I.O.; Severino, A.G.; Campisi, T.; Tartibu, L.K. Comprehensive Literature Review on the Impacts of COVID-19 Pandemic on Public Road Transportation System: Challenges and Solutions. Sustainability 2022, 14, 9586. [Google Scholar] [CrossRef]
- Echaniz, E.; Rodríguez, A.; Cordera, R.; Benavente, J.; Alonso, B.; Sañudo, R. Behavioural Changes in Transport and Future Repercussions of the COVID-19 Outbreak in Spain. Transp. Policy 2021, 111, 38–52. [Google Scholar] [CrossRef]
- Molloy, J.; Schatzmann, T.; Schoeman, B.; Tchervenkov, C.; Hintermann, B.; Axhausen, K.W. Observed Impacts of the COVID-19 First Wave on Travel Behaviour in Switzerland Based on a Large GPS Panel. Transp. Policy 2021, 104, 43–51. [Google Scholar] [CrossRef]
- Tarkowski, M.; Puzdrakiewicz, K.; Jaczewska, J.; Połom, M. COVID-19 Lockdown in Poland—Changes in Regional and Local Mobility Patterns Based on Google Maps Data. Pr. Kom. Geogr. Komun. PTG 2020, 23, 46–55. [Google Scholar] [CrossRef]
- Cartenì, A.; Di Francesco, L.; Martino, M. How Mobility Habits Influenced the Spread of the COVID-19 Pandemic: Results from the Italian Case Study. Sci. Total Environ. 2020, 741, 140489. [Google Scholar] [CrossRef] [PubMed]
- Engle, S.; Stromme, J.; Zhou, A. Staying at Home: Mobility Effects of COVID-19. SSRN Electron. J. 2020, 4, 86–102. [Google Scholar] [CrossRef]
- Borkowski, P.; Jażdżewska-Gutta, M.; Szmelter-Jarosz, A. Mobilność Mieszkańców Polski w Czasie Epidemii Koronawirusa; Uniwersytet Gdański: Sopot, Poland, 2020. [Google Scholar]
- Geirdal, A.K.Ø.; Price, D.; Schoultz, M.; Thygesen, H.; Ruffolo, M.; Leung, J.; Bonsaksen, T. The Significance of Demographic Variables on Psychosocial Health from the Early Stage and Nine Months after the COVID-19 Pandemic Outbreak. A Cross-National Study. Int. J. Environ. Res. Public Health 2021, 18, 4345. [Google Scholar] [CrossRef] [PubMed]
- Zammitti, A.; Imbrogliera, C.; Russo, A.; Zarbo, R.; Magnano, P. The Psychological Impact of Coronavirus Pandemic Restrictions in Italy. The Mediating Role of the Fear of COVID-19 in the Relationship between Positive and Negative Affect with Positive and Negative Outcomes. Eur. J. Investig. Health Psychol. Educ. 2021, 11, 697–710. [Google Scholar] [CrossRef]
- Lateef, R.; Alaggia, R.; Collin-Vézina, D. A Scoping Review on Psychosocial Consequences of Pandemics on Parents and Children: Planning for Today and the Future. Child. Youth Serv. Rev. 2021, 125, 106002. [Google Scholar] [CrossRef]
- Dubey, S.; Biswas, P.; Ghosh, R.; Chatterjee, S.; Dubey, M.J.; Chatterjee, S.; Lahiri, D.; Lavie, C.J. Psychosocial Impact of COVID-19. Diabetes Metab. Syndr. Clin. Res. Rev. 2020, 14, 779–788. [Google Scholar] [CrossRef]
- Yap, M.; Wong, H.; Cats, O. Public Transport Crowding Valuation in a Post-Pandemic Era. Transportation 2023, 1–20. [Google Scholar] [CrossRef]
- Shibayama, T.; Sandholzer, F.; Laa, B.; Brezina, T. Impact of COVID-19 Lockdown on Commuting. Eur. J. Transp. Infrastruct. Res. 2021, 21, 70–93. [Google Scholar] [CrossRef]
- Turoń, K.; Kubik, A. Transport Policies and Business Practices during COVID-19 and Their Impact on the Management of New Transport Mobility Systems—Introductory Part. In Proceedings of the 12th International Scientific Conference “Business and Management 2022”, Vilnius, Lithuania, 12–13 May 2022. [Google Scholar]
