Analysis of Pros and Cons in Using the Water–Energy–Food Nexus Approach to Assess Resource Security: A Review
Abstract
:1. Introduction
- How many frameworks exist worldwide and why?
- Is the spectrum of frameworks related to the need to answer different questions in different socio-economic and environmental settings?
- In which countries have nexus studies been mainly developed and why?
- Is climate change taken into account in nexus studies and how?
- On the whole, what types of nexus approaches are available in the scientific literature?
- Finally, which are the main research gaps and limitations in actual nexus methods?
2. Materials and Methods
- Conducting a search by using different databases that can cover all of the related papers. It was necessary to use a variety of databases to make sure that all of the relevant databases have been included. Scopus, Web of Science, PubMed, Google Scholar, and Science Direct were used as databases because they are secure databases. Only research in English was considered. Unpublished abstracts, articles, reviews, and dissertations were excluded.
- Finding suitable keywords that can help to solve research questions.
- Review papers: the process of selecting relevant papers involved assessing exclusion and inclusion criteria and quality evaluation. In the initial stage, the abstract and title were used to find relevant studies. Non-relevant papers, as according to the abstract and title, were omitted. Then, the relevant papers that can address the research questions were reviewed.
- Summarizing the results: all of the results were written and summarized [34].
3. Results
3.1. Overview on Different WEF Nexus Frameworks
3.2. Nexus Studies Worldwide
3.3. Climate Change within WEF Nexus Studies
Modeling Approach | Country | Nexus Method | Climate Change Scenarios | Author |
---|---|---|---|---|
SDM | Iran | WEFLC nexus | RCP2.5 to RCP8 | [77] |
WEAP | Arizona | WEFC nexus | RCP4.5 & RCP8.5 | [78] |
WEAP+LEAP | California | WEFC nexus | GCM (general circulation model | [79] |
WEAP+LEAP | EU | WEC nexus | RC8.5 | [80] |
Multi-Criteria Decision Analysis+Driver-Pressure-State-Impact-Response (DPS) | The Netherlands | WEFLC nexus | [81] | |
Canada | WEFC nexus | GCM (general circulation model) | [82] | |
China | WEFLC nexus | RCP | [83] | |
WEAP-LEAP | California | WEFC ecosystem | [65] | |
WEAP-LEAP | Turkey | WEFC nexus | different scenarios | [84] |
WEAP-LEAP (Multi-Criteria Decision Analysis) | Iran | WEFC environment nexus | RCP8.5 RCP4.5 | [85] |
3.4. Different Kinds of Nexus Approaches
3.5. Applicability of the WEF Nexus Approach
3.6. Main Research Gaps and Limitations in Nexus Methods
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
WEF nexus | Water–Energy–Food nexus |
WE nexus | Water–Energy nexus |
WEFLC nexus | Water–Energy–Food–Land–Climate nexus |
WEFC nexus | Water–Energy–Food–Climate nexus |
LWE nexus | Land–Water–Energy nexus |
LCA | Life Cycle Assessment |
GCM | General Circulation Model |
SWAT | Soil Water Assessment Tools |
WEAP | Water Evaluation and Planning |
LEAP | Long-range Energy Alternatives Planning |
References
- Markantonis, V.; Reynaud, A.; Karabulut, A.; El Hajj, R.; Altinbilek, D.; Awad, I.M.; Bruggeman, A.; Constantianos, V.; Mysiak, J.; Lamaddalena, N. Can the implementation of the water-energy-food nexus support economic growth in the Mediterranean region? The current status and the way forward. Front. Environ. Sci. 2019, 7, 84. [Google Scholar] [CrossRef]
- De Laurentiis, V.; Hunt, D.V.L.; Rogers, C.D.F. Overcoming food security challenges within an energy/water/food nexus (EWFN) approach. Sustainability 2016, 8, 95. [Google Scholar] [CrossRef]
- Hoff, H. Understanding the Nexus. In Proceedings of the Background Paper for the Bonn2011 Nexus Conference: The Water, Energy and Food Security Nexus, Bonn, Germany, 16–18 November 2011; Stockholm Environment Institute: Stockholm, Sweden, 2011. [Google Scholar]
- Wu, L.; Elshorbagy, A.; Pande, S.; Zhuo, L. Trade-offs and synergies in the water-energy-food nexus: The case of Saskatchewan, Canada. Resour. Conserv. Recycl. 2021, 164, 105192. [Google Scholar] [CrossRef]
- Bazilian, M.; Rogner, H.; Howells, M.; Hermann, S.; Arent, D.; Gielen, D.; Steduto, P.; Mueller, A.; Komor, P.; Tol, R.S.J.; et al. Considering the energy, water and food nexus: Towards an integrated modelling approach. Energy Policy 2011, 39, 7896–7906. [Google Scholar] [CrossRef]
- Olsson, G. Water, energy and food interactions—Challenges and opportunities. Front. Environ. Sci. Eng. 2013, 7, 787–793. [Google Scholar] [CrossRef]
- Bizikova, L.; Roy, D.; Swanson, D.; Venema, H.D.; McCandless, M. The Water-Energy-Food Security Nexus: Towards a Practical Planning and Decision-Support Framework for Landscape Investment and Risk Management; IISD Report; International Institute for Sustainable Development (IISD): Winnipeg, MB, Canada, 2013; Available online: https://www.iisd.org/system/files/publications/wef_nexus_2013.pdf (accessed on 28 March 2023).
