Biofuels Induced Land Use Change Emissions: The Role of Implemented Land Use Emission Factors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Common Approach in Calcualting ILUC Emissions
2.2. Components and Sources of LUEFs
2.3. A Short Review of GTAP-BIO Model and Implemented for the Examined SAF Pathways
3. Results
3.1. Uncertainty in Emission Factors
- Regardless of region or data source, the emission factors of converting forest land to cropland are higher than the emission factors of converting pasture to cropland;
- Regardless of the data source for a given land type, the emission factors vary significantly across regions. This is because the vegetation cover and soil characteristics vary significantly across regions;
- For a given region and land type, alternative sources provide significantly different emission factors. This item highlights uncertainties in LUEFs across data sources; and
- The observed variation among the alternative sources of LUEFs for a given country or region is caused by many factors, including differences in model assumptions, system boundaries, primary carbon stock data sources, and categorization of ecosystems and land uses, among others. Major research efforts are needed to identify, prioritize, and validate these factors to better assess the true scope and uncertainty of ILUC emissions.
- There is a large disparity among emission factors for the pasture land to cropland transition, which often vary by a factor of three or more between the smallest and largest estimates;
- The TEM emissions factors for pasture land to cropland in Brazil, East Asia, Malaysia, and Indonesia, and the rest of South Asia are much larger than those EFs from other sources.
- The Woods Hole emission factors for pasture land to cropland in China, India, the rest of South Asia, Russia, and some European regions are much larger than those emissions factors from other sources;
- The forest land to cropland transition emissions factors from TEM and Woods Hole models are larger than those from other models;
- In each region, the disparity among the alternative sources of emission factors for forest land is also considerable, but lower than the disparity for pasture land.
3.2. Emission Factors Containing Outdated Data
3.3. ILUC Emissions for Selected SAF Pathways
3.4. Land-Use Emission Factors Used in Other Economic Models
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- National Academies of Sciences, Engineering, and Medicine. Current Methods for Life-Cycle Analyses of Low-Carbon Transportation Fuels in the United States; The National Academies Press: Washington, DC, USA, 2022. [Google Scholar]
- Plevin, R.J.; O’Hare, M.; Jones, A.D.; Torn, M.S.; Gibbs, H.K. Greenhouse gas emissions from biofuels’ indirect land use change are uncertain but may be much greater than previously estimated. Environ. Sci. Technol 2010, 44, 8015–8021. [Google Scholar] [CrossRef]
- Laborde, D.; Padella, M.; Edwards, R.; Marelli, L. Progress in Estimates of ILUC with MIRAGE Model; European Commission—Joint Research Centre: Ispra, Italy, 2014; p. 44. [Google Scholar]
- Taheripour, F.; Tyner, W. Induced Land Use Emissions Due to first and second generation biofuels and uncertainty in land use emissions factors. Econ. Res. Int. 2013, 2013, 315787. [Google Scholar] [CrossRef]
- Valin, H.; Peters, D.; van den Berg, M.; Frank, S.; Havlik, P.; Forsell, N.; Hamelinck, C.; Pirker, J.; Mosnier, A.; Balkovic, J.; et al. The Land Use Change Impact of Biofuels Consumed in the EU: Quantification of Area and Greenhouse Gas Impacts; ECOFYS: Utrecht, The Netherlands, 2015; p. 261. [Google Scholar]
- Plevin, R.J.; Beckman, J.; Golub, A.A.; Witcover, J.; O’Hare, M. Carbon accounting and economic model uncertainty of emissions from biofuels-induced land use change. Environ. Sci. Technol 2015, 49, 2656–2664. [Google Scholar] [CrossRef] [PubMed]