- Cochran, A.L. Impacts of COVID-19 on Access to Transportation for People with Disabilities. Transp. Res. Interdiscip. Perspect. 2020, 8, 100263. [Google Scholar] [CrossRef]
- Yang, M.; Han, C.; Cui, Y.; Zhao, Y. COVID-19 and Mobility in Tourism Cities: A Statistical Change-Point Detection Approach. J. Hosp. Tour. Manag. 2021, 47, 256–261. [Google Scholar] [CrossRef]
- Politis, I.; Georgiadis, G.; Papadopoulos, E.; Fyrogenis, I.; Nikolaidou, A.; Kopsacheilis, A.; Sdoukopoulos, A.; Verani, E. COVID-19 Lockdown Measures and Travel Behavior: The Case of Thessaloniki, Greece. Transp. Res. Interdiscip. Perspect. 2021, 10, 100345. [Google Scholar] [CrossRef] [PubMed]
- Pawar, D.S.; Yadav, A.K.; Choudhary, P.; Velaga, N.R. Modelling Work- and Non-Work-Based Trip Patterns during Transition to Lockdown Period of COVID-19 Pandemic in India. Travel. Behav. Soc. 2021, 24, 46–56. [Google Scholar] [CrossRef] [PubMed]
- Semple, T.; Fountas, G.; Fonzone, A. Trips for Outdoor Exercise at Different Stages of the COVID-19 Pandemic in Scotland. J. Transp. Health 2021, 23, 101280. [Google Scholar] [CrossRef] [PubMed]
- Kumagai, N. The Impact of the COVID-19 Pandemic on Physician Visits in Japan. Front. Public Health 2021, 9, 743371. [Google Scholar] [CrossRef]
- Harris, J.E. Mobility Was a Significant Determinant of Reported COVID-19 Incidence during the Omicron Surge in the Most Populous, U.S. Counties. BMC Infect. Dis. 2022, 22, 691. [Google Scholar] [CrossRef]
- Kephart, J.L.; Delclòs-Alió, X.; Rodríguez, D.A.; Sarmiento, O.L.; Barrientos-Gutiérrez, T.; Ramirez-Zea, M.; Quistberg, D.A.; Bilal, U.; Diez Roux, A.V. The Effect of Population Mobility on COVID-19 Incidence in 314 Latin American Cities: A Longitudinal Ecological Study with Mobile Phone Location Data. Lancet Digit. Health 2021, 3, e716–e722. [Google Scholar] [CrossRef]
- Tokey, A.I. Spatial Association of Mobility and COVID-19 Infection Rate in the USA: A County-Level Study Using Mobile Phone Location Data. J. Transp. Health 2021, 22, 101135. [Google Scholar] [CrossRef]
- Chinazzi, M.; Davis, J.T.; Ajelli, M.; Gioannini, C.; Litvinova, M.; Merler, S.; Pastore y Piontti, A.; Mu, K.; Rossi, L.; Sun, K.; et al. The Effect of Travel Restrictions on the Spread of the 2019 Novel Coronavirus (COVID-19) Outbreak. Science 2020, 368, 395–400. [Google Scholar] [CrossRef] [PubMed]
- Aloi, A.; Alonso, B.; Benavente, J.; Cordera, R.; Echániz, E.; González, F.; Ladisa, C.; Lezama-Romanelli, R.; López-Parra, Á.; Mazzei, V.; et al. Effects of the COVID-19 Lockdown on Urban Mobility: Empirical Evidence from the City of Santander (Spain). Sustainability 2020, 12, 3870. [Google Scholar] [CrossRef]
- Vannoni, M.; McKee, M.; Semenza, J.C.; Bonell, C.; Stuckler, D. Using Volunteered Geographic Information to Assess Mobility in the Early Phases of the COVID-19 Pandemic: A Cross-City Time Series Analysis of 41 Cities in 22 Countries from March 2nd to 26th 2020. Global Health 2020, 16, 85. [Google Scholar] [CrossRef] [PubMed]
- Shortall, R.; Mouter, N.; van Wee, B. COVID-19 and Transport. A Review of Factors of Relevance to the Design of Measures and Their Effects Worldwide. Eur. J. Transp. Infrastruct. Res. 2022, 22, 118–130. [Google Scholar]