- FAO. The Water-Energy-Food Nexus at FAO: Concept Note; FAO: Rome, Italy, 2014; pp. 1–14. [Google Scholar]
- Aboelnga, H.T.; Khalifa, M.; McNamara, I.; Ribbe, L.; Sycz, J. Focus: Water—Energy—Food Security Nexus. 2015, 43, 1–13. Available online: https://www.entwicklung.at/fileadmin/user_upload/Dokumente/Publikationen/Fokuspapiere/Englisch/Focus_Nexus.pdf (accessed on 2 February 2023).
- Foden, M.; Browne, A.L.; Evans, D.M.; Sharp, L.; Watson, M. The water–energy–food nexus at home: New opportunities for policy interventions in household sustainability. Geogr. J. 2019, 185, 406–418. [Google Scholar] [CrossRef]
- Artioli, F.; Acuto, M.; McArthur, J. The water-energy-food nexus: An integration agenda and implications for urban governance. Polit. Geogr. 2017, 61, 215–223. [Google Scholar] [CrossRef]
- Li, M.; Fu, Q.; Singh, V.P.; Liu, D.; Li, J. Optimization of sustainable bioenergy production considering energy-food-water-land nexus and livestock manure under uncertainty. Agric. Syst. 2020, 184, 102900. [Google Scholar] [CrossRef]
- Norouzi, N.; Kalantari, G. The food-water-energy nexus governance model: A case study for Iran. Water-Energy Nexus 2020, 3, 72–80. [Google Scholar] [CrossRef]
- Singh, S.; Tayal, S. Managing Food at Urban Level through Water–Energy–Food Nexus in India: A Way Towards Holistic Sustainable Development; Springer: Berlin/Heidelberg, Germany, 2021; Volume 24, pp. 3640–3658. [Google Scholar]
- Zarei, M. The water-energy-food nexus: A holistic approach for resource security in Iran, Iraq, and Turkey. Water-Energy Nexus 2020, 3, 81–94. [Google Scholar] [CrossRef]
- Kibaroglu, A.; Gürsoy, S.I. Water–energy–food nexus in a transboundary context: The Euphrates–Tigris river basin as a case study. Water Int. 2015, 40, 824–838. [Google Scholar] [CrossRef]
- Elsayed, H.; Djordjevic, S.; Savic, D.; Tsoukalas, I.; Makropoulos, C. Water-food-energy nexus for transboundary cooperation in Eastern Africa. Water Supply 2022, 22, 3567–3587. [Google Scholar] [CrossRef]
- Senzanje, A.; Mudhara, M.; Tirivamwe, L. Chapter 10—The Water–Energy–Food Nexus as an Approach for Achieving Sustainable Development Goals 2 (Food), 6 (Water), and 7 (Energy). In Water-Energy-Food Nexus Narratives and Resource Securities; Elsevier: Amsterdam, The Netherlands, 2022; pp. 181–198. ISBN 978-0-323-91223-5. [Google Scholar]
- Moghadam, E.S.; Sadeghi, S.H.R.; Zarghami, M.; Delavar, M. Water-energy-food nexus as a new approach for watershed resources management: A review. Environ. Resour. Res. 2019, 7, 129. [Google Scholar]
- Smajgl, A.; Ward, J.; Pluschke, L. The water–food–energy Nexus—Realising a new paradigm. J. Hydrol. 2016, 533, 533–540. [Google Scholar] [CrossRef]
- FAO The Water-Energy-Food Nexus: A New Approach in Support of Food Security and Sustainable Agriculture; FAO: Rome, Italy, 2014.
- Simpson, G.B.; Jewitt, G.P.W. The development of the water-energy-food nexus as a framework for achieving resource security: A review. Front. Environ. Sci. 2019, 7, 8. [Google Scholar] [CrossRef]
- Benson, D.; Gain, A.K.; Rouillard, J.J. Water governance in a comparative perspective: From IWRM to a “nexus” approach? Water Altern. 2015, 8, 756–773. [Google Scholar]
- Muller, M. The “nexus” as a step back towards a more coherent water resource management paradigm. Water Altern. 2015, 8, 675–694. [Google Scholar]
- Wichelns, D. The water-energy-food nexus: Is the increasing attention warranted, from either a research or policy perspective? Environ. Sci. Policy 2017, 69, 113–123. [Google Scholar] [CrossRef]
- Simon, D. Our common future: Report of the world commission on environment and development (book review). Third World Plann. Rev. 1987, 9, 285. [Google Scholar] [CrossRef]
- Martin-Nagle, R.; Howard, E.; Wiltse, A.; Duncan, D. The Water, Energy and Food Security Nexus: Solutions for the Green Economy. Conference Synopsis, (February 12), Inida. Available online: https://wocatpedia.net/wiki/The_Water,_Energy_and_Food_Security_Nexus_-_Solutions_for_the_Green_Economy (accessed on 2 March 2023).
- ICIMOD. Contribution of Himalayan Ecosystems to Water, Energy and Food Security in South Asia: A Nexus Approach; ICIMOD: Kathmandu, Nepal, 2012; Available online: https://www.fao.org/fileadmin/user_upload/mountain_partnership/docs/icimod-contribution_of_himalayan_ecosystems_to_water,_energy,_and_food_security_in_south_asia__a_nexus_appr.pdf (accessed on 15 April 2023).