- Leland, A.; Hoekman, S.K.; Liu, X. Review of modifications to indirect land use change modeling and resulting carbon intensity values within the California Low Carbon Fuel Standard regulations. J. Clean. Prod. 2018, 180, 698–707. [Google Scholar] [CrossRef]
- Chen, R.; Qin, Z.; Han, J.; Wang, M.; Taheripour, F.; Tyner, W.; O’Connor, D.; Duffield, J. Life cycle energy and greenhouse gas emission effects of biodiesel in the United States with induced land use change impacts. Bioresour. Technol. 2018, 251, 249–258. [Google Scholar] [CrossRef] [PubMed]
- Gibbs, H.; Yui, S.; Plevin, R.J. New Estimate of Soil and Biomass Carbon Stocks for Global Economic Models; GTAP Center, Department of Agricultural Economics, Purdue University: West Lafayette, IN, USA, 2014. [Google Scholar]
- Plevin, R.J.; Gibbs, H.K.; Duffy, J.; Yui, S.; Yeh, S. Agro-Ecological Zone Emission Factor (AEZ-EF) Model (v47); GTAP Center, Department of Agricultural Economics, Purdue University: West Lafayette, IN, USA, 2015. [Google Scholar]
- Kwon, H.; Liu, X.; Dunn, J.B.; Mueller, S.; Wander, M.M.; Wang, M. Carbon Calculator for Land Use and Land Management Change from Biofuels Production (CCLUB); Argonne National Laboratory: Lemont, IL, USA, 2021. [Google Scholar]
- Zhao, X.; Taheripour, F.; Malina, R.; Staples, M.D.; Tyner, W.E. Estimating induced land use change emissions for sustainable aviation biofuel pathways. Sci. Total Environ. 2021, 779, 146238. [Google Scholar] [CrossRef]
- Hertel, T.W.; Golub, A.; Jones, A.; O’Hare, M.; Plevin, R.; Kammen, D. Effects of U.S. maize ethanol on global land use and greenhouse gas emissions: Estimating market mediated responses. Bioscience 2010, 60, 223–231. [Google Scholar] [CrossRef]
- FAO; IIASA. Harmonized World Soil Database Version 2.0; FAO: Rome, Italy; IIASA: Laxenburg, Austria, 2023. [Google Scholar] [CrossRef]
- Eggleston, H.S.; Buendia, L.; Miwa, K.; Ngara, T.; Tanabe, K. IPCC Guidelines for National Greenhouse Gas Inventories; Institute for Global Environmental Strategies (IGES), Hayama, Japan, 2006.
- IPCC. Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Calvo Buendia, E., Tanabe, K., Kranjc, A., Baasansuren, J., Fukuda, M., Ngarize, S., Osako, A., Pyrozhenko, Y., Shermanau, P., Federici, S., Eds.; IPCC: Geneva, Switzerland, 2019. [Google Scholar]
- Harris, N.; Grimland, S.; Brown, S. Land Use Change and Emission Factors: Updates Since the RFS Proposed Rule; Winrock International: Arlington, VA, USA, 2009. [Google Scholar]
- Houghton, R.A. Carbon emissions and the drivers of deforestation and forest degradation in the tropics. Curr. Opin. Environ. Sustain. 2012, 4, 597–603. [Google Scholar] [CrossRef]
- Parton, W.J.; Scurlock, J.M.O.; Ojima, D.S.; Gilmanov, T.G.; Scholes, R.J.; Schimel, D.S.; Kirchner, T.; Menaut, J.-C.; Seastedt, T.; Garcia Moya, E.; et al. Observations and modeling of biomass and soil organic matter dynamics for the grassland biome worldwide. Glob. Biogeochem. 1993, 7, 785–809. [Google Scholar] [CrossRef]
- Parton, W.J.; Scurlock, J.M.O.; Ojima, D.S.; Schimel, D.S.; Hall, D.O. Impact of climate change on grassland production and soil carbon worldwide. Glob. Change Biol. 1995, 1, 13–22. [Google Scholar] [CrossRef]
- Parton, W.J.; Hartman, M.; Ojima, D.; Schimel, D. DAYCENT and its land surface submodel: Description and testing. Glob. Planet. Change 1998, 19, 35–48. [Google Scholar] [CrossRef]
- Zhuang, Q.; McGuire, A.D.; Melillo, J.M.; Clein, J.S.; Dargaville, R.J.; Kicklighter, D.W.; Myneni, R.B.; Dong, J.; Romanovsky, V.E.; Harden, J.; et al. Carbon cycling in extratropical terrestrial ecosystems of the Northern Hemisphere during the 20th century: A modeling analysis of the influences of soil thermal dynamics. Tellus B Chem. Phys. Meteorol. 2003, 55, 751–776. [Google Scholar] [CrossRef]
- Jain, A.K.; Yang, X. Modeling the effect of two different land cover change data sets on the carbon stocks of plants and soil in concert with CO2 and climate change. Glob. Biogeochem. Cycle 2005, 19, 1–20. [Google Scholar] [CrossRef]