- Cho, S.-H.; Park, H.-C. Exploring the Behaviour Change of Crowding Impedance on Public Transit Due to COVID-19 Pandemic: Before and After Comparison. Transp. Lett. 2021, 13, 367–374. [Google Scholar] [CrossRef]
- Wolański, M.; Czerliński, M.; Kozłowska, P.; Paczek, P.; Makurat, D.; Kaczorowski, J. Analiza Wpływu COVID-19 Na Transport Publiczny w Miastach; Raport Końcowy Centrum Unijnych Projektów Transportowych: Warszawa, Poland, 2021. [Google Scholar]
- Bouhouras, E.; Basbas, S.; Ftergioti, S.; Paschalidis, E.; Siakantaris, H. COVID-19′s Pandemic Effects on Bike Sharing Systems: A New Reality for Urban Mobility? Appl. Sci. 2022, 12, 1230. [Google Scholar] [CrossRef]
- Hook, H.; De Vos, J.; Van Acker, V.; Witlox, F. Evolutions in undirected travel (satisfaction) during the COVID-19 pandemic. Transp. Res. Part F: Traffic Psychol. Behav. 2023, 94, 99–113. [Google Scholar] [CrossRef]
- Wiśniewski, S.; Borowska-Stefańska, M.; Dulebenets, M.; Kowalski, M.; Masierek, E. Changeability of Transport Behaviour in a Large City from the Perspective of Working Days and Sundays: The Case of Łódź, Poland. Morav. Geogr. Rep. 2023, 31, 14–26. [Google Scholar] [CrossRef]
- GUS. Główny Urząd Statystyczny. 2022. Available online: https://stat.gov.pl/ (accessed on 15 January 2024).
- Wójcik, S. Determinanty Zachowań Transportowych Mieszkańców Łodzi; Wydawnictwo Uniwersytetu Łódzkiego: Łódź, Poland, 2020. [Google Scholar]
- ITS Prezeglad. Aktualizacja Studium Systemu Transportowego Dla Miasta Łodzi; ITS Prezeglad: Łódź, Poland, 2013. [Google Scholar]
- Borowska-Stefańska, M.; Dulebenets, M.A.; Horňák, M.; Kowalski, M.; Kozłowski, D.; Turoboś, F.; Wiśniewski, S. Assessing the Effects of Sunday Shopping Restrictions on Urban Mobility Patterns in Poland. J. Transp. Geogr. 2023, 113, 103741. [Google Scholar] [CrossRef]
- Szarata, A. Wyniki Badań Podróży w Krakowie–KBR 2013. Transp. Miej. Reg. 2015, 5, 4–8. [Google Scholar]
- Tom Tom Traffic Index. 2023. Available online: https://www.tomtom.com/traffic-index/ (accessed on 15 January 2024).
- Richardson, A.J.; Ampt, E.S.; Meyburg, A.H. Survey Methods for Transport Planning; Eucalyptus Press: Melbourne, Australia, 1995. [Google Scholar]
- Kowalski, M.; Wiśniewski, S. Natężenie Ruchu a Zagospodarowanie Łodzi–Zarys Problematyki w Świetle Danych z Obszarowego Systemu Sterowania Ruchem. Pr. Kom. Geogr. Komun. PTG 2017, 20, 20–36. [Google Scholar] [CrossRef]
- Oskarbski, J.; Miszewski, M.; Zawisza, M.; Żarski, K. Zasilanie Modeli Systemów Transportowych Danymi z Systemu Zarządzania Ruchem. Zesz. Nauk. Tech. Stowarzyszenia Inżynierów Tech. Komun. W Krakowie. Ser. Mater. Konf. 2014, 1, 279–290. [Google Scholar]
- Szarata, A. Budowa Modelu Symulacyjnego Województwa Małopolskiego–Model Popytu. Transp. Miej. Reg. 2013, 10, 17–21. [Google Scholar]
- Bernardin, V.L.; Trevino, S.; Slater, G.; Gliebe, J. Simultaneous Travel Model Estimation from Survey Data and Traffic Counts. Transp. Res. Rec. 2015, 2494, 69–76. [Google Scholar] [CrossRef]
- Blair, R.C.; Higgins, J.J. A Comparison of the Power of Wilcoxon’s Rank-Sum Statistic to That of Student’s t Statistic under Various Nonnormal Distributions. J. Educ. Stat. 1980, 5, 309–335. [Google Scholar] [CrossRef]
- Bonnel, P.; Le Nir, M. The Quality of Survey Data: Telephone versus Face-to-Face Interviews. Transportation 1998, 25, 147–167. [Google Scholar] [CrossRef]