- Andrews-Speed, P.; Bleischwitz, R.; Boersma, T.; Johnson, C.; Kemp, G.; VanDeveer, S.D. The Global Resource Nexus: The Struggles for Land, Energy, Food, Water, and Minerals; Transatlantic Academy: Washington, DC, USA, 2012. [Google Scholar]
- Howells, M.; Hermann, S.; Welsch, M.; Bazilian, M.; Segerström, R.; Alfstad, T.; Gielen, D.; Rogner, H.; Fischer, G.; van Velthuizen, H.; et al. Integrated analysis of climate change, land-use, energy and water strategies. Nat. Clim. Chang. 2013, 3, 621–626. [Google Scholar] [CrossRef]
- UNECE. Reconciling Resource Uses in Transboundary Basins: Assessment of the Water-Food-Energy-Ecosystems Nexus; UNECE: Geneva, Switzerland, 2015. [Google Scholar]
- Tidwell, T.L. Nexus between food, energy, water, and forest ecosystems in the USA. J. Environ. Stud. Sci. 2016, 6, 214–224. [Google Scholar] [CrossRef]
- Hatfield, J.L.; Sauer, T.J.; Cruse, R.M. Chapter One—Soil: The Forgotten Piece of the Water, Food, Energy Nexus. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Cambridge, MA, USA, 2017; Volume 143, pp. 1–46. [Google Scholar]
- Demiris, G.; Oliver, D.P.; Washington, K.T. Chapter 3—Defining and Analyzing the Problem. In Behavioral Intervention Research in Hospice and Palliative Care; Demiris, G., Oliver, D.P., Washington, K.T., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 27–39. ISBN 978-0-12-814449-7. [Google Scholar]
- Middleton, C.; Allouche, J.; Gyawali, D.; Allen, S. The rise and implications of the water-energy-food nexus in Southeast Asia through an environmental justice lens. Water Altern. 2015, 8, 627–654. [Google Scholar]
- Endo, A.; Burnett, K.; Orencio, P.M.; Kumazawa, T.; Wada, C.A.; Ishii, A.; Tsurita, I.; Taniguchi, M. Methods of the water-energy-food nexus. Water 2015, 7, 5806–5830. [Google Scholar] [CrossRef]
- Allouche, J.; Middleton, C.; Gyawali, D. The Water–Food–Energy Nexus: Power, Politics, and Justice, 1st ed.; Routledge: Oxfordshire, UK, 2019. [Google Scholar]
- Mitchell, B.; Bellette, K.; Richardson, S. ‘Integrated’approaches to water and natural resources management in South Australia. Int. J. Water Resour. Dev. 2015, 31, 718–731. [Google Scholar] [CrossRef]
- Mabrey, D.; Vittorio, M. Moving from theory to practice in the water–energy–food nexus: An evaluation of existing models and frameworks. Water-Energy Nexus 2018, 1, 17–25. [Google Scholar]
- Melo, F.P.L.; Parry, L.; Brancalion, P.H.S.; Pinto, S.R.R.; Freitas, J.; Manhães, A.P.; Meli, P.; Ganade, G.; Chazdon, R.L. Adding forests to the water–energy–food nexus. Nat. Sustain. 2021, 4, 85–92. [Google Scholar] [CrossRef]
- Yue, Q.; Guo, P. Managing agricultural water-energy-food-environment nexus considering water footprint and carbon footprint under uncertainty. Agric. Water Manag. 2021, 252, 106899. [Google Scholar] [CrossRef]
- Mirzaei, A.; Abdeshahi, A.; Azarm, H.; Naghavi, S. New design of water-energy-food-environment nexus for sustainable agricultural management. Stoch. Environ. Res. Risk Assess. 2021, 9, 1861–1874. [Google Scholar] [CrossRef]
- Correa-Cano, M.E.; Salmoral, G.; Rey, D.; Knox, J.W.; Graves, A.; Melo, O.; Foster, W.; Naranjo, L.; Zegarra, E.; Johnson, C.; et al. A novel modelling toolkit for unpacking the Water-Energy-Food-Environment (WEFE) nexus of agricultural development. Renew. Sustain. Energy Rev. 2022, 159, 112182. [Google Scholar] [CrossRef]
- Hatfield, J.L. Soil degradation, land use, and sustainability. In Convergence of Food Security, Energy Security and Sustainable Agriculture; Springer: Berlin/Heidelberg, Germany, 2014; pp. 61–74. [Google Scholar]
- Karnib, A. Water-Energy-Food Nexus: A Coupled Simulation and Optimization Framework. J. Geosci. Environ. Prot. 2017, 05, 84–98. [Google Scholar] [CrossRef]