- Gibbs, H.K.; Brown, S.; Niles, J.O.; Foley, J.A. Monitoring and estimating tropical forest carbon stocks: Making REDD a reality. Environ. Res. Lett. 2007, 2, 045023. [Google Scholar] [CrossRef]
- Saatchi, S.S.; Harris, N.L.; Brown, S.; Lefsky, M.; Mitchard, E.T.A.; Salas, W.; Zutta, B.R.; Buermann, W.; Lewis, S.L.; Hagen, S.; et al. Benchmark map of forest carbon stocks in tropical regions across three continents. Proc. Natl. Acad. Sci. USA 2011, 108, 9899–9904. [Google Scholar] [CrossRef] [PubMed]
- Batjes, N.H. Harmonized soil property values for broad-scale modelling (WISE30sec) with estimates of global soil carbon stocks. Geoderma 2016, 269, 61–68. [Google Scholar] [CrossRef]
- Hertel, T.W. Global Trade Analysis: Modeling and Applications; Cambridge University Press: New York, NY, USA, 1997. [Google Scholar]
- Taheripour, F.; Hertel, T.W.; Tyner, W.; Beckman, J.; Birur, D. Biofuels and their by-products: Global economic and environmental implications. Biomass Bioenergy 2010, 34, 278–289. [Google Scholar] [CrossRef]
- Taheripour, F.; Hertel, T.W.; Tyner, W. Implications of biofuels mandates for the global livestock industry: A computable general equilibrium analysis. Agric. Econ. 2011, 42, 325–342. [Google Scholar] [CrossRef]
- Taheripour, F.; Qianlai, Z.; Tyner, W.; Lu, X. Biofuels, cropland expansion, and the extensive margin. Energy Sustain. Soc. 2012, 2, 25. [Google Scholar] [CrossRef]
- Taheripour, F.; Tyner, W. Biofuels and land use change: Applying recent evidence to model estimates. Appl. Sci. 2013, 3, 14–38. [Google Scholar] [CrossRef]
- Taheripour, F.; Zhao, X.; Tyner, W. The impact of considering land intensification and updated data on biofuels land use change and emissions estimates. Biotechnol. Biofuels 2017, 10, 191. [Google Scholar] [CrossRef] [PubMed]
- ICAO. CORSIA Supporting Document: CORSIA Eligible Fuels—Life Cycle Assessment Methodology, version 4; ICAO: Montreal, QC, Canada, 2021. [Google Scholar]
- Edwards, R.; Mulligan, D.; Marelli, L. Indirect Land Use Change from Increased Biofuels Demand. Comparison of Models and Results for Marginal Biofuels Production from Different Feedstocks; EC Joint Research Centre: Ispra, Italy, 2010. [Google Scholar]
- Austin, K.G.; Mosnier, A.; Pirker, J.; Mccallum, I.; Fritz, S.; Kasibhatla, P.S. Shifting patterns of oil palm driven deforestation in Indonesia and implications for zero-deforestation commitments. Land Use Policy 2017, 69, 41–48. [Google Scholar] [CrossRef]
- Paltsev, S.; Reilly, J.; Jacoby, H.; Eckaus, R.; McFarland, J.; Babiker, M. The MIT Emissions Prediction and Policy Analysis (EPPA) Model: Version 4; Report 125; MIT Joint Program on the Science and Policy of Global Change, Cambridge, USA: 2005.
- McGuire, A.D.; Sitch, S.; Clein, J.S.; Dargaville, R.; Esser, G.; Foley, J.; Heimann, M.; Joos, F.; Kaplan, J.; Kicklighter, D.W.; et al. Carbon balance of the terrestrial biosphere in the Twentieth Century: Analyses of CO2, climate and land use effects with four process-based ecosystem models. Glob. Biogeochem. Cycles 2001, 15, 183–206. [Google Scholar] [CrossRef]
- Felzer, B.; Kicklighter, D.W.; Melillo, J.; Wang, C.; Zhuang, Q.; Prinn, R. Effects of ozone on net primary production and carbon sequestration in the conterminous United States using a biogeochemistry model. Tellus B 2004, 56, 230–248. [Google Scholar] [CrossRef]
- Qudsia, J.E.; Paltsev, S.; Kicklighter, D.W.; Winchester, N.W. Are Land-Use Emissions Scalable with Increasing Corn Ethanol Mandates in the United States?; Report 295; Report-MIT Joint Program on the Science and Policy of Global Change, Cambridge, USA: 2016.
- Havlík, P.; Valin, H.; Mosnier, A.; Frank, S.; Lauri, P.; Leclère, D.; Palazzo, A.; Batka, M.; Boere, E.; Brouwer, A.; et al. GLOBIOM documentation; International Institute for Applied Systems Analysis (IIASA): Laxenburg, Austria.