- Borowska-Stefańska, M.; Kowalski, M.; Kurzyk, P.; Mikušová, M.; Wiśniewski, S. Application of Intelligent Transportation Systems in Analyses of Human Spatial Mobility in Cities. Pr. Kom. Geogr. Komun. PTG 2021, 24, 7–30. [Google Scholar] [CrossRef]
- Li, S.; Dragicevic, S.; Castro, F.A.; Sester, M.; Winter, S.; Coltekin, A.; Pettit, C.; Jiang, B.; Haworth, J.; Stein, A.; et al. Geospatial Big Data Handling Theory and Methods: A Review and Research Challenges. ISPRS J. Photogramm. Remote Sens. 2016, 115, 119–133. [Google Scholar] [CrossRef]
- Kowalski, M.; Wiśniewski, S. Centrum Handlowe Jako Czynnik Ruchotwórczy w Transporcie Samochodowym–Przykład Portu Łódź. Prz. Geogr. 2017, 89, 617–639. [Google Scholar] [CrossRef]
- Po, L.; Rollo, F.; Bachechi, C.; Corni, A. From Sensors Data to Urban Traffic Flow Analysis. In Proceedings of the 2019 IEEE International Smart Cities Conference (ISC2), Casablanca, Morocco, 14–17 October 2019; pp. 478–485. [Google Scholar]
- Borowska-Stefańska, M.; Kowalski, M.; Kurzyk, P.; Sahebgharani, A.; Wiśniewski, S. Spatiotemporal Changeability of the Load of the Urban Road Transport System under Permanent and Short-Term Legal and Administrative Retail Restrictions. Sustainability 2022, 14, 5137. [Google Scholar] [CrossRef]
- Borowska-Stefańska, M.; Kowalski, M.; Kurzyk, P.; Sahebgharani, A.; Sapińska, P.; Wiśniewski, S.; Goniewicz, K.; Dulebenets, M.A. Assessing the Impacts of Sunday Trading Restrictions on Urban Public Transport: An Example of a Big City in Central Poland. J. Public Trans. 2023, 25, 100049. [Google Scholar] [CrossRef]
- Christidis, P.; Christodoulou, A.; Navajas-Cawood, E.; Ciuffo, B. The Post-Pandemic Recovery of Transport Activity: Emerging Mobility Patterns and Repercussions on Future Evolution. Sustainability 2021, 13, 6359. [Google Scholar] [CrossRef]
- MPK. Sprawozdanie z Działalności MPK-Łódź Spółka z o.o. Za 2021 Rok—Informacje Rzeczowo-Finansowe; Miejskie Przedsiębiorstwo Komunikacyjne: Łódź, Poland, 2022. [Google Scholar]
- Zhao, P.; Gao, Y. Public Transit Travel Choice in the Post COVID-19 Pandemic Era: An Application of the Extended Theory of Planned Behavior. Travel. Behav. Soc. 2022, 28, 181–195. [Google Scholar] [CrossRef] [PubMed]
- Ong, F.; Loa, P.; Nurul Habib, K. A Behavioural Analysis of Post-Pandemic Modality Profiles for Non-Commuting Trips in the Greater Toronto Area. Travel. Behav. Soc. 2024, 34, 100690. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, X.C.; Dai, J.; Li, X.; Li, R. Impacts of COVID-19 Pandemic on Travel Behavior in Large Cities of China: Investigation on the Lockdown and Reopening Phases. J. Transp. Eng. A Syst. 2022, 148, 05021011. [Google Scholar] [CrossRef]
- Ehsani, J.P.; Michael, J.P.; Duren, M.L.; Mui, Y.; Porter, K.M.P. Mobility Patterns Before, During, and Anticipated after the COVID-19 Pandemic: An Opportunity to Nurture Bicycling. Am. J. Prev. Med. 2021, 60, e277–e279. [Google Scholar] [CrossRef]
- Ahlers, E.; Mierich, S.; Zucco, A. Homeoffice: Was wir aus der Zeit der Pandemie für die zukünftige Gestaltung von Homeoffice Lernen; WSI Report No. 65, Hans-Böckler-Stiftung; Wirtschafts- und Sozialwissenschaftliches Institut (WSI): Düsseldorf, Germany, 2021; Available online: http://hdl.handle.net/10419/233635 (accessed on 15 January 2024).