- Bellezoni, R.A.; Sharma, D.; Villela, A.A.; Junior, A.O.P. Water-energy-food nexus of sugarcane ethanol production in the state of Goiás, Brazil: An analysis with regional input-output matrix. Biomass Bioenergy 2018, 115, 108–119. [Google Scholar] [CrossRef]
- Karamian, F.; Mirakzadeh, A.A.; Azari, A. The water-energy-food nexus in farming: Managerial insights for a more efficient consumption of agricultural inputs. Sustain. Prod. Consum. 2021, 27, 1357–1371. [Google Scholar] [CrossRef]
- Chai, J.; Shi, H.; Lu, Q.; Hu, Y. Quantifying and predicting the Water-Energy-Food-Economy-Society-Environment Nexus based on Bayesian networks—A case study of China. J. Clean. Prod. 2020, 256, 120266. [Google Scholar] [CrossRef]
- Zhang, T.; Tan, Q.; Yu, X.; Zhang, S. Synergy assessment and optimization for water-energy-food nexus: Modeling and application. Renew. Sustain. Energy Rev. 2020, 134, 110059. [Google Scholar] [CrossRef]
- Nhamo, L.; Ndlela, B.; Mpandeli, S. The Water-Energy-Food Nexus as an Adaptation Strategy for Achieving Sustainable Livelihoods at a Local Level. Sustainability 2020, 12, 8582. [Google Scholar] [CrossRef]
- Xu, Z.; Chen, X.; Liu, J.; Zhang, Y.; Chau, S.; Bhattarai, N.; Wang, Y.; Li, Y.; Connor, T.; Li, Y. Impacts of irrigated agriculture on food–energy–water–CO2 nexus across metacoupled systems. Nat. Commun. 2020, 11, 5837. [Google Scholar] [CrossRef] [PubMed]
- Higgins, C.W.; Najm, M.A. An organizing principle for the water-energy-food nexus. Sustainability 2020, 12, 8135. [Google Scholar] [CrossRef]
- Kahil, T.; Albiac, J.; Fischer, G.; Strokal, M.; Tramberend, S.; Greve, P.; Tang, T.; Burek, P.; Burtscher, R.; Wada, Y. A nexus modeling framework for assessing water scarcity solutions. Curr. Opin. Environ. Sustain. 2019, 40, 72–80. [Google Scholar] [CrossRef]
- Rezaei Kalvani, S.; Celico, F. The Water–Energy–Food Nexus in European Countries: A Review and Future Perspectives. Sustainability 2023, 15, 4960. [Google Scholar] [CrossRef]
- Fumagalli, M. The ‘Food-Energy-Water’Nexus in Central Asia: Regional Implications of and the International Response to the Crises in Tajikistan. 2008. Available online: https://aei.pitt.edu/11082/ (accessed on 3 February 2024).
- Medarac, H.; Magagna, D.; Hidalgo Gonzalez, I. Projected fresh water use from the European energy sector. In Disaggregated Fresh Water Withdrawal and Consumption in the EU up to 2050; European Commission: Brussels, Belgium, 2018. [Google Scholar]
- Milne, A. An economic narrative for better managing the European energy crisis. SSRN 2022, 14, 1–14. [Google Scholar] [CrossRef]
- Tirado, M.C.; Hunnes, D.; Cohen, M.J.; Lartey, A. Climate change and nutrition in Africa. J. Hunger Environ. Nutr. 2015, 10, 22–46. [Google Scholar] [CrossRef]
- Rasul, G.; Sharma, B. The nexus approach to water–energy–food security: An option for adaptation to climate change. Clim. Policy 2016, 16, 682–702. [Google Scholar] [CrossRef]
- Todaro, V.; D’Oria, M.; Secci, D.; Zanini, A.; Tanda, M.G. Climate change over the Mediterranean region: Local temperature and precipitation variations at five pilot sites. Water 2022, 14, 2499. [Google Scholar] [CrossRef]
- Nwaiwu, I. The Effects of Climate Change on Agricultural Sustainability in Southeast Nigeria—Implications for Food Security. Asian J. Agric. Ext. Econ. Sociol. 2014, 3, 23–36. [Google Scholar] [CrossRef]
- Famiglietti, J.S. The Global Groundwater Crisis, Nature Climate 65 Change, 4, 945 EP. 2014. Available online: https://www.semanticscholar.org/paper/The-global-groundwater-crisis-Famiglietti/1718bb152e12624439b493d756d656e727b14e89 (accessed on 3 February 2024).