- Kyle, P.; Luckow, P.; Calvin, K.; Emanuel, W.; Nathan, M.; Zhou, Y. GCAM 3.0 Agriculture and Land Use: Data Sources and Methods; Report 21025; Pacific Northwest National Laboratory: Richland, WA, USA, 2011. [Google Scholar]
- Van de Ven, D.J.; Capellan-Peréz, I.; Arto, I.; Cazcarro, I.; de Castro, C.; Patel, P.; Gonzalez-Eguino, M. The potential land requirements and related land use change emissions of solar energy. Sci. Rep. 2021, 11, 2907. [Google Scholar] [CrossRef] [PubMed]
Pathways | Increases in Fuel Supplies in Petajoules | Increases in Fuel Supplies in Bllion Gallons of Gasolin Equivalent | ||||
---|---|---|---|---|---|---|
Jet Fuel | Biofuel Co-product | Total | Jet Fuel | Biofuel Co-product | Total | |
Soy oil HEFA | 57.1 | 171.3 | 228.4 | 0.47 | 1.4 | 1.86 |
Corn ATJ | 103.8 | 0 | 103.8 | 0.85 | 0 | 0.85 |
Corn ETJ | 103.8 | 32.2 | 136 | 0.85 | 0.26 | 1.11 |
Miscanthus FTJ | 69.2 | 207.7 | 276.9 | 0.57 | 1.7 | 2.26 |
Switchgrass FTJ | 69.2 | 207.7 | 276.9 | 0.57 | 1.7 | 2.26 |
Poplar FTJ | 69.2 | 207.7 | 276.9 | 0.57 | 1.7 | 2.26 |
Miscanthus ATJ | 69.2 | 0 | 69.2 | 0.57 | 0 | 0.57 |
Switchgrass ATJ | 69.2 | 0 | 69.2 | 0.57 | 0 | 0.57 |
Pathways | ILUC Obtained from the AEZ-EF Model | ILUC Obtained from CCLUB Model | Difference: AEZ-EF–CCLUB | |||
---|---|---|---|---|---|---|
Soil Organic Carbon | Biomass Carbon | Others ** | AEZ-EF Total | |||
Soy oil HEFA | 5 | 1.6 | 13.4 | 20 | 15.0 | 5.0 |
Corn ATJ | 8.4 | −0.3 | 14.4 | 22.5 | 14.4 | 8.1 |
Corn ETJ | 9.4 | −0.3 | 15.8 | 24.9 | 15.6 | 9.3 |
Miscanthus FTJ | −33.6 | −17.8 | 14.1 | −37.3 | −12.8 | −24.5 |
Switchgrass FTJ | −17.3 | −11.8 | 20.9 | −8.2 | 1.0 | −9.2 |
Poplar FTJ | −7.8 | −19.5 | 17.7 | −9.6 | 7.0 | −16.6 |
Miscanthus ATJ | −51 | −25.3 | 17.8 | −58.5 | −26.1 | −32.3 |
Switchgrass ATJ | −28.7 | −18.5 | 28.3 | −18.9 | −14.1 | −4.7 |
Pathways | Amortization Time Horizon | |||
---|---|---|---|---|
25 Years | 30 Years | |||
AEZ-EF | CCLUB | AEZ-EF | CCLUB | |
Soy oil HEFA | 20.0 | 15.0 | 16.6 | 12.5 |
Corn ATJ | 22.5 | 14.4 | 18.7 | 12.0 |
Corn ETJ | 24.9 | 15.6 | 20.8 | 13.0 |
Miscanthus FTJ | −37.3 | −12.8 | −31.1 | −10.7 |
Switchgrass FTJ | −8.2 | 1.0 | −6.8 | 0.9 |
Poplar FTJ | −9.6 | 7.0 | −8.0 | 5.9 |
Miscanthus ATJ iBuOH | −58.5 | −26.1 | −48.7 | −21.8 |
Switchgrass ATJ iBuOH | −18.9 | −14.1 | −15.7 | −11.8 |
Grain ATJ | 22.5 | 14.4 | 18.7 | 12.0 |
Grain ETJ | 24.9 | 15.6 | 20.8 | 13.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taheripour, F.; Mueller, S.; Emery, I.; Karami, O.; Sajedinia, E.; Zhuang, Q.; Wang, M. Biofuels Induced Land Use Change Emissions: The Role of Implemented Land Use Emission Factors. Sustainability 2024, 16, 2729. https://doi.org/10.3390/su16072729
Taheripour F, Mueller S, Emery I, Karami O, Sajedinia E, Zhuang Q, Wang M. Biofuels Induced Land Use Change Emissions: The Role of Implemented Land Use Emission Factors. Sustainability. 2024; 16(7):2729. https://doi.org/10.3390/su16072729
Chicago/Turabian StyleTaheripour, Farzad, Steffen Mueller, Isaac Emery, Omid Karami, Ehsanreza Sajedinia, Qianlai Zhuang, and Michael Wang. 2024. "Biofuels Induced Land Use Change Emissions: The Role of Implemented Land Use Emission Factors" Sustainability 16, no. 7: 2729. https://doi.org/10.3390/su16072729
APA StyleTaheripour, F., Mueller, S., Emery, I., Karami, O., Sajedinia, E., Zhuang, Q., & Wang, M. (2024). Biofuels Induced Land Use Change Emissions: The Role of Implemented Land Use Emission Factors. Sustainability, 16(7), 2729. https://doi.org/10.3390/su16072729