- Kellermann, R.; Sivizaca Conde, D.; Rößler, D.; Kliewer, N.; Dienel, H.-L. Mobility in Pandemic Times: Exploring Changes and Long-Term Effects of COVID-19 on Urban Mobility Behavior. Transp. Res. Interdiscip. Perspect. 2022, 15, 100668. [Google Scholar] [CrossRef]
Transport Modes | Share of Transport Modes [%] | ||
---|---|---|---|
Year | |||
1995 | 2013 | 2021 | |
on foot | 27 | 27.4 | 10.8 |
public transport | 52 | 45.5 | 15.8 |
car | 20 | 24.6 | 70.7 |
bicycle | 1 | 1.8 | 1.3 |
Respondent’s particulars | Household | Total number of members No. of people under 6 years of age No. of cars No. of bicycles (not including children’s bikes) No. of motorcycles/mopeds Net income per capita |
Respondent | Gender Age Address of residence Type of housing Education Driving licence Primary occupation Place of employment/school | |
Questions about transport behaviour in 2019 and 2022 | Changes in transport behaviour | Frequency of each daily mobility in 2019 Frequency of each daily mobility in 2022 Changes in frequency of each daily mobility Reasons for changes in frequency of each daily mobility Preferred means of transport of each daily mobility in 2019 Preferred means of transport of each daily mobility in 2022 Changes in preferred means of transport of each daily mobility Reasons for changes in preferred means of transport of each daily mobility Time of displacements of each daily mobility in 2019 Time of displacements of each daily mobility in 2022 Changes in time of displacements of each daily mobility Reasons for changes in time of displacements of each daily mobility |
Characteristics N = 500 | Total Sample [%] | Characteristics of Inhabitants 18+ of Łódź (2021) | Total [%] |
---|---|---|---|
Gender | Gender | ||
Female | 56 | Female (18+) | 55.42 |
Male | 44 | Male (18+) | 44.57 |
Age | Age | ||
18–29 | 10.6 | 18–29 | 14.10 |
30–39 | 15.2 | 30–39 | 18.19 |
40–49 | 17 | 40–49 | 17.76 |
50–59 | 12.6 | 50–59 | 13.05 |
60 and over | 44.6 | 60 and over | 36.90 |
Daily Mobility | The Wilcoxon Result Statistic | p-Value |
---|---|---|
remote working | 299.0 | 0.0006039711729740746 |
working outside the home | 1890.0 | 0.011091331445240387 |
pursuing religious activities | 119.0 | 0.011091331445240387 |
entertainment and culture | 3854.5 | 0.0009923016731719998 |
tourism | 3339.0 | 0.028034371141600654 |
recreation/sports and hobbies | 2511.0 | 0.041368595468895326 |
Daily Mobility | The Wilcoxon Result Statistic | p-Value |
---|---|---|
working outside the home | 3487.5 | 0.028660785532901547 |
entertainment and culture | 927.5 | 1.060176566858605 × 10−6 |
tourism | 971.5 | 4.222586356576828 × 10−11 |
recreation/sports and hobbies | 1372.5 | 0.02083562081460548 |
eating out | 1838.0 | 0.0034904468435099914 |
dropping off or collecting other persons | 125.5 | 0.026884239798445307 |
school education | 7.0 | 0.020231306339527272 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borowska-Stefańska, M.; Dulebenets, M.A.; Koneczny, P.; Kowalski, M.; Masierek, E.; Turoboś, F.; Wiśniewski, S. Changes to the Transport Behaviour of Inhabitants of a Large City Due the Pandemic. Sustainability 2024, 16, 2568. https://doi.org/10.3390/su16062568
Borowska-Stefańska M, Dulebenets MA, Koneczny P, Kowalski M, Masierek E, Turoboś F, Wiśniewski S. Changes to the Transport Behaviour of Inhabitants of a Large City Due the Pandemic. Sustainability. 2024; 16(6):2568. https://doi.org/10.3390/su16062568
Chicago/Turabian StyleBorowska-Stefańska, Marta, Maxim A. Dulebenets, Piotr Koneczny, Michał Kowalski, Edyta Masierek, Filip Turoboś, and Szymon Wiśniewski. 2024. "Changes to the Transport Behaviour of Inhabitants of a Large City Due the Pandemic" Sustainability 16, no. 6: 2568. https://doi.org/10.3390/su16062568
APA StyleBorowska-Stefańska, M., Dulebenets, M. A., Koneczny, P., Kowalski, M., Masierek, E., Turoboś, F., & Wiśniewski, S. (2024). Changes to the Transport Behaviour of Inhabitants of a Large City Due the Pandemic. Sustainability, 16(6), 2568. https://doi.org/10.3390/su16062568