- Bandara, J.S.; Cai, Y. The impact of climate change on food crop productivity, food prices and food security in South Asia. Econ. Anal. Policy 2014, 44, 451–465. [Google Scholar] [CrossRef]
- Berardy, A.; Chester, M. V Climate change vulnerability in the food, energy, and water nexus: Concerns for agricultural production in Arizona and its urban export supply. Environ. Res. Lett. 2017, 12, 35004. [Google Scholar] [CrossRef]
- Liu, Q. Interlinking climate change with water-energy-food nexus and related ecosystem processes in California case studies. Ecol. Process. 2016, 5, 14. [Google Scholar] [CrossRef]
- Pachauri, R.K.; Allen, M.R.; Barros, V.R.; Broome, J.; Cramer, W.; Christ, R.; Church, J.A.; Clarke, L.; Dahe, Q.; Dasgupta, P.; et al. Climate change 2014: Synthesis report. In Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Yang, Y.C.E.; Wi, S.; Ray, P.A.; Brown, C.M.; Khalil, A.F. The future nexus of the Brahmaputra River Basin: Climate, water, energy and food trajectories. Glob. Environ. Chang. 2016, 37, 16–30. [Google Scholar] [CrossRef]
- Yang, Y.C.E.; Ringler, C.; Brown, C.; Mondal, M.A.H. Modeling the agricultural water–energy–food nexus in the Indus River Basin, Pakistan. J. Water Resour. Plan. Manag. 2016, 142, 4016062. [Google Scholar] [CrossRef]
- Feng, M.; Liu, P.; Li, Z.; Zhang, J.; Liu, D.; Xiong, L. Modeling the nexus across water supply, power generation and environment systems using the system dynamics approach: Hehuang Region, China. J. Hydrol. 2016, 543, 344–359. [Google Scholar] [CrossRef]
- Wang, K.; Liu, J.; Xia, J.; Wang, Z.; Meng, Y.; Chen, H.; Mao, G.; Ye, B. Understanding the impacts of climate change and socio-economic development through food-energy-water nexus: A case study of mekong river delta. Resour. Conserv. Recycl. 2021, 167, 105390. [Google Scholar] [CrossRef]
- Naderi, M.M.; Mirchi, A.; Bavani, A.R.M.; Goharian, E.; Madani, K. System dynamics simulation of regional water supply and demand using a food-energy-water nexus approach: Application to Qazvin Plain, Iran. J. Environ. Manag. 2021, 280, 111843. [Google Scholar] [CrossRef]
- Schull, V.Z.; Daher, B.; Gitau, M.W.; Mehan, S.; Flanagan, D.C. Analyzing FEW nexus modeling tools for water resources decision-making and management applications. Food Bioprod. Process. 2020, 119, 108–124. [Google Scholar] [CrossRef]
- Sušnik, J.; Chew, C.; Domingo, X.; Mereu, S.; Trabucco, A.; Evans, B.; Vamvakeridou-Lyroudia, L.; Savić, D.A.; Laspidou, C.; Brouwer, F. Multi-Stakeholder Development of a Serious Game to Explore the Water-Energy-Food-Land-Climate Nexus: The SIM4NEXUS Approach. Water 2018, 10, 139. [Google Scholar] [CrossRef]
- Ngammuangtueng, P.; Nilsalab, P.; Chomwong, Y.; Wongruang, P. Water-energy-food nexus of local bioeconomy hub and future climate change impact implication. J. Clean. Prod. 2023, 399, 136543. [Google Scholar] [CrossRef]
- Geethalakshmi, V.; Gowtham, R.; Bhuvaneswari, K.; Kumar, S.M.; Priyanka, S.; Rajavel, M.; Balakrishnan, N. Sustainable land-water-food nexus management: Integrated modelling approach. J. Agrometeorol. 2023, 25, 61–67. [Google Scholar] [CrossRef]
- Ravar, Z.; Zahraie, B.; Sharifinejad, A.; Gozini, H.; Jafari, S. System dynamics modeling for assessment of water–food–energy resources security and nexus in Gavkhuni basin in Iran. Ecol. Indic. 2020, 108, 105682. [Google Scholar] [CrossRef]
- Bakhshianlamouki, E.; Masia, S.; Karimi, P.; van der Zaag, P.; Sušnik, J. Science of the Total Environment A system dynamics model to quantify the impacts of restoration measures on the water-energy-food nexus in the Urmia lake Basin, Iran. Sci. Total Environ. 2020, 708, 134874. [Google Scholar] [CrossRef] [PubMed]
- Guan, X.; Mascaro, G. Agricultural and Forest Meteorology Impacts of climate change on the food-water nexus in central Arizona. Agric. For. Meteorol. 2023, 333, 109413. [Google Scholar] [CrossRef]
- Dale, L.L.; Karali, N.; Millstein, D.; Carnall, M.; Vicuña, S.; Borchers, N.; Bustos, E.; O’hagan, J.; Purkey, D.; Heaps, C. An integrated assessment of water-energy and climate change in Sacramento, California: How strong is the nexus? Clim. Chang. 2015, 132, 223–235. [Google Scholar] [CrossRef]
- Nadeem, I. Water-Energy Nexus in the UAE in Relation to Climate Change and Adaptation Policy Scenarios. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2019. [Google Scholar]
- Janssen, D.N.G.; Ramos, E.P.; Linderhof, V.; Polman, N.; Laspidou, C.; Fokkinga, D.; de Mesquita e Sousa, D. The Climate, Land, Energy, Water and Food Nexus Challenge in a Land Scarce Country: Innovations in the Netherlands. Sustainability 2020, 12, 10491. [Google Scholar] [CrossRef]
- Wu, L.; Elshorbagy, A.; Helgason, W. Assessment of agricultural adaptations to climate change from a water-energy-food nexus perspective. Agric. Water Manag. 2023, 284, 108343. [Google Scholar] [CrossRef]
- Li, M.; Li, H.; Fu, Q.; Liu, D.; Yu, L.; Li, T. Approach for optimizing the water-land-food-energy nexus in agroforestry systems under climate change. Agric. Syst. 2021, 192, 103201. [Google Scholar] [CrossRef]
- Alp, E.; Köksal, M.A.; Demir, Y.; Başkan, O.; Erdoğan, E.K.; Özcan, Z.; Özcan, C. Evaluation of the Water-Energy-Food Nexus with the Focus on Climate Change in a Semi-arid Watershed, Turkey. In Proceedings of the WEFTEC 2020; Water Environment Federation: Alexandria, Virginia, 2020. [Google Scholar]
- Nasrollahi, H.; Shirazizadeh, R.; Shirmohammadi, R.; Pourali, O.; Amidpour, M. Unraveling the water-energy-food-environment nexus for climate change adaptation in Iran: Urmia Lake Basin case-study. Water 2021, 13, 1282. [Google Scholar] [CrossRef]
- Chini, C.M.; Konar, M.; Stillwell, A.S. Direct and indirect urban water footprints of the U nited S tates. Water Resour. Res. 2017, 53, 316–327. [Google Scholar] [CrossRef]
- Schmidt, J.I.; Johnson, B.; Huntington, H.P.; Whitney, E. A framework for assessing food-energy-water security: A FEW case studies from rural Alaska. Sci. Total Environ. 2022, 821, 153355. [Google Scholar] [CrossRef]
- Owen, A.; Scott, K.; Barrett, J. Identifying critical supply chains and final products: An input-output approach to exploring the energy-water-food nexus. Appl. Energy 2018, 210, 632–642. [Google Scholar] [CrossRef]
- Gazal, A.A.; Jakrawatana, N.; Silalertruksa, T.; Gheewala, S.H. Water-Energy-Food Nexus Review for Biofuels Assessment. Int. J. Renew. Energy Dev. 2022, 11, 193–205. [Google Scholar] [CrossRef]
- Siciliano, G.; Rulli, M.C.; D’Odorico, P. European large-scale farmland investments and the land-water-energy-food nexus. Adv. Water Resour. 2017, 110, 579–590. [Google Scholar] [CrossRef]
- Silalertruksa, T.; Gheewala, S.H. Land-water-energy nexus of sugarcane production in Thailand. J. Clean. Prod. 2018, 182, 521–528. [Google Scholar] [CrossRef]
- Munaretto, S.; Witmer, M. Water-Land-Energy-Food-Climate Nexus: Policies and Policy Coherence at European and International Scale: Deliverable 2.1 SIM4NEXUS Project-Horizon 2020-689150; PBL Netherlands Environmental Assessment Agency: The Hague, The Netherlands, 2017. [Google Scholar]
- Hua, E.; Wang, X.; Engel, B.A.; Qian, H.; Sun, S.; Wang, Y. Water competition mechanism of food and energy industries in WEF Nexus: A case study in China. Agric. Water Manag. 2021, 254, 106941. [Google Scholar] [CrossRef]
- Antonelli, M.; Tamea, S. Food-water security and virtual water trade in the Middle East and North Africa. Int. J. Water Resour. Dev. 2015, 31, 326–342. [Google Scholar] [CrossRef]
- Yillia, P.T. Water-Energy-Food nexus: Framing the opportunities, challenges and synergies for implementing the SDGs. Osterr. Wasser Und Abfallwirtsch. 2016, 68, 86–98. [Google Scholar] [CrossRef]
- Oludare Sunday, D.; Victo, N.; Margaret, S.K.; Miracle Nevo, C.; Bwambale, J. COVID-19 and the water–energy–food nexus in Africa: Evidence from Nigeria, Uganda, and Tanzania; Wiley: Hoboken, NJ, USA, 2020. [Google Scholar]
- Al-Saidi, M.; Hussein, H. The water-energy-food nexus and COVID-19: Towards a systematization of impacts and responses. Sci. Total Environ. 2021, 779, 146529. [Google Scholar] [CrossRef] [PubMed]
- Zhao, N.; You, F. Food-energy-water-waste nexus systems optimization for New York State under the COVID-19 pandemic to alleviate health and environmental concerns. Appl. Energy 2021, 282, 116181. [Google Scholar] [CrossRef]
- Yin, C.; Pereira, P.; Hua, T.; Liu, Y.; Zhu, J.; Zhao, W. Recover the food-energy-water nexus from COVID-19 under Sustainable Development Goals acceleration actions. Sci. Total Environ. 2022, 817, 153013. [Google Scholar] [CrossRef]
- Calder, R.S.D.; Grady, C.; Jeuland, M.; Kirchhoff, C.J.; Hale, R.L.; Muenich, R.L. COVID-19 Reveals Vulnerabilities of the Food–Energy–Water Nexus to Viral Pandemics. Environ. Sci. Technol. Lett. 2021, 8, 606–615. [Google Scholar] [CrossRef] [PubMed]
- Rasul, G.; Neupane, N.; Pasakhala, B.; Gurung, P.; Nepal, A.K.; Sharma, E. Deepening regional cooperation for enhancing water, energy, and food security and addressing COVID-19 challenges in the Hindu Kush Himalayan Region. In Water Resources and Economic Processes; Routledge: London, UK, 2020; pp. 139–164. ISBN 0429025017. [Google Scholar]
- Naidoo, D.; Liphadzi, S.; Mpandeli, S.; Nhamo, L.; Modi, A.T.; Mabhaudhi, T. Post COVID-19: A Water-Energy-Food Nexus Perspective for South Africa. Eng. Sustain. Dev. Living Preserv. In A Future for the Next Generation to Cherish; Stagner, J., Ting, D., Eds.; Brown Walker Press: Boca Raton, FL, USA, 2021; p. 295. [Google Scholar]
- Tayal, S.; Singh, S. COVID-19 and opportunity for integrated management of water–energy–food resources for urban consumption. Environ. Resil. Transform. Times COVID-19 2021, 135–142. [Google Scholar] [CrossRef]
- Berchin, I.I.; de Andrade, J.B.S.O. GAIA 3.0: Effects of the Coronavirus Disease 2019 (COVID-19) outbreak on sustainable development and future perspectives. Res. Glob. 2020, 2, 100014. [Google Scholar] [CrossRef]
- Falkenmark, M.; Rockstrom, J.; Rockström, J. Balancing Water for Humans and Nature: The New Approach in Ecohydrology; Earthscan: Oxford, UK, 2004; ISBN 1853839264. [Google Scholar]
- Liu, G.; Arthur, M.; Viglia, S.; Xue, J.; Meng, F.; Lombardi, G.V. Seafood-energy-water nexus: A study on resource use efficiency and the environmental impact of seafood consumption in China. J. Clean. Prod. 2020, 277, 124088. [Google Scholar] [CrossRef]
- Gephart, J.A.; Troell, M.; Henriksson, P.J.G.; Beveridge, M.C.M.; Verdegem, M.; Metian, M.; Mateos, L.D.; Deutsch, L. The seafood gap’ in the food-water nexus literature—Issues surrounding freshwater use in seafood production chains. Adv. Water Resour. 2017, 110, 505–514. [Google Scholar] [CrossRef]
- Jaroenkietkajorn, U.; Gheewala, S.H. Interlinkage between water-energy-food for oil palm cultivation in Thailand. Sustain. Prod. Consum. 2020, 22, 205–217. [Google Scholar] [CrossRef]
- Fabiani, S.; Vanino, S.; Napoli, R.; Nino, P. Water energy food nexus approach for sustainability assessment at farm level: An experience from an intensive agricultural area in central Italy. Environ. Sci. Policy 2020, 104, 1–12. [Google Scholar] [CrossRef]
- Viccaro, M.; Caniani, D.; Masi, S.; Romano, S.; Cozzi, M. Biofuels or not biofuels? The “Nexus Thinking” in land suitability analysis for energy crops. Renew. Energy 2022, 187, 1050–1064. [Google Scholar] [CrossRef]
- Vahabzadeh, M.; Afshar, A.; Molajou, A. Framing a novel holistic energy subsystem structure for water-energy-food nexus based on existing literature (basic concepts). Sci. Rep. 2023, 13, 6289. [Google Scholar] [CrossRef] [PubMed]
- Sewilam, H.; Kimera, F.; Nasr, P. Water energy food nexus model: An integrated aqua-agriculture system to produce tilapia and sweet basil using desalinated water. Environ. Sci. Pollut. Res. 2023, 30, 15975–15990. [Google Scholar] [CrossRef]
- Yang, J.; Chang, J.; Konar, M.; Wang, Y.; Yao, J. The grain Food-Energy-Water nexus in China: Benchmarking sustainability with generalized data envelopment analysis. Sci. Total Environ. 2023, 887, 164128. [Google Scholar] [CrossRef] [PubMed]
- Gill-Wiehl, A.; Ferrall, I.; Patel, S.; Miles, S.; Wu, J.; Newman, A.; Kammen, D.M. Techno-economic scenario analysis of containerized solar energy for use cases at the food/water/health nexus in Rwanda. Dev. Eng. 2023, 8, 100110. [Google Scholar] [CrossRef]
- Siyal, A.W.; Gerbens-Leenes, P.W. The water–energy nexus in irrigated agriculture in South Asia: Critical hotspots of irrigation water use, related energy application, and greenhouse gas emissions for wheat, rice, sugarcane, and cotton in Pakistan. Front. Water 2022, 4, 941722. [Google Scholar] [CrossRef]
- Lazaro, L.L.B.; Giatti, L.L.; Bermann, C.; Giarolla, A.; Ometto, J. Policy and governance dynamics in the water-energy-food-land nexus of biofuels: Proposing a qualitative analysis model. Renew. Sustain. Energy Rev. 2021, 149, 111384. [Google Scholar] [CrossRef]
- Silalertruksa, T.; Gheewala, S.H. Land–water–energy nexus of biofuels development in emerging economies: A case study of bioethanol policy in Thailand. In The Role of Bioenergy in the Bioeconomy; Elsevier: Amsterdam, The Netherlands, 2019; pp. 379–402. [Google Scholar]
- Ghani, H.U.; Silalertruksa, T.; Gheewala, S.H. Water-energy-food nexus of bioethanol in Pakistan: A life cycle approach evaluating footprint indicators and energy performance. Sci. Total Environ. 2019, 687, 867–876. [Google Scholar] [CrossRef]
- Stang, S.; Wang, H.; Gardner, K.H.; Mo, W. Influences of water quality and climate on the water-energy nexus: A spatial comparison of two water systems. J. Environ. Manag. 2018, 218, 613–621. [Google Scholar] [CrossRef] [PubMed]
- Ghodsvali, M.; Krishnamurthy, S.; de Vries, B. Review of transdisciplinary approaches to food-water-energy nexus: A guide towards sustainable development. Environ. Sci. Policy 2019, 101, 266–278. [Google Scholar] [CrossRef]
- Song, G.; Gao, X.; Fullana-i-Palmer, P.; Lv, D.; Zhu, Z.; Wang, Y.; Bayer, L.B. Shift from feeding to sustainably nourishing urban China: A crossing-disciplinary methodology for global environment-food-health nexus. Sci. Total Environ. 2019, 647, 716–724. [Google Scholar] [CrossRef] [PubMed]
- Pozza, L.E.; Field, D.J. The science of Soil Security and Food Security. Soil Secur. 2020, 1, 100002. [Google Scholar] [CrossRef]
- Field, D.J.; Sanderson, T. Distinguishing Between Capability and Condition. In Global Soil Security; Field, D.J., Morgan, C.L.S., McBratney, A.B., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 45–52. ISBN 978-3-319-43394-3. [Google Scholar]
- Zhou, Y.; Gholizadeh, H.; LaVanchy, G.T.; Hasan, E. Inspecting the Food–Water Nexus in the Ogallala Aquifer Region Using Satellite Remote Sensing Time Series. Remote Sens. 2020, 12, 2257. [Google Scholar] [CrossRef]
- Alam, S.; Gebremichael, M.; Li, R. Remote sensing-based assessment of the crop, energy and water Nexus in the Central Valley, California. Remote Sens. 2019, 11, 1701. [Google Scholar] [CrossRef]
- Sanders, K.T.; Masri, S.F. The energy-water agriculture nexus: The past, present and future of holistic resource management via remote sensing technologies. J. Clean. Prod. 2016, 117, 73–88. [Google Scholar] [CrossRef]
- Koppa, A.; Gebremichael, M. Improving the Applicability of Hydrologic Models for Food–Energy–Water Nexus Studies Using Remote Sensing Data. Remote Sens. 2020, 12, 599. [Google Scholar] [CrossRef]
- McGrane, S.J.; Acuto, M.; Artioli, F.; Chen, P.; Comber, R.; Cottee, J.; Farr-Wharton, G.; Green, N.; Helfgott, A.; Larcom, S. Scaling the nexus: Towards integrated frameworks for analysing water, energy and food. Geogr. J. 2019, 185, 419–431. [Google Scholar] [CrossRef]
- Wiegleb, V.; Bruns, A. What is driving the water-energy-food nexus? Discourses, knowledge, and politics of an emerging resource governance concept. Front. Environ. Sci. 2018, 6, 128. [Google Scholar] [CrossRef]
- Dargin, J.; Daher, B.; Mohtar, R.H. Complexity versus simplicity in water energy food nexus (WEF) assessment tools. Sci. Total Environ. 2019, 650, 1566–1575. [Google Scholar] [CrossRef] [PubMed]
- Ramos, E.P.; Kofinas, D.; Sundin, C.; Brouwer, F.; Laspidou, C. Operationalizing the nexus approach: Insights from the sim4nexus project. Front. Environ. Sci. 2022, 10, 787415. [Google Scholar] [CrossRef]
- Vinca, A.; Riahi, K.; Rowe, A.; Djilali, N. Climate-land-energy-water nexus models across scales: Progress, gaps and best accessibility practices. Front. Environ. Sci. 2021, 9, 691523. [Google Scholar] [CrossRef]
- Pinardi, R.; Feo, A.; Ruffini, A.; Celico, F. Purpose-Designed Hydrogeological Maps for Wide Interconnected Surface–Groundwater Systems: The Test Example of Parma Alluvial Aquifer and Taro River Basin (Northern Italy). Hydrology 2023, 10, 127. [Google Scholar] [CrossRef]
- Ducci, L.; Rizzo, P.; Bucci, A.; Pinardi, R.; Monaco, P.; Celico, F. The Challenge Posed by Emerging Environmental Contaminants: An Assessment of the Effectiveness of Phenoxyethanol Biological Removal from Groundwater through Mesocosm Experiments. Sustainability 2024, 16, 2183. [Google Scholar] [CrossRef]
- Zanini, A.; Petrella, E.; Sanangelantoni, A.M.; Angelo, L.; Ventosi, B.; Viani, L.; Rizzo, P.; Remelli, S.; Bartoli, M.; Bolpagni, R. Groundwater characterization from an ecological and human perspective: An interdisciplinary approach in the Functional Urban Area of Parma, Italy. Rend. Lincei. Sci. Fis. Nat. 2019, 30, 93–108. [Google Scholar] [CrossRef]
- Feo, A.; Pinardi, R.; Artoni, A.; Celico, F. Three-Dimensional High-Precision Numerical Simulations of Free-Product DNAPL Extraction in Potential Emergency Scenarios: A Test Study in a PCE-Contaminated Alluvial Aquifer (Parma, Northern Italy). Sustainability 2023, 15, 9166. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rezaei Kalvani, S.; Celico, F. Analysis of Pros and Cons in Using the Water–Energy–Food Nexus Approach to Assess Resource Security: A Review. Sustainability 2024, 16, 2605. https://doi.org/10.3390/su16072605
Rezaei Kalvani S, Celico F. Analysis of Pros and Cons in Using the Water–Energy–Food Nexus Approach to Assess Resource Security: A Review. Sustainability. 2024; 16(7):2605. https://doi.org/10.3390/su16072605
Chicago/Turabian StyleRezaei Kalvani, Somayeh, and Fulvio Celico. 2024. "Analysis of Pros and Cons in Using the Water–Energy–Food Nexus Approach to Assess Resource Security: A Review" Sustainability 16, no. 7: 2605. https://doi.org/10.3390/su16072605
APA StyleRezaei Kalvani, S., & Celico, F. (2024). Analysis of Pros and Cons in Using the Water–Energy–Food Nexus Approach to Assess Resource Security: A Review. Sustainability, 16(7), 2605. https://doi.org/10.3390/su16072605